ANNEXES
a) Tableaux
Tableau 6 : Intervention de la BRH sur le marché
des changes pendant l'exercice 2008/2009
Mois
|
Achats de devises
|
Ventes de devises
|
|
Montant en $
|
Montant en
gourdes
|
Taux moyen
|
Montant en $
|
Montant en
gourdes
|
Taux moyen
|
Oct. 98
|
1,700,000.00
|
28,447,250.00
|
16.7337
|
1,450,000.00
|
24,249,375.00
|
16.7237
|
Nov. 98
|
0.00
|
0.00
|
-
|
250,000.00
|
4,164,000.00
|
16.6560
|
Déc. 98
|
3,055,000.00
|
50,684,900.00
|
16.5908
|
1,280,000.00
|
21,246,600.00
|
16.5989
|
Janv. 99
|
1,800,000.00
|
30,560,000.00
|
16.9778
|
275,000.00
|
4,634,375.00
|
16.8523
|
Fév. 99
|
1,600,000.00
|
27,165,875.00
|
16.9787
|
100,000.00
|
1,705,000.00
|
17.0500
|
Mars 99
|
8,860,000.00
|
149,989,525.00
|
16.9288
|
0.00
|
0.00
|
-
|
Avril 99
|
8,150,000.00
|
137,347,250.00
|
16.8524
|
560,000.00
|
9,453,500.00
|
16.8813
|
Mai 99
|
8,200,000.00
|
138,158,975.00
|
16.8487
|
200,000.00
|
3,368,000.00
|
16.8400
|
Juin
|
8,500,000.00
|
143,189,000.00
|
16.8458
|
1,000,000.00
|
16,872,500.00
|
16.8725
|
Juil. 99
|
3,100,000.00
|
52,624,000.00
|
16.9755
|
2,750,000.00
|
46,735,100.00
|
16.9926
|
Août 99
|
1,150,000.00
|
19,451,150.00
|
16.9140
|
2,050,000.00
|
34,686,150.00
|
16.9201
|
Sept. 99
|
0.00
|
0.00
|
-
|
3,500,000.00
|
60,116,770.00
|
17.1762
|
Total
|
46,115,000.00
|
777,617,927.00
|
16.8626
|
13,415,000.00
|
227,231,370.00
|
16.9386
|
Sources : BRU
84
Tableau 7 : Evolution de la masse monétaire en
millions de gourdes et de l'indice des prix à la consommation d'octobre
1999 à septembre 2010.
85
Tableau 8 : estimation des paramètres du VAR(3)
à partir du logiciel EVIEWS
Vector Autoregression Estimates Date: 04/15/13 Time: 13:36
Sample (adjusted): 2000M02 2010M09
Included observations: 128 after adjustments Standard errors in (
) & t-statistics in [ ]
|
DLLOGIPC
|
DLLOGM3
|
DLLOGIPC(-1)
DLLOGIPC(-2)
|
[
[
|
0.379259
(0.09183)
4.13017]
0.047620
(0.09756)
0.48812]
|
|
-0.172862 [-0.90423] -0.014161 [-0.06972] (0.19117) (0.20310)
|
DLLOGIPC(-3)
|
|
0.046905
|
|
0.334842
|
|
|
(0.08785)
|
|
(0.18289)
|
|
[
|
0.53393]
|
[
|
1.83084]
|
DLLOGM3(-1)
|
|
0.115169
|
|
0.005950
|
|
|
(0.04325)
|
|
(0.09004)
|
|
[
|
2.66291]
|
[
|
0.06608]
|
DLLOGM3(-2)
|
|
0.087284
|
|
0.073478
|
|
|
(0.04375)
|
|
(0.09108)
|
|
[
|
1.99508]
|
[
|
0.80672]
|
DLLOGM3(-3)
|
|
0.035182
|
|
0.173005
|
|
|
(0.04437)
|
|
(0.09236)
|
|
[
|
0.79299]
|
[
|
1.87308]
|
C
|
|
0.002485
|
|
0.007956
|
|
|
(0.00147)
|
|
(0.00305)
|
|
[
|
1.69531]
|
[
|
2.60674]
|
R-squared
|
0.328458
|
0.066702
|
Adj. R-squared
|
0.295159
|
0.020423
|
Sum sq. resids
|
0.011441
|
0.049589
|
S.E. equation
|
0.009724
|
0.020244
|
F-statistic
|
9.863739
|
1.441301
|
Log likelihood
|
415.0200
|
321.1613
|
Akaike AIC
|
-6.375312
|
-4.908770
|
Schwarz SC
|
-6.219342
|
-4.752799
|
Mean dependent
|
0.010582
|
0.012821
|
S.D. dependent 0.011582
|
0.020454
|
Determinant resid covariance (dof adj.)
|
3.80E-08
|
Determinant resid covariance
|
3.40E-08
|
Log likelihood
|
737.3499
|
Akaike information criterion
|
-11.30234
|
Schwarz criterion
|
-10.99040
|
Sources : calcul de l'auteur, EVIEWS 5.0
Tableau 9 : estimation des paramètres du VAR(1)
à partir du logiciel EVIEWS
86
Sources : calcul de l'auteur, EVIEWS 5.0
Graphique 10 : Inverse de la racine associée
à la partie AR
87
Sources : Calcul de l'auteur à partir de
données provenant de l'IHSI et de la BRH
Modèle 3 : Ici, on commence par :
- Estimation du modèle.
