WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Analyse de l'impact de l'agrégat monétaire M3 sur l'inflation en haiti de 2000 à  2010

( Télécharger le fichier original )
par Ronald Jocelyn
Université d'Etat d'Haiti - Licence 2005
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

ANNEXES

a) Tableaux

Tableau 6 : Intervention de la BRH sur le marché des changes pendant l'exercice 2008/2009

Mois

Achats de devises

Ventes de devises

 

Montant en $

Montant en

gourdes

Taux moyen

Montant en $

Montant en

gourdes

Taux moyen

Oct. 98

1,700,000.00

28,447,250.00

16.7337

1,450,000.00

24,249,375.00

16.7237

Nov. 98

0.00

0.00

-

250,000.00

4,164,000.00

16.6560

Déc. 98

3,055,000.00

50,684,900.00

16.5908

1,280,000.00

21,246,600.00

16.5989

Janv. 99

1,800,000.00

30,560,000.00

16.9778

275,000.00

4,634,375.00

16.8523

Fév. 99

1,600,000.00

27,165,875.00

16.9787

100,000.00

1,705,000.00

17.0500

Mars 99

8,860,000.00

149,989,525.00

16.9288

0.00

0.00

-

Avril 99

8,150,000.00

137,347,250.00

16.8524

560,000.00

9,453,500.00

16.8813

Mai 99

8,200,000.00

138,158,975.00

16.8487

200,000.00

3,368,000.00

16.8400

Juin

8,500,000.00

143,189,000.00

16.8458

1,000,000.00

16,872,500.00

16.8725

Juil. 99

3,100,000.00

52,624,000.00

16.9755

2,750,000.00

46,735,100.00

16.9926

Août 99

1,150,000.00

19,451,150.00

16.9140

2,050,000.00

34,686,150.00

16.9201

Sept. 99

0.00

0.00

-

3,500,000.00

60,116,770.00

17.1762

Total

46,115,000.00

777,617,927.00

16.8626

13,415,000.00

227,231,370.00

16.9386

Sources : BRU

84

Tableau 7 : Evolution de la masse monétaire en millions de gourdes et de l'indice des prix à la consommation d'octobre 1999 à septembre 2010.

85

Tableau 8 : estimation des paramètres du VAR(3) à partir du logiciel EVIEWS

Vector Autoregression Estimates Date: 04/15/13 Time: 13:36

Sample (adjusted): 2000M02 2010M09

Included observations: 128 after adjustments Standard errors in ( ) & t-statistics in [ ]

 

DLLOGIPC

DLLOGM3

DLLOGIPC(-1)

DLLOGIPC(-2)

[

[

0.379259

(0.09183)

4.13017]

0.047620

(0.09756)

0.48812]

 

-0.172862 [-0.90423] -0.014161 [-0.06972] (0.19117) (0.20310)

DLLOGIPC(-3)

 

0.046905

 

0.334842

 
 

(0.08785)

 

(0.18289)

 

[

0.53393]

[

1.83084]

DLLOGM3(-1)

 

0.115169

 

0.005950

 
 

(0.04325)

 

(0.09004)

 

[

2.66291]

[

0.06608]

DLLOGM3(-2)

 

0.087284

 

0.073478

 
 

(0.04375)

 

(0.09108)

 

[

1.99508]

[

0.80672]

DLLOGM3(-3)

 

0.035182

 

0.173005

 
 

(0.04437)

 

(0.09236)

 

[

0.79299]

[

1.87308]

C

 

0.002485

 

0.007956

 
 

(0.00147)

 

(0.00305)

 

[

1.69531]

[

2.60674]

R-squared

0.328458

0.066702

Adj. R-squared

0.295159

0.020423

Sum sq. resids

0.011441

0.049589

S.E. equation

0.009724

0.020244

F-statistic

9.863739

1.441301

Log likelihood

415.0200

321.1613

Akaike AIC

-6.375312

-4.908770

Schwarz SC

-6.219342

-4.752799

Mean dependent

0.010582

0.012821

S.D. dependent 0.011582

0.020454

Determinant resid covariance (dof adj.)

3.80E-08

Determinant resid covariance

3.40E-08

Log likelihood

737.3499

Akaike information criterion

-11.30234

Schwarz criterion

-10.99040

Sources : calcul de l'auteur, EVIEWS 5.0

Tableau 9 : estimation des paramètres du VAR(1) à partir du logiciel EVIEWS

86

Sources : calcul de l'auteur, EVIEWS 5.0

Graphique 10 : Inverse de la racine associée à la partie AR

87

Sources : Calcul de l'auteur à partir de données provenant de l'IHSI et de la BRH

Modèle 3 : Ici, on commence par :

- Estimation du modèle.

