WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Contribution à  l'analyse et la synthèse des systèmes d'ordre fractionnaire par la représentation d'état

( Télécharger le fichier original )
par Rachid MANSOURI
Université Mouloud Mammeri de Tizi Ouzou, Algérie - Doctorat 2008
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Bibliographie

[1] Ait Messaoud L. (2007)Contibution à la commande dessystèmespar des régulateurs d'ordre non entierApplication àla commande deamachine asynchrone. Mémoire de Magister, Univeristé Mouloud Mammeri de Tizi-Ouzou.

[2] Aoun M. (2005). Systèmes linéaires nonentiers et identi~cation par bases orthogonales non entières. Phd Thesis, Université de Bordeaux 1

[3] Al-Alaoui M.A. (1993). Novel digital integrator anddi~erentiator.Electronics letters, vol. 29, n 4, pp. 376-378.

[4] Baker J.E. (1987). Adaptative selection methods forgenetics algorithms.J.J. Creffenstette (Ed.) lst International conference on genetic algorithmsnd their applications. pp. 14-21, New Jersey.

[5] Barret P. (1982) Régimes transitoires des machinestournantes électriiues. Editions Eyrolles, Paris.

[6] Bettayeb M., Silverman L.Met Safonov M.G (1980). Optimal approximation of continuous-time systems. 2Oth IEEE Conference on Decision and Control CDC''8, 21-24 December, Albuquerque New Mexicopp10-12.

[7] Bettayeb M. et Djennoune S. (2006) A Note on the Controllability and theObservability of Fractional Dynamical Systems. In : Proceedings of the 2th IFAC Workshop on Fractional Di~erentiation and itsApplications, Porto, Portugal.

[8] Blaschke F. (1972), The principle offield orientation as appliedohe nee transsektor closed-loop control systemforrotating ~eldmachines. Siemens Review n. 34, pp. 217- 220.

[9] Caputo M. (1967). Linear models ofdissipation whoseq is almost frequency independent. Ceopthysical journal of tthe royal astronomical society. vol. 2, n 13, pp. 529-539.

[10] Carlson G.E. et Halijak CA. (1964) Approximationof fractional capacitor(1/s)1/n by a regular Newton ProcessIRE Transactions on circuit ttheory. vol. 2, pp. 210-213.

[11] Charef A. et Sun H.H. (1990)Time domain analysis of fractal system.nEngeneering in Medicine and BiologysocietyyProceedings ofthe12th Annual international Conference oftthe IEEE, n 18, pp. 597-621.

[12] Charef A., Sun H.H., Tsao Y.Y. et Onaral BFractal system as representedby singularity function. IEEE Transactions on Automatic Control . vol. 37, n 9, pp. 1465-1470

[13] Charef A. (2006)Modeling and analogrealizationof the fundamentalinearractional order differential equation. Nonlinear Dynamics, vol. 46, pp.195-210.

[14] Chen C.T. (1984). Linear system ttheory and design. Holt, Rinehart and Wiston New-York.

[15] Chen Y.Q. et Moore K.L. (2002) DiscretizationSchemes forFractional-Order Differentiators and Integrators. IEEE Transactions on Circuits and Systems-IFundamental Ttheory and Applications , 49(3), pp. 363-367

[16] Clerc M. (2005). L'Optimisation par essaims particulaires, Versions paramétriques et adaptatives, Editions Hermès, Paris.

[17] Cole K. S. et Cole R.H. (1941) Dispersion and absorption n dielectrics, alternation current characterization. Journal of Cthemical Pthysics, vol. 9, pp. 1417-1418

[18] Davidson D. et Cole R. (1950) Dielectric relaxation n glycerine.Journal of Cthemistry and Pthysics. vol. 18, pp. 1417-1418.

[19] De Larminat P. (1996) Automatique : Commande des systèmes inéaires. Editions Hermès, Paris.

[20] Djamah T. et Mansouri R. (2006) Développement d'une nouvelleméthode de calcul d'un modèle d'état à partir dun modèle transfertd'ordrenon entiermonovariable. rapport interne.

[21] Dzielinski A. et Sierociuk D. (2006) Stability of Discrete FractionalOrder StateSpace Systems. Proceedings of the 2nd IFAC Workshop onFractionalDi~erentiation and its Applications Porto, Portugal.