- Test de Significativité du trend. H0 : â=0 et
H1 :â?0. Deux possibilités : Si Tc=Ttab ou Proba>0.05, on
accepte H0, donc le trend est non significatif. Dans ce cas, on passe au
modèle 2. Si au contraire, Tc>Ttab ou Proba<0.05, on rejette H0,
donc le trend est significatif. Dans ce cas, on garde le modèle 3 et on
effectue le test de RU.
- Test de Racine Unitaire. H0 : ö=0 ou ñ=1
(série non stationnaire)
H1 : ö<0 ou /ñ/<1 ( série
stationnaire). Deux possibilites : Si ADF=Ttab, on accepte Ho, donc la
série est non stationnaire. Si au contraire, ADF<Ttab, on rejette H0,
donc la série est stationnaire.
Modèle 2 : Ici, on commence par :
- Estimation du modèle.
-Test de Significativité de la constante. H0 :
á=0 et H1 :á?0. Deux possibilités :. Si Tc=Ttab ou
Proba>0.05, on accepte H0, donc la constante est non significative. Dans ce
cas, on passe au modèle 1. Si au contraire, Tc>Ttab ou Proba<0.05,
on rejette H0, donc la constante est significative. Dans ce cas, on garde le
modèle 2 et on effectue le test de RU
- Test de Racine Unitaire. H0 :ö=0 ou ñ=1
(série non stationnaire) et H1 : ö<0 ou /ñ/<1 (
série stationnaire). Deux possibilites : Si ADF=Ttab, on accepte Ho,
donc la série est non stationnaire. Si au contraire, ADF<Ttab, on
rejette H0, donc la série est stationnaire.
Modèle 1 : Ici, on effectue le test
:
- Test de Racine Unitaire. H0 :ö=0 ou ñ=1
(série non stationnaire) et H1 : ö<0 ou /ñ/<1 (
série stationnaire). Deux possibilités : Si ADF=Ttab, on accepte
Ho, donc la série est non stationnaire. Si au contraire, ADF<Ttab, on
rejette H0, donc la série est stationnaire.
Test ADF (3 Modèles)
Modèle 3 : Ici, on commence par :
- Estimation du modèle.
- Test de Significativité du trend. H0 : â=0 et
H1 :â?0. Deux possibilités : Si Tc=Ttab ou Proba>0.05, on
accepte H0, donc le trend est non significatif. Dans ce cas, on passe au
modèle 2. Si au contraire, Tc>Ttab ou Proba<0.05, on rejette H0,
donc le trend est significatif. Dans ce cas, on garde le modèle 3 et on
effectue le test de RU.
- Test de Racine Unitaire. H0 : ö=0 ou ñ=1
(série non stationnaire) et H1 : ö<0 ou /ñ/<1 (
série stationnaire). Deux possibilites : Si PP=Ttab, on accepte Ho, donc
la série est non stationnaire. Si au contraire, PP<Ttab, on rejette
H0, donc la série est stationnaire.
Modèle 2 : Ici, on commence par :
- Estimation du modèle.
- Test de Significativité de la constante. H0 :
á=0 et H1 :á?0. Deux possibilités :. Si Tc=Ttab ou
Proba>0.05, on accepte H0, donc la constante est non significative. Dans ce
cas, on passe au modèle 1. Si au contraire, Tc>Ttab ou Proba<0.05,
on rejette H0, donc la constante est significative. Dans ce cas, on garde le
modèle 2 et on effectue le test de RU
- Test de Racine Unitaire. H0 :ö=0 ou ñ=1
(série non stationnaire) et H1 : ö<0 ou /ñ/<1 (
série stationnaire). Deux possibilités : Si PP=Ttab, on accepte
Ho, donc la série est non stationnaire. Si au contraire, PP<Ttab, on
rejette H0, donc la série est stationnaire.
Modèle 1 : Ici, on effectue le test
:
- Test de Racine Unitaire. H0 :ö=0 ou ñ=1
(série non stationnaire) et H1 : ö<0 ou /ñ/<1 (
série stationnaire). Deux possibilités : Si PP=Ttab, on accepte
Ho, donc la série est non stationnaire. Si au contraire, PP<Ttab, on
rejette H0, donc la série est stationnaire.
Test PP (3 Modèles)
88
Tableau 10 : Récapitulatif des stratégies
et des règles de décision des tests de racine
unitaire
89
b) Présentation des résultats des
différents tests de Dickey-Fuller effectués sur les séries
LOGIPC et LOGM3 (en niveau et en différence première) à
partir du logiciel EVIEWS 5.0 :
Null Hypothesis: LOGIPC has a unit root
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic 0.087090
0.9969
Exogenous: Constant, Linear Trend
Lag Length: 1 (Automatic based on SIC,
MAXLAG=12)
Test critical values: 1% level -4.030157
10% level -3.147221
5% level -3.444756
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LOGIPC)
Method: Least Squares
Variable Coefficient Std. Error t-Statistic Prob.