- Test de Significativité du trend. H0 : â=0 et H1 :â?0. Deux possibilités : Si Tc=Ttab ou Proba>0.05, on accepte H0, donc le trend est non significatif. Dans ce cas, on passe au modèle 2. Si au contraire, Tc>Ttab ou Proba<0.05, on rejette H0, donc le trend est significatif. Dans ce cas, on garde le modèle 3 et on effectue le test de RU.

- Test de Racine Unitaire. H0 : ö=0 ou ñ=1 (série non stationnaire)

H1 : ö<0 ou /ñ/<1 ( série stationnaire). Deux possibilites : Si ADF=Ttab, on accepte Ho, donc la série est non stationnaire. Si au contraire, ADF<Ttab, on rejette H0, donc la série est stationnaire.

Modèle 2 : Ici, on commence par :

- Estimation du modèle.

-Test de Significativité de la constante. H0 : á=0 et H1 :á?0. Deux possibilités :. Si Tc=Ttab ou Proba>0.05, on accepte H0, donc la constante est non significative. Dans ce cas, on passe au modèle 1. Si au contraire, Tc>Ttab ou Proba<0.05, on rejette H0, donc la constante est significative. Dans ce cas, on garde le modèle 2 et on effectue le test de RU

- Test de Racine Unitaire. H0 :ö=0 ou ñ=1 (série non stationnaire) et H1 : ö<0 ou /ñ/<1 ( série stationnaire). Deux possibilites : Si ADF=Ttab, on accepte Ho, donc la série est non stationnaire. Si au contraire, ADF<Ttab, on rejette H0, donc la série est stationnaire.

Modèle 1 : Ici, on effectue le test :

- Test de Racine Unitaire. H0 :ö=0 ou ñ=1 (série non stationnaire) et H1 : ö<0 ou /ñ/<1 ( série stationnaire). Deux possibilités : Si ADF=Ttab, on accepte Ho, donc la série est non stationnaire. Si au contraire, ADF<Ttab, on rejette H0, donc la série est stationnaire.

Test ADF (3 Modèles)

Modèle 3 : Ici, on commence par :

- Estimation du modèle.

- Test de Significativité du trend. H0 : â=0 et H1 :â?0. Deux possibilités : Si Tc=Ttab ou Proba>0.05, on accepte H0, donc le trend est non significatif. Dans ce cas, on passe au modèle 2. Si au contraire, Tc>Ttab ou Proba<0.05, on rejette H0, donc le trend est significatif. Dans ce cas, on garde le modèle 3 et on effectue le test de RU.

- Test de Racine Unitaire. H0 : ö=0 ou ñ=1 (série non stationnaire) et H1 : ö<0 ou /ñ/<1 ( série stationnaire). Deux possibilites : Si PP=Ttab, on accepte Ho, donc la série est non stationnaire. Si au contraire, PP<Ttab, on rejette H0, donc la série est stationnaire.

Modèle 2 : Ici, on commence par :

- Estimation du modèle.

- Test de Significativité de la constante. H0 : á=0 et H1 :á?0. Deux possibilités :. Si Tc=Ttab ou Proba>0.05, on accepte H0, donc la constante est non significative. Dans ce cas, on passe au modèle 1. Si au contraire, Tc>Ttab ou Proba<0.05, on rejette H0, donc la constante est significative. Dans ce cas, on garde le modèle 2 et on effectue le test de RU

- Test de Racine Unitaire. H0 :ö=0 ou ñ=1 (série non stationnaire) et H1 : ö<0 ou /ñ/<1 ( série stationnaire). Deux possibilités : Si PP=Ttab, on accepte Ho, donc la série est non stationnaire. Si au contraire, PP<Ttab, on rejette H0, donc la série est stationnaire.

Modèle 1 : Ici, on effectue le test :

- Test de Racine Unitaire. H0 :ö=0 ou ñ=1 (série non stationnaire) et H1 : ö<0 ou /ñ/<1 ( série stationnaire). Deux possibilités : Si PP=Ttab, on accepte Ho, donc la série est non stationnaire. Si au contraire, PP<Ttab, on rejette H0, donc la série est stationnaire.

Test PP (3 Modèles)

88

Tableau 10 : Récapitulatif des stratégies et des règles de décision des tests de racine unitaire

89

b) Présentation des résultats des différents tests de Dickey-Fuller effectués sur les séries LOGIPC et LOGM3 (en niveau et en différence première) à partir du logiciel EVIEWS 5.0 :

Null Hypothesis: LOGIPC has a unit root

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic 0.087090 0.9969

Exogenous: Constant, Linear Trend

Lag Length: 1 (Automatic based on SIC, MAXLAG=12)

Test critical values: 1% level -4.030157

10% level -3.147221

5% level -3.444756

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LOGIPC)

Method: Least Squares

Variable Coefficient Std. Error t-Statistic Prob.