[22] Glover K. (1984)All optimal Hankel-norm approximations ofinearmultivariable systems and their H8-error bounds. International Journal of Control , vol. 39, pp. 1115-1193.

[23] Goldberg D.E. (1989) Cenetic algorithmsin search, optimiiation, and machineearr ning. Addison-Wesley, New York.

[24] Gorenflo R. (1997)Fractional calculus Some numericalmethods. In : A. Carpinteri and F. Mainardi (eds.). Fractals and Fractional Calculus n ContinuumMechanics. Springer Verlag, Vienna, New York

[25] Guglielmi M., (2002). Approximation optimale duntransfertnon entierpar un réseau de cellules. In : Proceedings de la Conférence InternationaleFrancophone ddAutomaa tique, Nantes French, 8-10 julypp534-539

[26] Grunwald A.K. (1867)Ueber begrenzte derivationen und deren anwendung. Z. Angew. Math. Phys.. n 12, pp. 441-480.

[27] Gustavsen B. et Semlyen A(1999) Rational approximation of freeuency domain responses by vector fittingIEEE trans. Power Delivery. vol. 14, pp. 1052-1061

[28] Gustavsen B. (2004)A robust approach for system denti~cationn the freeuency domain. IEEE trans. Power Delivery. vol. 19, n 3, pp. 1167-1173

[29] Haupt R.L. and Haupt S.E. (1998) Practical Cenetic Algorithm. John Wiley & Sons, Yew York.

[30] Héliea T., Matignon D. (2006) Representations with polesand cuts forheimedomain simulation of fractional systems andirrationaltransfer functions.Signal Processing vol. 86, pp. 2516-2528

[31] Hotzel R. (1998)Contribution à la théorie structurelle et àa commande des systtmes linéaires fractionnaires, PhD. Thesis, Université de Paris SudOrsay

[32] Kavranoglu D. et Bettayerb M. (1993) Characterization of theolution to the optimal H model reduction prorblem. S ystems and Control Letters, vol. 20, pp. 99-107.

[33] Kennedy J. and Erberhart R. (1995) Particle SwarmOptimization.IEEE International Conference Neural Networks, vol. IV, pp. 1942-1948 PerthAustralia.

[34] Kilrbas A.A., Srivastava H.Met Trujillo JJ (2006) Theor y and applications offractional di~eretial equations. Elsevier, North-Holland.

[35] Levy E. (1959). Complex curve fitting.IRE transactions on automaticcontrol , 4, pp. 37-43.

[36] Liouville J. (1832). Mémoire sur quelques questions de géométrie et demécnique, et sur un nouveau genre de calcul pour résoudre ces équations.l'Ecole Pol ytechnique, vol. 13, pp. 71-162.

[37] Lorenzo C.F. et Hartley TT (1998) Initialization, conceptualization, and application in the generalized fractional calculus.NASA/TM 1998-208415, Springfield (VA) . NTIS.

[38] Lorenzo C. et Hartley T(2000) Initialized FractionalCalculus.NASA TP-2000- 209943, Springfield (VA) NTIS.

[39] Loverro A. (2004) Fractional calculus History,deefinition and applicationorhe engineer.

[40] Lurbich C. (1986). Discretized fractional calculus.SIAM Journal of Mathematical Anal ysis, vol. 17, n 3, pp. 704-719.

[41] Liu Y. et Anderson B.D.O. (1989) Singular perturrbation approximation of rbalanced systems. International Journal of Control , vol. 50, pp. 1379-1405

[42] MacDonald J.R. (1987) Impedance spectroscop y. John Wiley, New York.

[43] Tenreiro Machado J.A. (2001) Discrete-time fractional-order controllers.Fractional Calculus Applied Anal ysis vol. 1, pp. 47-66.

[45] De Madrid A.P., Mafioso C. et HernÉindez R. (2006) NewDirectDiscretization of the Fractional-Order Differentiator/Integratorby the Chebyshev-PadéApproximation. In : Proceedings of the 2nd IFA C Workshop onFractionalDi~erentiationndts Applications, july 19-21 Porto .