Date: 12/10/12 Time: 13:30
Sample (adjusted): 1999M12 2010M09
Included observations: 130 after adjustments
LOGIPC(-1) 0.000839 0.009635 0.087090 0.9307
D(LOGIPC(-1)) 0.453664 0.080975 5.602525 0.0000
C 0.006284 0.036354 0.172866 0.8630
@TREND(1999M10) -6.59E-05 0.000118 -0.557720 0.5780
R-squared 0.289434 Mean dependent var 0.010561
Adjusted R-squared 0.272516 S.D. dependent var
0.011494
S.E. of regression 0.009803 Akaike info criterion
-6.381938
Sum squared resid 0.012109 Schwarz criterion
-6.293706
Log likelihood 418.8260 F-statistic 17.10781
Durbin-Watson stat 2.038036 Prob(F-statistic)
0.000000
90
Null Hypothesis: LOGIPC has a unit root
Lag Length: 1 (Automatic based on SIC, MAXLAG=12)
t-Statistic Prob.*
Test critical values: 1% level -3.481217
5% level -2.883753
10% level -2.578694
Exogenous: Constant
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller test statistic -2.262753
0.1857
Dependent Variable: D(LOGIPC)
Method: Least Squares
Augmented Dickey-Fuller Test Equation
LOGIPC(-1) -0.004422 0.001954 -2.262753 0.0253
D(LOGIPC(-1)) 0.466231 0.077565 6.010807 0.0000
C 0.025890 0.009240 2.802129 0.0059
Date: 12/10/12 Time: 13:31
Sample (adjusted): 1999M12 2010M09
Included observations: 130 after adjustments
Variable Coefficient Std. Error t-Statistic
Prob.
R-squared 0.287680 Mean dependent var 0.010561
Adjusted R-squared 0.276462 S.D. dependent var
0.011494
S.E. of regression 0.009777 Akaike info criterion
-6.394857
Sum squared resid 0.012139 Schwarz criterion
-6.328683
Log likelihood 418.6657 F-statistic 25.64531
Durbin-Watson stat 2.048777 Prob(F-statistic)
0.000000
91
Exogenous: None
Lag Length: 1 (Automatic based on SIC, MAXLAG=12)
t-Statistic Prob.*
Null Hypothesis: LOGIPC has a unit root
Augmented Dickey-Fuller test statistic 3.976333
1.0000
Test critical values: 1% level -2.582872
5% level -1.943304
10% level -1.615087
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Method: Least Squares
Date: 12/10/12 Time: 13:32
Dependent Variable: D(LOGIPC)
LOGIPC(-1) 0.001010 0.000254 3.976333 0.0001
D(LOGIPC(-1)) 0.538400 0.075098 7.169334 0.0000
Sample (adjusted): 1999M12 2010M09
Included observations: 130 after adjustments
Variable Coefficient Std. Error t-Statistic
Prob.
R-squared 0.243640 Mean dependent var 0.010561
Adjusted R-squared 0.237731 S.D. dependent var
0.011494
S.E. of regression 0.010035 Akaike info criterion
-6.350251
Sum squared resid 0.012889 Schwarz criterion
-6.306135
Log likelihood 414.7663 Durbin-Watson stat
2.089920
92
Lag Length: 0 (Automatic based on SIC, MAXLAG=12)
t-Statistic Prob.*
Null Hypothesis: D(LOGIPC) has a unit root
Exogenous: Constant, Linear Trend
Augmented Dickey-Fuller test statistic
-6.929208 0.0000
Test critical values: 1% level -4.030157
5% level -3.444756
10% level -3.147221
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Sample (adjusted): 1999M12 2010M09
Dependent Variable: D(LOGIPC,2)
Method: Least Squares
Date: 12/10/12 Time: 13:32
@TREND(1999M10) -5.58E-05 2.39E-05 -2.332003
0.0213
Included observations: 130 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
D(LOGIPC(-1)) -0.544760 0.078618 -6.929208 0.0000
C 0.009445 0.002180 4.331590 0.0000
R-squared 0.274637 Mean dependent var -4.02E-05
Adjusted R-squared 0.263214 S.D. dependent var
0.011376
S.E. of regression 0.009765 Akaike info criterion
-6.397262
Sum squared resid 0.012110 Schwarz criterion
-6.331088
Log likelihood 418.8220 F-statistic 24.04238
Durbin-Watson stat 2.039518 Prob(F-statistic)
0.000000
93
Lag Length: 0 (Automatic based on SIC, MAXLAG=12)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -1.915043
0.6410
Null Hypothesis: LOGM3 has a unit root
Exogenous: Constant, Linear Trend
Test critical values: 1% level -4.029595
5% level -3.444487
10% level -3.147063
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Sample (adjusted): 1999M11 2010M09
Dependent Variable: D(LOGM3)
Method: Least Squares
Date: 12/10/12 Time: 13:33
@TREND(1999M10) 0.000449 0.000265 1.697009
0.0921
Included observations: 131 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
LOGM3(-1) -0.041029 0.021425 -1.915043 0.0577
C 0.432743 0.217405 1.990493 0.0487
R-squared 0.036108 Mean dependent var 0.013177
Adjusted R-squared 0.021047 S.D. dependent var
0.020487
S.E. of regression 0.020270 Akaike info criterion
-4.936682
Sum squared resid 0.052593 Schwarz criterion
-4.870838
Log likelihood 326.3527 F-statistic 2.397485
Durbin-Watson stat 1.930151 Prob(F-statistic)
0.095020
94
Lag Length: 0 (Automatic based on SIC, MAXLAG=12)
t-Statistic Prob.*
Null Hypothesis: LOGM3 has a unit root
Exogenous: Constant
Augmented Dickey-Fuller test statistic -1.373908
0.5933
Test critical values: 1% level -3.480818
5% level -2.883579
10% level -2.578601
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Date: 12/10/12 Time: 13:33
Dependent Variable: D(LOGM3)
Method: Least Squares
C 0.070600 0.041833 1.687642 0.0939
Sample (adjusted): 1999M11 2010M09
Included observations: 131 after adjustments
Variable Coefficient Std. Error t-Statistic
Prob.