Date: 12/10/12 Time: 13:30

Sample (adjusted): 1999M12 2010M09

Included observations: 130 after adjustments

LOGIPC(-1) 0.000839 0.009635 0.087090 0.9307

D(LOGIPC(-1)) 0.453664 0.080975 5.602525 0.0000

C 0.006284 0.036354 0.172866 0.8630

@TREND(1999M10) -6.59E-05 0.000118 -0.557720 0.5780

R-squared 0.289434 Mean dependent var 0.010561

Adjusted R-squared 0.272516 S.D. dependent var 0.011494

S.E. of regression 0.009803 Akaike info criterion -6.381938

Sum squared resid 0.012109 Schwarz criterion -6.293706

Log likelihood 418.8260 F-statistic 17.10781

Durbin-Watson stat 2.038036 Prob(F-statistic) 0.000000

90

Null Hypothesis: LOGIPC has a unit root

Lag Length: 1 (Automatic based on SIC, MAXLAG=12)

t-Statistic Prob.*

Test critical values: 1% level -3.481217

5% level -2.883753

10% level -2.578694

Exogenous: Constant

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller test statistic -2.262753 0.1857

Dependent Variable: D(LOGIPC)

Method: Least Squares

Augmented Dickey-Fuller Test Equation

LOGIPC(-1) -0.004422 0.001954 -2.262753 0.0253

D(LOGIPC(-1)) 0.466231 0.077565 6.010807 0.0000

C 0.025890 0.009240 2.802129 0.0059

Date: 12/10/12 Time: 13:31

Sample (adjusted): 1999M12 2010M09

Included observations: 130 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

R-squared 0.287680 Mean dependent var 0.010561

Adjusted R-squared 0.276462 S.D. dependent var 0.011494

S.E. of regression 0.009777 Akaike info criterion -6.394857

Sum squared resid 0.012139 Schwarz criterion -6.328683

Log likelihood 418.6657 F-statistic 25.64531

Durbin-Watson stat 2.048777 Prob(F-statistic) 0.000000

91

Exogenous: None

Lag Length: 1 (Automatic based on SIC, MAXLAG=12)

t-Statistic Prob.*

Null Hypothesis: LOGIPC has a unit root

Augmented Dickey-Fuller test statistic 3.976333 1.0000

Test critical values: 1% level -2.582872

5% level -1.943304

10% level -1.615087

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Method: Least Squares

Date: 12/10/12 Time: 13:32

Dependent Variable: D(LOGIPC)

LOGIPC(-1) 0.001010 0.000254 3.976333 0.0001

D(LOGIPC(-1)) 0.538400 0.075098 7.169334 0.0000

Sample (adjusted): 1999M12 2010M09

Included observations: 130 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

R-squared 0.243640 Mean dependent var 0.010561

Adjusted R-squared 0.237731 S.D. dependent var 0.011494

S.E. of regression 0.010035 Akaike info criterion -6.350251

Sum squared resid 0.012889 Schwarz criterion -6.306135

Log likelihood 414.7663 Durbin-Watson stat 2.089920

92

Lag Length: 0 (Automatic based on SIC, MAXLAG=12)

t-Statistic Prob.*

Null Hypothesis: D(LOGIPC) has a unit root

Exogenous: Constant, Linear Trend

Augmented Dickey-Fuller test statistic -6.929208 0.0000

Test critical values: 1% level -4.030157

5% level -3.444756

10% level -3.147221

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Sample (adjusted): 1999M12 2010M09

Dependent Variable: D(LOGIPC,2)

Method: Least Squares

Date: 12/10/12 Time: 13:32

@TREND(1999M10) -5.58E-05 2.39E-05 -2.332003 0.0213

Included observations: 130 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

D(LOGIPC(-1)) -0.544760 0.078618 -6.929208 0.0000

C 0.009445 0.002180 4.331590 0.0000

R-squared 0.274637 Mean dependent var -4.02E-05

Adjusted R-squared 0.263214 S.D. dependent var 0.011376

S.E. of regression 0.009765 Akaike info criterion -6.397262

Sum squared resid 0.012110 Schwarz criterion -6.331088

Log likelihood 418.8220 F-statistic 24.04238

Durbin-Watson stat 2.039518 Prob(F-statistic) 0.000000

93

Lag Length: 0 (Automatic based on SIC, MAXLAG=12)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -1.915043 0.6410