[46] Magin R.L. (2006)Fractional Calculusin Bioengineering , Begell House Punlishers, Inc., Connecticut.

[47] Mansouri R., Bettayeb MDjamah Tet DjennouneS.(2007).System dentiication in frequency domain by fractional Vector Fitting algorithm.In Proc. of the second International Conference on Modeling and Simulation ICMSAOO00. March 24-27, Abu Dhabi , UAE.

[48] Mansouri R., Bettayeb Met Djennoune S. (2008). State SpaceFractionalModel Approximation Using Integral Representation.Soumis au 3ème IFAC Workshop on Fractional Di~erentiation and itsApplications, 00-00Novembre 2008, Ankara.

[49] Mansouri R., Bettayeb Met Djennoune S. (2009). State Space fractionalModel Approximation by taking account of the initial conditions.Submited to the third International Conference on Modeling and Simulation ICMSAOO00. January 20-22, Sharjah, UAE.

[50] Marquardt D.W. (1963) An algorithm for east squares estimation of non-linear parameters. Journal of the Society for Industrial and AppliedMathematics, vol. 11, n 2, pp. 431-441.

[51] Matignon D. et Andréa-Novel B (1996) Some results on controllability and observability of finite-dimensional fractional di~erential systems.In IMACS, IEEE-SMC Proceedings Conference. pp. 952-956, Lille, France

[52] Matignon D. (1998)Stability properties for generalized fractional diierentialystems. In Proc. of the colloquium FDS''98Fractional di~erentialystemsModels, Methods and Applications, n 5, pp. 145-158, Paris.

[53] Matignon D. (1998)Représentations en variablesd'état demodèles de guides ddondes avec dérivation fractionnaire . PhD Thesis, Université de Paris-SudOrsay

[54] Matsuda K. et Fujii H. (1993) Optimised Wave Absorbing ControlAnalytical and Experimental Results. Journal guidance control and dynamics. vol.16, n6, pp.1146- 1153.

[55] Mbodje B. et Montseny G. (1995) Boundary fractionalderivative control of the wave equation. IEEE Transaction on Automatique Control . vol. 40 n 2, pp. 378-382

[56] Miller K.S. et Ross B. (1974) An introduction to thefractional calculus and fractional differential equations. A Wiley Interscience Publication

[57] Mittag-Leffler G. (1904) Sur lareprrsentationanalytique d'une branche uniforme d'une fonction monogène. Acta Mathematica. n 29, pp. 10-181

[58] Moore B. C. (1981)Principal component analysisn inear systems Controllability, Observability and model reductionIEEE Transactions on Automatic Control , vol. A C-26, pp. 17-31.

[59] Oldham K.B. et Spanier J. (1974) The fractional calculus. Academic Press, New York and London.

[60] Onaral B. et Schwan H.P. (1982) Linear and nonlinearproperties of platinum elec trode polarization, Part IFrequency dependence at very ow frequencies.Med. Biol. Eng. Comput., vol. 20, pp. 299-306.

[61] Orjuela R., Malti R. Moze Met OustaloupA.(2006). Prise en compte des conditions initiales lors de la simulation de fonctions detransfertnon entières.In : Proceedings de la Conférence Internationale Francophone ddAutomatique CIFA 20066 0,33 mai et ler juin 2006 Bordeaux.

[62] Ortigueira M.D. et Serralheiro A.J (2006) A new east-squares approacho diierintegration ModellingSpecial Section : Fractional CalculusApplicationsn Signals and Systems. vol. 10 pp.2582-2591.

[63] Ortigueira M., Valerio DSo Da CostaJ (2007). Identifying a transfer function from a frequency response. In : Proceedings of the 6th InternationalConference onMull tibody Systems, Nonlinear Dynamics andControl. MSND C-14-3, ASME IDET C'07 September 4-7, Las VegasNevada, USA.

[64] Oustaloup A. (1983) Systèmes asservislinéaires d'ordrefractionnaire. Editions Masson, Paris.

[65] Oustaloup A. (1995)La Dérivation non Entière Théorie, synthèse et application, Editions Hermes, Paris.

[66] Ostalczyk P. (2003)Fundamental properties of the fractional-order discrete-time integrator. Signal Processing n 83, 2367-2376.