LOGM3(-1) -0.005245 0.003817 -1.373908 0.1719
R-squared 0.014422 Mean dependent var 0.013177
Adjusted R-squared 0.006782 S.D. dependent var
0.020487
S.E. of regression 0.020417 Akaike info criterion
-4.929700
Sum squared resid 0.053777 Schwarz criterion
-4.885804
Log likelihood 324.8954 F-statistic 1.887624
Durbin-Watson stat 1.956048 Prob(F-statistic)
0.171853
95
Exogenous: None
t-Statistic Prob.*
Null Hypothesis: LOGM3 has a unit root
Test critical values: 1% level -2.582734
5% level -1.943285
10% level -1.615099
Lag Length: 0 (Automatic based on SIC,
MAXLAG=12)
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller test statistic 7.269761
1.0000
Dependent Variable: D(LOGM3)
Variable Coefficient Std. Error t-Statistic Prob.
Augmented Dickey-Fuller Test Equation
LOGM3(-1) 0.001192 0.000164 7.269761 0.0000
Method: Least Squares
Date: 12/10/12 Time: 13:33
Sample (adjusted): 1999M11 2010M09
Included observations: 131 after adjustments
R-squared -0.007338 Mean dependent var 0.013177
Adjusted R-squared -0.007338 S.D. dependent var
0.020487
S.E. of regression 0.020562 Akaike info criterion
-4.923129
Sum squared resid 0.054964 Schwarz criterion
-4.901181
Log likelihood 323.4649 Durbin-Watson stat
1.926039
96
Lag Length: 0 (Automatic based on SIC, MAXLAG=12)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -11.01484
0.0000
Null Hypothesis: D(LOGM3) has a unit root
Exogenous: Constant, Linear Trend
Test critical values: 1% level -4.030157
5% level -3.444756
10% level -3.147221
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Sample (adjusted): 1999M12 2010M09
Dependent Variable: D(LOGM3,2)
Method: Least Squares
Date: 12/10/12 Time: 13:35
@TREND(1999M10) -4.71E-05 4.85E-05 -0.971557
0.3331
Included observations: 130 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
D(LOGM3(-1)) -0.983543 0.089292 -11.01484 0.0000
C 0.016037 0.003980 4.029042 0.0001
R-squared 0.488684 Mean dependent var 0.000117
Adjusted R-squared 0.480632 S.D. dependent var
0.028630
S.E. of regression 0.020633 Akaike info criterion
-4.901081
Sum squared resid 0.054065 Schwarz criterion
-4.834907
Log likelihood 321.5703 F-statistic 60.68941
Durbin-Watson stat 1.973888 Prob(F-statistic)
0.000000
97
Lag Length: 0 (Automatic based on SIC, MAXLAG=12)
t-Statistic Prob.*
Null Hypothesis: D(LOGM3) has a unit root
Exogenous: Constant
Augmented Dickey-Fuller test statistic
-10.97669 0.0000
Test critical values: 1% level -3.481217
5% level -2.883753
10% level -2.578694
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LOGM3,2)
Date: 12/10/12 Time: 13:35
Sample (adjusted): 1999M12 2010M09
Method: Least Squares
Included observations: 130 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
D(LOGM3(-1)) -0.974104 0.088743 -10.97669 0.0000
C 0.012780 0.002146 5.956124
0.0000
R-squared 0.484884 Mean dependent var 0.000117
Adjusted R-squared 0.480860 S.D. dependent var
0.028630
S.E. of regression 0.020628 Akaike info criterion
-4.909060
Sum squared resid 0.054466 Schwarz criterion
-4.864945
Log likelihood 321.0889 F-statistic 120.4877
Durbin-Watson stat 1.978996 Prob(F-statistic)
0.000000
98
Présentation des résultats des
différents tests de Phillips-Perron effectués sur les
séries LOGIPC et LOGM3 (en niveau et en différence
première) à partir du logiciel EVIEWS 5.0 :
Null Hypothesis: LOGIPC has a unit root
Exogenous: Constant, Linear Trend
Adj. t-Stat Prob.*
Bandwidth: 6 (Newey-West using Bartlett kernel)
Phillips-Perron test statistic 0.218607 0.9980
Test critical values: 1% level -4.029595
5% level -3.444487
10% level -3.147063
*MacKinnon (1996) one-sided p-values.