Null Hypothesis: LOGM3 has a unit root

Exogenous: Constant, Linear Trend

Test critical values: 1% level -4.029595

5% level -3.444487

10% level -3.147063

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Sample (adjusted): 1999M11 2010M09

Dependent Variable: D(LOGM3)

Method: Least Squares

Date: 12/10/12 Time: 13:33

@TREND(1999M10) 0.000449 0.000265 1.697009 0.0921

Included observations: 131 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

LOGM3(-1) -0.041029 0.021425 -1.915043 0.0577

C 0.432743 0.217405 1.990493 0.0487

R-squared 0.036108 Mean dependent var 0.013177

Adjusted R-squared 0.021047 S.D. dependent var 0.020487

S.E. of regression 0.020270 Akaike info criterion -4.936682

Sum squared resid 0.052593 Schwarz criterion -4.870838

Log likelihood 326.3527 F-statistic 2.397485

Durbin-Watson stat 1.930151 Prob(F-statistic) 0.095020

94

Lag Length: 0 (Automatic based on SIC, MAXLAG=12)

t-Statistic Prob.*

Null Hypothesis: LOGM3 has a unit root

Exogenous: Constant

Augmented Dickey-Fuller test statistic -1.373908 0.5933

Test critical values: 1% level -3.480818

5% level -2.883579

10% level -2.578601

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Date: 12/10/12 Time: 13:33

Dependent Variable: D(LOGM3)

Method: Least Squares

C 0.070600 0.041833 1.687642 0.0939

Sample (adjusted): 1999M11 2010M09

Included observations: 131 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

LOGM3(-1) -0.005245 0.003817 -1.373908 0.1719

R-squared 0.014422 Mean dependent var 0.013177

Adjusted R-squared 0.006782 S.D. dependent var 0.020487

S.E. of regression 0.020417 Akaike info criterion -4.929700

Sum squared resid 0.053777 Schwarz criterion -4.885804

Log likelihood 324.8954 F-statistic 1.887624

Durbin-Watson stat 1.956048 Prob(F-statistic) 0.171853

95

Exogenous: None

t-Statistic Prob.*

Null Hypothesis: LOGM3 has a unit root

Test critical values: 1% level -2.582734

5% level -1.943285

10% level -1.615099

Lag Length: 0 (Automatic based on SIC, MAXLAG=12)

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller test statistic 7.269761 1.0000

Dependent Variable: D(LOGM3)

Variable Coefficient Std. Error t-Statistic Prob.

Augmented Dickey-Fuller Test Equation

LOGM3(-1) 0.001192 0.000164 7.269761 0.0000

Method: Least Squares

Date: 12/10/12 Time: 13:33

Sample (adjusted): 1999M11 2010M09

Included observations: 131 after adjustments

R-squared -0.007338 Mean dependent var 0.013177

Adjusted R-squared -0.007338 S.D. dependent var 0.020487

S.E. of regression 0.020562 Akaike info criterion -4.923129

Sum squared resid 0.054964 Schwarz criterion -4.901181

Log likelihood 323.4649 Durbin-Watson stat 1.926039

96

Lag Length: 0 (Automatic based on SIC, MAXLAG=12)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -11.01484 0.0000

Null Hypothesis: D(LOGM3) has a unit root

Exogenous: Constant, Linear Trend

Test critical values: 1% level -4.030157

5% level -3.444756

10% level -3.147221

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Sample (adjusted): 1999M12 2010M09

Dependent Variable: D(LOGM3,2)

Method: Least Squares

Date: 12/10/12 Time: 13:35

@TREND(1999M10) -4.71E-05 4.85E-05 -0.971557 0.3331

Included observations: 130 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

D(LOGM3(-1)) -0.983543 0.089292 -11.01484 0.0000

C 0.016037 0.003980 4.029042 0.0001

R-squared 0.488684 Mean dependent var 0.000117

Adjusted R-squared 0.480632 S.D. dependent var 0.028630

S.E. of regression 0.020633 Akaike info criterion -4.901081

Sum squared resid 0.054065 Schwarz criterion -4.834907

Log likelihood 321.5703 F-statistic 60.68941

Durbin-Watson stat 1.973888 Prob(F-statistic) 0.000000

97

Lag Length: 0 (Automatic based on SIC, MAXLAG=12)

t-Statistic Prob.*

Null Hypothesis: D(LOGM3) has a unit root

Exogenous: Constant

Augmented Dickey-Fuller test statistic -10.97669 0.0000

Test critical values: 1% level -3.481217

5% level -2.883753

10% level -2.578694

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LOGM3,2)

