WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Ciblage d'inflation versus ciblage de niveau des prix : avantages comparés dans l'UMOA

( Télécharger le fichier original )
par Alain BABATONUDE
Université d'Abomey-Calvi - Diplome d'études approfondies 2009
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

ANNEXES

ANNEXE I : ANALYSE DE LA STATIONNARITE DES SERIES

I.1- Stationnarité de ihpc

TABLE

1:

test

Test
Statistic

for unit root Number of obs =

Interpolated Dickey-Fuller

1% Critical 5% Critical 10%

Value Value

57

Critical Value

Augmented Dickey-Fuller

Z(t)

 
 

3.347

-2.617

 

-1.950

-1.610

 

D.ihpc

|

Coef.

Std. Err.

t

P>|t|

[95% Conf.

Interval]

 

ihpc

+
|

 
 
 
 
 
 
 

L1.

|

.0062319

.0018618

3.35

0.002

.0024975

.0099662

 

LD.

|

.4673105

.1327332

3.52

0.001

.2010813

.7335397

 

L2D.

|

-.5715382

.1501091

-3.81

0.000

-.872619

-.2704574

 

L3D.

|

.3039482

.0993908

3.06

0.003

.1045955

.5033009

TABLE

2:

 
 
 
 
 
 
 

Phillips-Perron

 

test for unit root

 

Number of obs =

60

 
 
 
 
 
 

Newey-West lags =

3

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(rho) 0.606 -12.980 -7.740 -5.520

Z(t) 3.086 -2.616 -1.950 -1.610

ihpc | Coef. Std. Err. t P>|t| [95% Conf. Interval]

+
ihpc |

L1. | 1.010241 .0024769 407.86 0.000 1.005285 1.015197

I.2- Stationnarité de infglis

TABLE 3

Augmented Dickey-Fuller test for unit root Number of obs = 55

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(t) -3.295 -3.573 -2.926 -2.598

MacKinnon approximate p-value for Z(t) = 0.0151

D.infglis | Coef. Std. Err. t P>|t| [95% Conf. Interval]

infglis |

L1. | -.1878307 .0570071 -3.29 0.002 -.3022239 -.0734375

LD. | .2642757 .0765217 3.45 0.001 .1107236 .4178277

_cons | .0056985 .0023338 2.44 0.018 .0010154 .0103815

TABLE 4

Phillips-Perron test for unit root Number of obs = 56

Newey-West lags = 1

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(rho) -23.393 -19.008 -13.348 -10.736

Z(t) -9.985 -3.572 -2.925 -2.598

MacKinnon approximate p-value for Z(t) = 0.0000

infglis | Coef. Std. Err. t P>|t| [95% Conf. Interval]

+
infglis |

L1. | .5974365 .0345129 17.31 0.000 .5282424 .6666306

_cons | .0117074 .0021668 5.40 0.000 .0073632 .0160516

I-3 : Stationnarité de outputgap

TABLE 5

dfuller outputgap, lag(3) regress

Augmented Dickey-Fuller test for unit root Number of obs = 57

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(t) -1.699 -3.570 -2.924 -2.597

MacKinnon approximate p-value for Z(t) = 0.4316

D.outputgap | Coef. Std. Err. t P>|t| [95% Conf. Interval]

+
outputgap |

L1. | -.0634455 .0373402 -1.70 0.095 -.1383741 .0114831

LD. | .1158135 .1304984 0.89 0.379 -.1460507 .3776777

L2D. | .2095736 .1332714 1.57 0.122 -.0578551 .4770023

L3D. | .0654421 .1225056 0.53 0.595 -.1803835 .3112676

cons | -.0006298 .0012486 -0.50 0.616 -.0031354 .0018757

_

TABLE 6

Dickey-Fuller test for unit root Number of obs = 59

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(t) -6.349 -2.616 -1.950 -1.610

D2.outputgap | Coef. Std. Err. t P>|t| [95% Conf. Interval]

+
outputgap |

LD. | -.8013101 .1262006 -6.35 0.000 -1.053928 -.5486922

TABLE 7

Phillips-Perron test for unit root Number of obs = 59

Newey-West lags = 3

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(rho) -54.816 -12.972 -7.736 -5.518

Z(t) -6.523 -2.616 -1.950 -1.610

D.outputgap | Coef. Std. Err. t P>|t| [95% Conf. Interval]

+
outputgap |

LD. | .1986899 .1262006 1.57 0.121 -.0539281 .4513078

TABLE 8

61

 
 

Number of obs =

61

ARIMA regression Sample: 1 to

 
 
 
 

Wald

chi2(2) =

289.20

Log likelihood

= 189.1048

 
 

Prob

> chi2 =

0.0000

|

 

OPG

 
 
 
 

outputgap |

Coef.

Std. Err.

z

P>|z|

[95% Conf.

Interval]

+

outputgap |

 
 
 
 
 
 

_cons |

.0016938

.0182379

0.09

0.926

-.0340519

.0374395

+

 
 
 
 
 
 

ARMA |

ar |

 
 
 
 
 
 

L1. |

1.163599

.1035005

11.24

0.000

.9607422

1.366457

L2. |

-.2388272

.1050883

-2.27

0.023

-.4447966

-.0328579

 

+

 
 
 
 
 
 

/sigma |

.0107001

.0007009

15.27

0.000

.0093263

.0120739

ANNEXE II : ALGORITHME D'INTERPOLATION

Cette méthode proposée par Goldstein et Khan (1976) considère trois observations annuelles consécutives d'une variable de flux x(s), soit xt-1, xt et xt+1 par lesquelles passent la fonction quadratique définie par le système suivant :

1

? (as2 + bs + c) ds = xt-1

0

2

? (as2 + bs + c) ds = xt

1

3

? (as2 + bs + c) ds = xt+1

2

La résolution du système d'équation donne les valeurs de a, b et c en fonction des xi. Soit :

a = 0.5xt-1 - 1.0x + 0.5xt+1

b = -2.0xt-1 + 3.0x - 1.0xt+1

c = 1.833xt-1 - 1.166x + 0.333xt+1

Pour une année donnée (t), les séries trimestrielles peuvent être alors interpolées, soit :

1.25

T1 = ? (as2 + bs + c) ds = 0.0545xt-1 + 0.2346xt - 0.0392xt+1

1

1.5

T2 = ? (as2 + bs + c) ds = 0.0079x t-1 + 0.2655xt - 0.0234xt+1

1.25
1.75

T3 = ? (as2 + bs + c) ds = -0.0234xt-1 + 0.2655xt + 0.078xt+1

1.5

1

T4 = ? (as2 + bs + c) ds = -0.039xt-1 + 0.2343xt + 0.0547xt+1

1.75

Les séries trimestrielles au rythme annuel sont obtenues en multipliant chaque observation par quatre. L'erreur relative se situe en moyenne autour de 2%.

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Il ne faut pas de tout pour faire un monde. Il faut du bonheur et rien d'autre"   Paul Eluard