Residual variance (no correction) 0.000116
HAC corrected variance (Bartlett kernel) 0.000279
Phillips-Perron Test Equation
Dependent Variable: D(LOGIPC)
Method: Least Squares
Date: 12/10/12 Time: 13:22
Sample (adjusted): 1999M11 2010M09
Variable
|
Coefficient
|
|
|
Included observations: 131 after adjustments
LOGIPC(-1)
|
0.013402
|
0.010448 1.282712
|
|
C
|
-0.034218
|
0.039709 -0.861716
|
|
@TREND(1999M10)
|
-0.000252
|
Std. Error t-Statistic
0.000126 -1.993729
|
Prob.
|
R-squared
|
0.106506
|
Mean dependent var
|
0.2019
|
Adjusted R-squared
|
0.092545
|
|
0.3905
|
|
0.010918
|
Akaike info criterion
|
0.0483
|
Sum squared resid
|
0.015257
|
|
|
Log likelihood
|
407.4114
|
F-statistic
|
0.010516
|
S.E. of regression
Durbin-Watson stat
|
1.109030
|
S.D. dependent var
Prob(F-statistic)
|
0.011461
-6.174221
|
99
Null Hypothesis: LOGIPC has a unit root
Exogenous: Constant
Adj. t-Stat Prob.*
Bandwidth: 6 (Newey-West using Bartlett kernel)
Phillips-Perron test statistic -2.195905 0.2088
5% level -2.883579
10% level -2.578601
Test critical values: 1% level -3.480818
*MacKinnon (1996) one-sided p-values.
Residual variance (no correction) 0.000120
HAC corrected variance (Bartlett kernel)
0.000312
Phillips-Perron Test Equation
Dependent Variable: D(LOGIPC)
Method: Least Squares
Date: 12/10/12 Time: 13:23
Variable
|
Coefficient
|
|
|
Sample (adjusted): 1999M11 2010M09
LOGIPC(-1)
|
Included observations: 131 after adjustments
-0.007009
|
0.002111 -3.320918
|
|
C
|
0.042603
|
0.009710 4.387412
|
|
R-squared
|
0.078759
|
Std. Error t-Statistic
Mean dependent var
|
Prob.
|
Adjusted R-squared
|
0.071618
|
|
0.0012
|
|
0.011043
|
Akaike info criterion
|
0.0000
|
Sum squared resid
|
0.015731
|
Schwarz criterion
|
|
Log likelihood
|
405.4083
|
F-statistic
|
0.010516
|
Durbin-Watson stat
|
1.053910
|
S.D. dependent var
Prob(F-statistic)
|
0.011461
|
100
Bandwidth: 7 (Newey-West using Bartlett kernel)
Adj. t-Stat Prob.*
Null Hypothesis: LOGIPC has a unit root
Exogenous: None
5% level -1.943285
10% level -1.615099
Phillips-Perron test statistic 5.323932 1.0000
Test critical values: 1% level -2.582734
*MacKinnon (1996) one-sided p-values.
Residual variance (no correction) 0.000138
HAC corrected variance (Bartlett kernel) 0.000469
Variable
|
Coefficient
|
|
|
Phillips-Perron Test Equation
Dependent Variable: D(LOGIPC)
LOGIPC(-1)
|
0.002205
|
0.000224 9.846570
|
|
Method: Least Squares
Date: 12/10/12 Time: 13:23
R-squared
|
-0.058709
|
Mean dependent var
|
|
Sample (adjusted): 1999M11 2010M09
Adjusted R-squared
|
-0.058709
|
|
|
|
Included observations: 131 after adjustments
0.011793
|
Akaike info criterion
|
|
Sum squared resid
|
0.018078
|
Schwarz criterion
|
|
Log likelihood
|
396.2984
|
Std. Error t-Statistic
Durbin-Watson stat
|
Prob.
|
101
Adj. t-Stat Prob.*
Phillips-Perron test statistic -6.903092 0.0000
Null Hypothesis: D(LOGIPC) has a unit root
Exogenous: Constant, Linear Trend
Bandwidth: 2 (Newey-West using Bartlett kernel)
10% level -3.147221
*MacKinnon (1996) one-sided p-values.
Test critical values: 1% level -4.030157
5% level -3.444756
Residual variance (no correction) 9.32E-05
HAC corrected variance (Bartlett kernel) 9.16E-05
Phillips-Perron Test Equation
Dependent Variable: D(LOGIPC,2)
Variable
|
Coefficient
|
|
|
Method: Least Squares
D(LOGIPC(-1))
|
-0.544760
|
0.078618 -6.929208
|
|
Date: 12/10/12 Time: 13:24
C
|
0.009445
|
0.002180 4.331590
|
|
Sample (adjusted): 1999M12 2010M09
@TREND(1999M10)
|
-5.58E-05
|
2.39E-05 -2.332003
|
|
Included observations: 130 after adjustments
R-squared
|
0.274637
|
Mean dependent var
|
|
Adjusted R-squared
|
0.263214
|
Std. Error t-Statistic
|
Prob.
|
|
0.009765
|
Akaike info criterion
|
|
Sum squared resid
|
0.012110
|
Schwarz criterion
|
0.0000
|
Log likelihood
|
418.8220
|
F-statistic
|
0.0000
|
Durbin-Watson stat
|
2.039518
|
Prob(F-statistic)
|
0.0213
|
102
Adj. t-Stat Prob.*
Null Hypothesis: LOGM3 has a unit root
Exogenous: Constant, Linear Trend
Bandwidth: 4 (Newey-West using Bartlett kernel)
Phillips-Perron test statistic -2.019091 0.5852
Test critical values: 1% level -4.029595
5% level -3.444487
10% level -3.147063
*MacKinnon (1996) one-sided p-values.