Date: 12/10/12 Time: 13:35

Sample (adjusted): 1999M12 2010M09

Method: Least Squares

Included observations: 130 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

D(LOGM3(-1)) -0.974104 0.088743 -10.97669 0.0000

C 0.012780 0.002146 5.956124 0.0000

R-squared 0.484884 Mean dependent var 0.000117

Adjusted R-squared 0.480860 S.D. dependent var 0.028630

S.E. of regression 0.020628 Akaike info criterion -4.909060

Sum squared resid 0.054466 Schwarz criterion -4.864945

Log likelihood 321.0889 F-statistic 120.4877

Durbin-Watson stat 1.978996 Prob(F-statistic) 0.000000

98

Présentation des résultats des différents tests de Phillips-Perron effectués sur les séries LOGIPC et LOGM3 (en niveau et en différence première) à partir du logiciel EVIEWS 5.0 :

Null Hypothesis: LOGIPC has a unit root

Exogenous: Constant, Linear Trend

Adj. t-Stat Prob.*

Bandwidth: 6 (Newey-West using Bartlett kernel)

Phillips-Perron test statistic 0.218607 0.9980

Test critical values: 1% level -4.029595

5% level -3.444487

10% level -3.147063

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction) 0.000116

HAC corrected variance (Bartlett kernel) 0.000279

Phillips-Perron Test Equation

Dependent Variable: D(LOGIPC)

Method: Least Squares

Date: 12/10/12 Time: 13:22

Sample (adjusted): 1999M11 2010M09

Variable

Coefficient

 
 

Included observations: 131 after adjustments

LOGIPC(-1)

0.013402

0.010448 1.282712

 

C

-0.034218

0.039709 -0.861716

 

@TREND(1999M10)

-0.000252

Std. Error t-Statistic

0.000126 -1.993729

Prob.

R-squared

0.106506

Mean dependent var

0.2019

Adjusted R-squared

0.092545

 

0.3905

 

0.010918

Akaike info criterion

0.0483

Sum squared resid

0.015257

 
 

Log likelihood

407.4114

F-statistic

0.010516

S.E. of regression

Durbin-Watson stat

1.109030

S.D. dependent var

Prob(F-statistic)

0.011461

-6.174221

99

Null Hypothesis: LOGIPC has a unit root

Exogenous: Constant

Adj. t-Stat Prob.*

Bandwidth: 6 (Newey-West using Bartlett kernel)

Phillips-Perron test statistic -2.195905 0.2088

5% level -2.883579

10% level -2.578601

Test critical values: 1% level -3.480818

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction) 0.000120

HAC corrected variance (Bartlett kernel) 0.000312

Phillips-Perron Test Equation

Dependent Variable: D(LOGIPC)

Method: Least Squares

Date: 12/10/12 Time: 13:23

Variable

Coefficient

 
 

Sample (adjusted): 1999M11 2010M09

LOGIPC(-1)

Included observations: 131 after adjustments

-0.007009

0.002111 -3.320918

 

C

0.042603

0.009710 4.387412

 

R-squared

0.078759

Std. Error t-Statistic

Mean dependent var

Prob.

Adjusted R-squared

0.071618

 

0.0012

 

0.011043

Akaike info criterion

0.0000

Sum squared resid

0.015731

Schwarz criterion

 

Log likelihood

405.4083

F-statistic

0.010516

Durbin-Watson stat

1.053910

S.D. dependent var

Prob(F-statistic)

0.011461

100

Bandwidth: 7 (Newey-West using Bartlett kernel)

Adj. t-Stat Prob.*

Null Hypothesis: LOGIPC has a unit root

Exogenous: None

5% level -1.943285

10% level -1.615099

Phillips-Perron test statistic 5.323932 1.0000

Test critical values: 1% level -2.582734

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction) 0.000138

HAC corrected variance (Bartlett kernel) 0.000469

Variable

Coefficient

 
 

Phillips-Perron Test Equation

Dependent Variable: D(LOGIPC)

LOGIPC(-1)

0.002205

0.000224 9.846570

 

Method: Least Squares

Date: 12/10/12 Time: 13:23

R-squared

-0.058709

Mean dependent var

 

Sample (adjusted): 1999M11 2010M09

Adjusted R-squared

-0.058709

 
 
 

Included observations: 131 after adjustments

0.011793

Akaike info criterion

 

Sum squared resid

0.018078

Schwarz criterion

 

Log likelihood

396.2984

Std. Error t-Statistic

Durbin-Watson stat

Prob.

101

Adj. t-Stat Prob.*

Phillips-Perron test statistic -6.903092 0.0000

Null Hypothesis: D(LOGIPC) has a unit root

Exogenous: Constant, Linear Trend

Bandwidth: 2 (Newey-West using Bartlett kernel)

10% level -3.147221

*MacKinnon (1996) one-sided p-values.