[67] Podlubny I. (1999) Fractional di~erential equations . Academic Press, San Diego

[68] Podlubny I. (2002). Geometric and physical interpretation of fractionalntegration and fractional differentiation. Journal offractional calculs and applied analysis. vol. 5, n 4, pp. 367-386.

[69] Podlubny I., PetrÉ I., Vinagre BMOLeary Pet DorrÉk L 2002).Analogue realizations of fractional-order controllers.Non linear Dynamics, vol. 29, pp. 281- 296.

[70] Poinot T. Trigeassou JC(2003) A method for modellingand simulation of fractional systems. Signal Processing, vol. 83, pp. 2319-2333.

[71] Raynaud H.F. et Zergaïnoh A. (2000) State-space representation for fractional order controllers, Automatica. n 36, pp. 1017-1021.

[72] Reynolds, C. W. (1987)Flocks, herds and schools adistributedbehavioralmodel. Computer Craphics, vol. 21, n 4, pp. 25-34.

[73] Sabatier J., Cois O. et Oustaloup A. (2002) Commande de systtmesnon entiers par placement de pôles. Conférence Internationale Francophone dd'Automatique. Nantes, France.

[74] Sun H.H. et Onaral B. (1983) A unified approach to represent metal electrodepolarization. IEEE Transactions on Biomedical Engineering , vo. 30, n7, pp. 399-406.

[75] Samko S.G., Kilbas A.A. et Marichev OI. (1993) Fractional Integrals andDerivatives. Gordon and Breach Science Publishers

[76] Vinagre B.M., Podlubny I., Hernandez A. et FeliuV (2000) Some approximations of fractional order operators used in control theoryand applications, Fractional Calculus & applied Analysis, vol. 3 n 3, pp. 231-248.

[77] Vinagre B.M., Monje C.A., et Calder'on A.J. (2002). Fractional order systems and fractional order actions. Tutorial workshop # 2 : Fractional calculus applicationsn automatic control and robotics, 41st IEEE CDC, Las vegas, USA.

[78] Vinagre B. M., Monje C. A., Calderon A. JChen YQ. et FeliuV (2004). The frac tional integrator as a reference function.In : Proceedings of the lst IFAC Workshop on Fractional Di~erentiation and itsApplications, Bordeaux France.

[79] Xue D.Y. et Chen Y.Q. (2005) Sub-Optimum Rational Approximation to Fractional Order Linear SystemsProceedings of the ASME 2005 International Design Engii neering Technical Conferences Computers and Informationn Engineering Confee rence. long Beach, California, USA.

[80] Xue D., Zhao C. et Chen Y.Q. (2006) A ModiifiedApproximationMethod ofFractional Order System. Proceedings ofthe IEEEInternational Conferenceon Mechatronics and Automation. Luoyang, china.

Publications dans des revues internationales

[1] R. Mansouri, M. Bettayeb, S. Djennoune. Multivariable fractional ordersystem approximation using derivative representation. International Journal of Applied Mathematics (IJAM), ISSN 1311-1728

[2] R. Mansouri, S. Djennoune, M. Bettayeb. Fractional IP pole placement controller design : Application to permanent magnet synccronousmotorontrolontrolles. International Journal of Modeling Identification and Control (IJMIC), ISSN online) 1746-6188 - (print) 1746-6172

[3] R. Mansouri, M. Bettayeb, S. Djennoune. Non integer order I-P pole placement controller design : Applicationto Inductionmotor control. International Review of Electrical Engineering (IREE)ISSN 1827-6660.

[4] R. Mansouri, S. Djennoune, M. Bettayeb, A. CharefApproximation of a noninteger order implicit model . Transaction on Systems, Signals and Devices (Analysis & Automatic Control), ISSN 1861-5252.

Communications dans des congrès internationaux avec actes et comité de lecture

[1] R. Mansouri, M. Bettayeb, S. Djennoune. Optimal Reduced-orderApproximation of Fractional Dynamical Systems. Conférence International des Systèmes Automatiques CIS A 2008, 30 juin au 02 juillet 2008Annaba, Algérie.

[2] L. Ait Messaoud, R. Mansouri, S. Haddad. Second Generation CRONE Speed Control for an Induction Motor2nd International Conference onElectrical Electronics Engineering ICEEE'08, 21-23 Avril 2008, Laghouat, Algérie.