Residual variance (no correction) 0.000401
HAC corrected variance (Bartlett kernel) 0.000498
Phillips-Perron Test Equation
Variable
|
Coefficient
|
|
|
Dependent Variable: D(LOGM3)
Method: Least Squares
LOGM3(-1)
|
-0.041029
|
0.021425 -1.915043
|
|
Date: 12/10/12 Time: 13:25
C
|
0.432743
|
0.217405 1.990493
|
|
Sample (adjusted): 1999M11 2010M09
@TREND(1999M10)
|
0.000449
|
0.000265 1.697009
|
|
Included observations: 131 after adjustments
R-squared
|
0.036108
|
Mean dependent var
|
|
Adjusted R-squared
|
0.021047
|
Std. Error t-Statistic
|
Prob.
|
|
0.020270
|
Akaike info criterion
|
|
Sum squared resid
|
0.052593
|
Schwarz criterion
|
0.0577
|
Log likelihood
|
326.3527
|
F-statistic
|
0.0487
|
Durbin-Watson stat
|
1.930151
|
Prob(F-statistic)
|
0.0921
|
103
Bandwidth: 3 (Newey-West using Bartlett kernel)
Adj. t-Stat Prob.*
Phillips-Perron test statistic -1.314582 0.6216
Null Hypothesis: LOGM3 has a unit root
Exogenous: Constant
5% level -2.883579
10% level -2.578601
*MacKinnon (1996) one-sided p-values.
Test critical values: 1% level -3.480818
Residual variance (no correction) 0.000411
HAC corrected variance (Bartlett kernel) 0.000474
Phillips-Perron Test Equation
Variable
|
Coefficient
|
|
|
Dependent Variable: D(LOGM3)
LOGM3(-1)
|
-0.005245
|
0.003817 -1.373908
|
|
Method: Least Squares
Date: 12/10/12 Time: 13:26
C
|
0.070600
|
0.041833 1.687642
|
|
Sample (adjusted): 1999M11 2010M09
R-squared
|
0.014422
|
Mean dependent var
|
|
Adjusted R-squared
|
Included observations: 131 after adjustments
0.006782
|
|
|
|
0.020417
|
Akaike info criterion
|
|
Sum squared resid
|
0.053777
|
Std. Error t-Statistic
Schwarz criterion
|
Prob.
|
Log likelihood
|
324.8954
|
F-statistic
|
|
Durbin-Watson stat
|
1.956048
|
Prob(F-statistic)
|
0.1719
0.0939
|
104
Exogenous: None
Bandwidth: 4 (Newey-West using Bartlett kernel)
Adj. t-Stat Prob.*
Null Hypothesis: LOGM3 has a unit root
Test critical values: 1% level -2.582734
5% level -1.943285
10% level -1.615099
Phillips-Perron test statistic 6.520607 1.0000
*MacKinnon (1996) one-sided p-values.
Residual variance (no correction) 0.000420
HAC corrected variance (Bartlett kernel) 0.000521
Variable
|
Coefficient
|
|
|
Phillips-Perron Test Equation
Dependent Variable: D(LOGM3)
LOGM3(-1)
|
0.001192
|
0.000164 7.269761
|
|
Method: Least Squares
R-squared
|
-0.007338
|
Mean dependent var
|
|
Date: 12/10/12 Time: 13:26
Adjusted R-squared
|
-0.007338
|
|
|
Sample (adjusted): 1999M11 2010M09
|
0.020562
|
Akaike info criterion
|
|
Sum squared resid
|
Included observations: 131 after adjustments
0.054964
|
Schwarz criterion
|
|
Log likelihood
|
323.4649
|
Std. Error t-Statistic
Durbin-Watson stat
|
Prob.
|
105
Bandwidth: 3 (Newey-West using Bartlett kernel)
Adj. t-Stat Prob.*
Phillips-Perron test statistic -11.06023 0.0000
Null Hypothesis: D(LOGM3) has a unit root
Exogenous: Constant, Linear Trend
10% level -3.147221
*MacKinnon (1996) one-sided p-values.