Test critical values: 1% level -4.030157

5% level -3.444756

Residual variance (no correction) 9.32E-05

HAC corrected variance (Bartlett kernel) 9.16E-05

Phillips-Perron Test Equation

Dependent Variable: D(LOGIPC,2)

Variable

Coefficient

 
 

Method: Least Squares

D(LOGIPC(-1))

-0.544760

0.078618 -6.929208

 

Date: 12/10/12 Time: 13:24

C

0.009445

0.002180 4.331590

 

Sample (adjusted): 1999M12 2010M09

@TREND(1999M10)

-5.58E-05

2.39E-05 -2.332003

 

Included observations: 130 after adjustments

R-squared

0.274637

Mean dependent var

 

Adjusted R-squared

0.263214

Std. Error t-Statistic

Prob.

 

0.009765

Akaike info criterion

 

Sum squared resid

0.012110

Schwarz criterion

0.0000

Log likelihood

418.8220

F-statistic

0.0000

Durbin-Watson stat

2.039518

Prob(F-statistic)

0.0213

102

Adj. t-Stat Prob.*

Null Hypothesis: LOGM3 has a unit root

Exogenous: Constant, Linear Trend

Bandwidth: 4 (Newey-West using Bartlett kernel)

Phillips-Perron test statistic -2.019091 0.5852

Test critical values: 1% level -4.029595

5% level -3.444487

10% level -3.147063

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction) 0.000401

HAC corrected variance (Bartlett kernel) 0.000498

Phillips-Perron Test Equation

Variable

Coefficient

 
 

Dependent Variable: D(LOGM3)

Method: Least Squares

LOGM3(-1)

-0.041029

0.021425 -1.915043

 

Date: 12/10/12 Time: 13:25

C

0.432743

0.217405 1.990493

 

Sample (adjusted): 1999M11 2010M09

@TREND(1999M10)

0.000449

0.000265 1.697009

 

Included observations: 131 after adjustments

R-squared

0.036108

Mean dependent var

 

Adjusted R-squared

0.021047

Std. Error t-Statistic

Prob.

 

0.020270

Akaike info criterion

 

Sum squared resid

0.052593

Schwarz criterion

0.0577

Log likelihood

326.3527

F-statistic

0.0487

Durbin-Watson stat

1.930151

Prob(F-statistic)

0.0921

103

Bandwidth: 3 (Newey-West using Bartlett kernel)

Adj. t-Stat Prob.*

Phillips-Perron test statistic -1.314582 0.6216

Null Hypothesis: LOGM3 has a unit root

Exogenous: Constant

5% level -2.883579

10% level -2.578601

*MacKinnon (1996) one-sided p-values.

Test critical values: 1% level -3.480818

Residual variance (no correction) 0.000411

HAC corrected variance (Bartlett kernel) 0.000474

Phillips-Perron Test Equation

Variable

Coefficient

 
 

Dependent Variable: D(LOGM3)

LOGM3(-1)

-0.005245

0.003817 -1.373908

 

Method: Least Squares

Date: 12/10/12 Time: 13:26

C

0.070600

0.041833 1.687642

 

Sample (adjusted): 1999M11 2010M09

R-squared

0.014422

Mean dependent var

 

Adjusted R-squared

Included observations: 131 after adjustments

0.006782

 
 
 

0.020417

Akaike info criterion

 

Sum squared resid

0.053777

Std. Error t-Statistic

Schwarz criterion

Prob.

Log likelihood

324.8954

F-statistic

 

Durbin-Watson stat

1.956048

Prob(F-statistic)

0.1719

0.0939

104

Exogenous: None

Bandwidth: 4 (Newey-West using Bartlett kernel)

Adj. t-Stat Prob.*

Null Hypothesis: LOGM3 has a unit root

Test critical values: 1% level -2.582734

5% level -1.943285

10% level -1.615099

Phillips-Perron test statistic 6.520607 1.0000

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction) 0.000420

HAC corrected variance (Bartlett kernel) 0.000521

Variable

Coefficient

 
 

Phillips-Perron Test Equation

Dependent Variable: D(LOGM3)

LOGM3(-1)

0.001192

0.000164 7.269761

 

Method: Least Squares

R-squared

-0.007338

Mean dependent var

 

Date: 12/10/12 Time: 13:26

Adjusted R-squared

-0.007338

 
 

Sample (adjusted): 1999M11 2010M09

0.020562

Akaike info criterion

 

Sum squared resid

Included observations: 131 after adjustments

0.054964

Schwarz criterion

 

Log likelihood

323.4649

Std. Error t-Statistic

Durbin-Watson stat

Prob.