[3] L. Ait Messaoud, R. Mansouri, S. Haddad. Programmation nonlinéaire avec Optimisation par Essaims Particulaires Calcul des ParamètresOptimaux d'un Correcteur Fractionnaire. 6ème Rencontre d' Analyse Mathématique et ses Applications, R AM A VI, 26-28 Avril 2008, Tizi-OuzouAlgérie.

[4] T. Djamah, R. Mansouri, S. Djennoune, M. Bettayeb. Identification des modèles d'état d'ordre fractionnaire. 7ème conférence Internationale de Modélisation et Simulation, MOSIM'08, 31 Mars au 02 Avril 2008Paris, France.

[5] R. Mansouri, M. Bettayeb, T. Djamah, S. DjennouneMultivariable fractional order system approximation using the integral representation. 6th IEEE Conference on Decision and Control, 12-14 December 2007, New Orleans, USA.

[6] R. Mansouri, S. Djennoune, M. Bettayeb. Identification dessystèmes fractionnaires à l'aide de l'algorithme et loptimisation par essaim de particules.Colloque International Méthodes et Outils d' Aide a Décision. MOAD'4, 18-19-20 Novembre 2007 Béjaïa, Algérie.

[7] L. Ait Messaoud, R. Mansouri, S. Haddad. Identification des systèmes fractionnaires par des modèles optimaux réduits dordreentier.The Eighth International Conference on Sciences and Techniques of AutomaticControl. STA'07, 05-07 Novembre 2007 sousse, Tunisie.

[8] T. Djamah, R. Mansouri, M. Bettayeb, S. Djennoune, S. GuermahIdentification des systèmes fractionnaires par des modèles optimaux réduits d'ordre entier.5ème

Conférence sur le Génie Electrique . CGE'07, 16-17 Avril 2007AlgerAlgérie

[9] R. Mansouri, S. Djennoune, M. Bettayeb, A. CharefApproximation of a noninteger order implicit model. Fourth IEEE International Multi-Conference onSystems, Signals Devices. SSD'07, 19-22 Mars 2007Hammamat, Tunisie.

[10] R. Mansouri, M. Bettayeb, T. Djamah, S. Djennoune. system identiification in frequency domain by fractional vector ifitting algorithm.Second International Conference on Modelling, Simulation and Applied Optimiiation. ICMSAO'07, 24-27 Mars 2007Abu Dhabi, Emirates Arabes Unies

[11] T. Djamah, R. Mansouri, S. Djennoune, S. Guermah, M. BettayebIdentiification of fractional systems with optimal reduced integer ordermodel.Second International Conference on Modeling,Simulation and AppliedOptimiiation. ICMSAO'07, 24-27 Mars 2007, Abu Dhabi, Emirates Arabes Unies

[12] R. Mansouri, S. Djennoune, M. Bettayeb. Non Integer order I-P controllers design using Genetic Algorithms . International Conference on Control, Modelling and Diagnostics, ICCMD'06, 22-24 May 2006, Annaba, Algeria

[13] R. Mansouri, S. Djennoune, S. Haddad, M. Bettayeb, Permanent magnet synchronous motor control using fractional I-P controllers.Second International Conference on Electrical Systems. ICES'06, 8-10 May 2006, Oum El Bouaghi, Algeria

[14] S. Guermah, R. Mansouri, T. Djamah, S. Djennoune, M. BettayebNon Integer Derivative: Theory and Application to System Modelling andAnalysis.The Sixth International Conference on Sciences and Techniques of Automatic Control. STA'05, 19-21 décembre 2005, sousse, Tunisie

[15] R. Mansouri, S. Djennoune, S. Haddad. Commande des systèmes dordre non- entiers : Application à la commande dune machine à courant continu.The Sixth International Conference on Sciences and Techniques of Automatic Control. STA'05, 19-21 décembre 2005, sousse, Tunisie

précédent sommaire






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"I don't believe we shall ever have a good money again before we take the thing out of the hand of governments. We can't take it violently, out of the hands of governments, all we can do is by some sly roundabout way introduce something that they can't stop ..."   Friedrich Hayek (1899-1992) en 1984