Test critical values: 1% level -4.030157
5% level -3.444756
Residual variance (no correction) 0.000416
HAC corrected variance (Bartlett kernel) 0.000467
Phillips-Perron Test Equation
Variable
|
Coefficient
|
|
|
Dependent Variable: D(LOGM3,2)
Method: Least Squares
D(LOGM3(-1))
|
-0.983543
|
0.089292 -11.01484
|
|
Date: 12/10/12 Time: 13:26
C
|
0.016037
|
0.003980 4.029042
|
|
Sample (adjusted): 1999M12 2010M09
@TREND(1999M10)
|
-4.71E-05
|
4.85E-05 -0.971557
|
|
Included observations: 130 after adjustments
R-squared
|
0.488684
|
Mean dependent var
|
|
Adjusted R-squared
|
0.480632
|
Std. Error t-Statistic
|
Prob.
|
|
0.020633
|
Akaike info criterion
|
|
Sum squared resid
|
0.054065
|
|
0.0000
|
Log likelihood
|
321.5703
|
F-statistic
|
0.0001
|
Durbin-Watson stat
|
1.973888
|
Prob(F-statistic)
|
0.3331
|
106
Bandwidth: 3 (Newey-West using Bartlett kernel)
Adj. t-Stat Prob.*
Phillips-Perron test statistic -11.02465 0.0000
Null Hypothesis: D(LOGM3) has a unit root
Exogenous: Constant
5% level -2.883753
10% level -2.578694
Test critical values: 1% level -3.481217
*MacKinnon (1996) one-sided p-values.
Residual variance (no correction) 0.000419
HAC corrected variance (Bartlett kernel) 0.000472
Phillips-Perron Test Equation
Variable
|
Coefficient
|
|
|
Dependent Variable: D(LOGM3,2)
D(LOGM3(-1))
|
-0.974104
|
0.088743 -10.97669
|
|
Method: Least Squares
Date: 12/10/12 Time: 13:27
C
|
0.012780
|
0.002146 5.956124
|
|
Sample (adjusted): 1999M12 2010M09
R-squared
|
0.484884
|
Mean dependent var
|
|
Adjusted R-squared
|
Included observations: 130 after adjustments
0.480860
|
|
|
|
0.020628
|
Akaike info criterion
|
|
Sum squared resid
|
0.054466
|
Std. Error t-Statistic
|
Prob.
|
Log likelihood
|
321.0889
|
F-statistic
|
|
Durbin-Watson stat
|
1.978996
|
Prob(F-statistic)
|
0.0000
0.0000
|
107
Quelques tentatives à partir des séries M1
et M2 : a) Résultats obtenus à partir de M1
DLLOGIPCt = 0.509803*DLLOGIPCt-1 + 0.062282*DLLOGM1t-1 +
0.004418
(6.77247] (2.1136] (3.61161]
DLLOGM1t = -0.130265*DLLOGIPCt-1 - 0.130815*DLLOGM1t-1 +
0.015368
(-0.56798] (-1.45707] (4.12359]
Les résultats de l'équation « DLLOGIPCt »
sont similaires aux résultats retrouvés dans le cadre de ce
présent travail en représentant le VAR à partir de M3.
Pour la stabilité du VAR
Toutes les racines sont à l'intérieure du cercle,
ce VAR est bien stationnaire.
108
Fonction de réponses aux impulsions
Suite à un choc de 1% sur M1, l'inflation réagit
à partir de la deuxième période avec une
variation de 0.2%.
Décomposition de la variance
La variance de l'erreur de prévision de DLLOGIPC est due
à 97% de ses propres innovations contre 3% de celles de DLLOGM1.
b) Résultats obtenus à partir de M2
DLLOGIPCt = 0.495975*DLLOGIPCt-1 + 0.097067*DLLOGM2t-1 +
0.004311
(6.52879] (1.86037] (3.41597]
DLLOGM2t = 0.129120*DLLOGIPCt-1 - 0.130815*DLLOGM2t-1 +
0.009473
(0.98305] (-1.45707] (4.34109]
109
La dans l'équation «DLLOGIPCt », le
coefficient de DLLOGM2 n'est pas statistiquement significatif.
110
Tableau #11 : Evolution des agrégats
monétaires Ml et M2 en millions de gourdes d'octobre 1999 à
septembre 2010.
|
1999-2000
|
2000-2001
|
2001-2002
|
2002-2003
|
2003 2004
|
2004-2005
|
Mois
|
Mien ME
|
M2enMG
|
Mien ME
|
M2enMG
|
M1enMG
|
M2enMG
|
M1enMG
|
M2enMG
|
M1enMG
|
M2enMG
|
M1enMG
|
M2enMG
|
Qcta re
|
7,389.75
|
16,6fi844
|
8,606.70
|
L3,491.11
|
9,542.35
|
21,206E7
|
..,56455
|
24,45229
|
14,137.93
|
3.0,7295.