105

Bandwidth: 3 (Newey-West using Bartlett kernel)

Adj. t-Stat Prob.*

Phillips-Perron test statistic -11.06023 0.0000

Null Hypothesis: D(LOGM3) has a unit root

Exogenous: Constant, Linear Trend

10% level -3.147221

*MacKinnon (1996) one-sided p-values.

Test critical values: 1% level -4.030157

5% level -3.444756

Residual variance (no correction) 0.000416

HAC corrected variance (Bartlett kernel) 0.000467

Phillips-Perron Test Equation

Variable

Coefficient

 
 

Dependent Variable: D(LOGM3,2)

Method: Least Squares

D(LOGM3(-1))

-0.983543

0.089292 -11.01484

 

Date: 12/10/12 Time: 13:26

C

0.016037

0.003980 4.029042

 

Sample (adjusted): 1999M12 2010M09

@TREND(1999M10)

-4.71E-05

4.85E-05 -0.971557

 

Included observations: 130 after adjustments

R-squared

0.488684

Mean dependent var

 

Adjusted R-squared

0.480632

Std. Error t-Statistic

Prob.

 

0.020633

Akaike info criterion

 

Sum squared resid

0.054065

 

0.0000

Log likelihood

321.5703

F-statistic

0.0001

Durbin-Watson stat

1.973888

Prob(F-statistic)

0.3331

106

Bandwidth: 3 (Newey-West using Bartlett kernel)

Adj. t-Stat Prob.*

Phillips-Perron test statistic -11.02465 0.0000

Null Hypothesis: D(LOGM3) has a unit root

Exogenous: Constant

5% level -2.883753

10% level -2.578694

Test critical values: 1% level -3.481217

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction) 0.000419

HAC corrected variance (Bartlett kernel) 0.000472

Phillips-Perron Test Equation

Variable

Coefficient

 
 

Dependent Variable: D(LOGM3,2)

D(LOGM3(-1))

-0.974104

0.088743 -10.97669

 

Method: Least Squares

Date: 12/10/12 Time: 13:27

C

0.012780

0.002146 5.956124

 

Sample (adjusted): 1999M12 2010M09

R-squared

0.484884

Mean dependent var

 

Adjusted R-squared

Included observations: 130 after adjustments

0.480860

 
 
 

0.020628

Akaike info criterion

 

Sum squared resid

0.054466

Std. Error t-Statistic

Prob.

Log likelihood

321.0889

F-statistic

 

Durbin-Watson stat

1.978996

Prob(F-statistic)

0.0000

0.0000

107

Quelques tentatives à partir des séries M1 et M2 : a) Résultats obtenus à partir de M1

DLLOGIPCt = 0.509803*DLLOGIPCt-1 + 0.062282*DLLOGM1t-1 + 0.004418

(6.77247] (2.1136] (3.61161]

DLLOGM1t = -0.130265*DLLOGIPCt-1 - 0.130815*DLLOGM1t-1 + 0.015368

(-0.56798] (-1.45707] (4.12359]

Les résultats de l'équation « DLLOGIPCt » sont similaires aux résultats retrouvés dans le cadre de ce présent travail en représentant le VAR à partir de M3.

Pour la stabilité du VAR

Toutes les racines sont à l'intérieure du cercle, ce VAR est bien stationnaire.

108

Fonction de réponses aux impulsions

Suite à un choc de 1% sur M1, l'inflation réagit à partir de la deuxième période avec une

variation de 0.2%.

Décomposition de la variance

La variance de l'erreur de prévision de DLLOGIPC est due à 97% de ses propres innovations contre 3% de celles de DLLOGM1.

b) Résultats obtenus à partir de M2

DLLOGIPCt = 0.495975*DLLOGIPCt-1 + 0.097067*DLLOGM2t-1 + 0.004311

(6.52879] (1.86037] (3.41597]

DLLOGM2t = 0.129120*DLLOGIPCt-1 - 0.130815*DLLOGM2t-1 + 0.009473

(0.98305] (-1.45707] (4.34109]

109

La dans l'équation «DLLOGIPCt », le coefficient de DLLOGM2 n'est pas statistiquement significatif.

110

Tableau #11 : Evolution des agrégats monétaires Ml et M2 en millions de gourdes d'octobre 1999 à septembre 2010.

 

1999-2000

2000-2001

2001-2002

2002-2003

2003 2004

2004-2005

Mois

Mien ME

M2enMG

Mien ME

M2enMG

M1enMG

M2enMG

M1enMG

M2enMG

M1enMG

M2enMG

M1enMG

M2enMG

Qcta re

7,389.75

16,6fi844

8,606.70

L3,491.11

9,542.35

21,206E7

..,56455

24,45229

14,137.93

3.0,7295.