|
16,10951
|
35,05759
|
Novembre
|
7,437.0D
|
16,8602S
|
9,477.52
|
.3,38 20
|
9,5E5.24
|
21,27235
|
..,391.02
|
24,8fi0.75
|
14,783,84
|
31,729448
|
16,43429
|
34,99251
|
Décembre
|
8,15309
|
17,66633
|
9,052.13
|
20,069.47
|
10,31323
|
21,92155
|
13,065.3
|
26,191.07
|
15,95922
|
33,21561
|
17,361.1E
|
36,44561
|
Janvier
|
7,986.69
|
17,745.13
|
9,259.63
|
20,14762
|
10,247 26
|
21,792.73
|
13,07921
|
26,656.10
|
15,944.71
|
33,59103
|
17,214,83
|
36,537.92
|
Février
|
7,77E26
|
17,711.43
|
9,716.42
|
20,064.44
|
10,584.60
|
22,08234
|
13,728.72
|
27,95525
|
15,972.43
|
34,040.62
|
17,257.69
|
36,85662
|
Mars
|
7,946.11
|
12,116.44
|
9,936.71
|
20,539.74
|
10,3E4.69
|
21,919.12
|
13,53227
|
28,208.71
|
1fi,146.44
|
34,351.13
|
17,74355
|
37,569.64
|
Avril
|
8,022.0E
|
12,254,29
|
9,695.35
|
20,43357
|
10,30265
|
21,27256
|
14,10fi56
|
29,08351
|
15,969.42
|
34,034.27
|
:7,59E62
|
37,622.66
|
Mai
|
7,811.44
|
18,241.75
|
9,619.01
|
20,388.79
|
10,39E65
|
21,840.12
|
13,880,80
|
:3,.66.18
|
15,401E5
|
33,517.19
|
.7,588.49
|
37,53233
|
Juin
|
2,048.71
|
12;66E21
|
9,242.22
|
20,617.16
|
1441122
|
22,260.70
|
14,0E7.04
|
29,22726
|
15,010.61
|
33,455.E
|
18,227.24
|
32,192.65
|
Juillet
|
8,1&0.87
|
18,774.44
|
9,980.79
|
20/689.69
|
14,67490
|
22,71153
|
14,242.37
|
30,063E7
|
15,44922
|
34,04128
|
18,624.75
|
38,492.11
|
Août
|
8,157.01
|
10,79337
|
3,3E0.01
|
21,014.04
|
11,24625
|
23,251.09
|
14,23..s.
|
3.0,201.29
|
15,958.47
|
34,300.5.
|
18,75G.76
|
38,508.73
|
Septembre
|
2.527.87
|
19,3E721
|
9,303.35
|
21,02755
|
11,237.29
|
23,4E254
|
14,158,9
|
30.34539
|
15,906.0E
|
34,508,80
|
18,9990E
|
38,838E4
|
|
|
|
|
|
|
|
2005 200e
|
2005-2007
|
2007 200E
|
200E-2049
|
204E-2010
|
Mois
|
Mien ME
|
M2enMG
|
Mien ME
|
M2enMG
|
M1enMG
|
M2enMG
|
M1enMG
|
M2enMG
|
M1enMG
|
M2enMG
|
Octobre
|
12,91E52
|
35,352.24
|
19,253.=?
|
42,524.75
|
21,572.44
|
=5,235.33
|
25,2E7.75
|
50,54430
|
28,49E35
|
54,70304
|
Novembre
|
18,720.68
|
38,61128
|
=9,52.=.::
|
42,85fi5fi
|
21,805.36
|
=5,52L.=3
|
25,22521
|
51,029.17
|
28,111.45
|
54,2E3.42
|
Clkemhre
|
20,43E.39
|
40,48933
|
2=,03S.S2
|
44,625.02
|
23,713.29
|
47,2.:.SS
|
27,95E32
|
53,6E223
|
29,7950E
|
56,0E7.19
|
Janvier
|
20,448,84
|
44,994.43
|
2.0,144.fi7
|
44,14152
|
24,11950
|
42,253.32
|
27,4815.
|
53,04934
|
30,265.46
|
57,14653
|
Février
|
210,1E521
|
44,84829
|
.9,7G1.42
|
43,839.03
|
23,312.2fi
|
47,45958
|
27,477.03
|
53,715.49
|
31,65027
|
58,123.03
|
Mars
|
19,9479E
|
40,976.48
|
19,513.00
|
41,9859fi
|
24,096.0
|
42,37E52
|
27,475.07
|
53,33159
|
31,72420
|
59,10423
|
Avril
|
24,24357
|
41,35237
|
19,934.68
|
=2,28722
|
24,526.62
|
49,21050
|
26,373.69
|
52,73E68
|
32.795.02
|
60,5912fi
|
Mai
|
24,4.4.09
|
41,824.63
|
19,6133.7
|
42,393.07
|
24,72063
|
49,901.37
|
26,447.78
|
52,09251
|
::.=9420
|
51,285.4E
|
Juin
|
20,24823
|
41,64630
|
19,9E033
|
43,21E53
|
24,5E455
|
49,222.27
|
26,154.44
|
52,4E531
|
33,507.77
|
5.,581.72
|
Juillet
|
19,43E.09
|
40,81952
|
20,16923
|
43,753.64
|
24,99506
|
50,39955
|
26,14705
|
52,370.44
|
35,03537
|
53,21938
|
Août
|
19,511.76
|
40,833.67
|
2.O,67463
|
44,113.61
|
26,21957
|
51,4902
|
27,117.19
|
52,82537
|
34,518.25
|
52,892.41
|
Septembre
|
19,56153
|
42,E79,24
|
21,2E2.78
|
44,732.1fi
|
25,139.46
|
54,2543fi
|
28,959.3E
|
54,24621
|
37,45520
|
S6,4fi629
|
Source ; BRH
111
|