16,10951

35,05759

Novembre

7,437.0D

16,8602S

9,477.52

.3,38 20

9,5E5.24

21,27235

..,391.02

24,8fi0.75

14,783,84

31,729448

16,43429

34,99251

Décembre

8,15309

17,66633

9,052.13

20,069.47

10,31323

21,92155

13,065.3

26,191.07

15,95922

33,21561

17,361.1E

36,44561

Janvier

7,986.69

17,745.13

9,259.63

20,14762

10,247 26

21,792.73

13,07921

26,656.10

15,944.71

33,59103

17,214,83

36,537.92

Février

7,77E26

17,711.43

9,716.42

20,064.44

10,584.60

22,08234

13,728.72

27,95525

15,972.43

34,040.62

17,257.69

36,85662

Mars

7,946.11

12,116.44

9,936.71

20,539.74

10,3E4.69

21,919.12

13,53227

28,208.71

1fi,146.44

34,351.13

17,74355

37,569.64

Avril

8,022.0E

12,254,29

9,695.35

20,43357

10,30265

21,27256

14,10fi56

29,08351

15,969.42

34,034.27

:7,59E62

37,622.66

Mai

7,811.44

18,241.75

9,619.01

20,388.79

10,39E65

21,840.12

13,880,80

:3,.66.18

15,401E5

33,517.19

.7,588.49

37,53233

Juin

2,048.71

12;66E21

9,242.22

20,617.16

1441122

22,260.70

14,0E7.04

29,22726

15,010.61

33,455.E

18,227.24

32,192.65

Juillet

8,1&0.87

18,774.44

9,980.79

20/689.69

14,67490

22,71153

14,242.37

30,063E7

15,44922

34,04128

18,624.75

38,492.11

Août

8,157.01

10,79337

3,3E0.01

21,014.04

11,24625

23,251.09

14,23..s.

3.0,201.29

15,958.47

34,300.5.

18,75G.76

38,508.73

Septembre

2.527.87

19,3E721

9,303.35

21,02755

11,237.29

23,4E254

14,158,9

30.34539

15,906.0E

34,508,80

18,9990E

38,838E4

 
 
 
 
 
 
 

2005 200e

2005-2007

2007 200E

200E-2049

204E-2010

Mois

Mien ME

M2enMG

Mien ME

M2enMG

M1enMG

M2enMG

M1enMG

M2enMG

M1enMG

M2enMG

Octobre

12,91E52

35,352.24

19,253.=?

42,524.75

21,572.44

=5,235.33

25,2E7.75

50,54430

28,49E35

54,70304

Novembre

18,720.68

38,61128

=9,52.=.::

42,85fi5fi

21,805.36

=5,52L.=3

25,22521

51,029.17

28,111.45

54,2E3.42

Clkemhre

20,43E.39

40,48933

2=,03S.S2

44,625.02

23,713.29

47,2.:.SS

27,95E32

53,6E223

29,7950E

56,0E7.19

Janvier

20,448,84

44,994.43

2.0,144.fi7

44,14152

24,11950

42,253.32

27,4815.

53,04934

30,265.46

57,14653

Février

210,1E521

44,84829

.9,7G1.42

43,839.03

23,312.2fi

47,45958

27,477.03

53,715.49

31,65027

58,123.03

Mars

19,9479E

40,976.48

19,513.00

41,9859fi

24,096.0

42,37E52

27,475.07

53,33159

31,72420

59,10423

Avril

24,24357

41,35237

19,934.68

=2,28722

24,526.62

49,21050

26,373.69

52,73E68

32.795.02

60,5912fi

Mai

24,4.4.09

41,824.63

19,6133.7

42,393.07

24,72063

49,901.37

26,447.78

52,09251

::.=9420

51,285.4E

Juin

20,24823

41,64630

19,9E033

43,21E53

24,5E455

49,222.27

26,154.44

52,4E531

33,507.77

5.,581.72

Juillet

19,43E.09

40,81952

20,16923

43,753.64

24,99506

50,39955

26,14705

52,370.44

35,03537

53,21938

Août

19,511.76

40,833.67

2.O,67463

44,113.61

26,21957

51,4902

27,117.19

52,82537

34,518.25

52,892.41

Septembre

19,56153

42,E79,24

21,2E2.78

44,732.1fi

25,139.46

54,2543fi

28,959.3E

54,24621

37,45520

S6,4fi629

Source ; BRH

111

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Aux âmes bien nées, la valeur n'attend point le nombre des années"   Corneille