WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

L'impact de la convertibilité totale du taux de change sur la situation macro-économique. Cas de la Tunisie

( Télécharger le fichier original )
par Manel BEN AYECHE
Université de Sousse ( Tunisie ) - Mastère de recherche en finance et banque 2013
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Annexe 6 : La détermination du nombre de retard

. varsoc lnipc lntcen1 , exog(lnm4 lnm lnx)

Selection-order criteria

Sample: 5 - 156

Number of

obs

= 152

+

 
 
 
 
 
 
 
 

+

|lag

|

LL

LR

df

p

FPE

AIC

HQIC

SBIC |

| +

 
 
 
 
 
 
 

|

| 0

|

973.607

 
 
 

1.0e-08

-12.7054

-12.6407

-12.5462 |

| 1

|

1248.93

550.65

4

0.000

2.9e-10

-16.2754

-16.1784

-16.0367 |

| 2

|

1261.97

26.088

4

0.000

2.6e-10

-16.3944

-16.2651

-16.0761 |

| 3

|

1267.52

11.098*

4

0.025

2.5e-10*

-16.4148*

-16.2732*

-16.0869* |

| 4

|

1269.26

3.4736

4

0.482

2.6e-10

-16.385

-16.1911

-15.9076 |

+

 
 
 
 
 
 
 
 

+

Endogenous: lnipc lntcen1
Exogenous: lnm4 lnm lnx

_cons

. varsoc lnipc lntcen2 , exog(lnm4 lnm lnx)

Selection-order

Sample: 5 - 156

criteria

 
 
 

Number of

obs

= 152

+

 
 
 
 
 
 
 
 

+

|lag

|

LL

LR

df

p

FPE

AIC

HQIC

SBIC |

| +

 
 
 
 
 
 
 

|

| 0

|

877.121

 
 
 

3.7e-08

-11.4358

-11.3711

-11.2767 |

| 1

|

1080.66

407.07

4

0.000

2.7e-09

-14.0613

-13.9643

-13.8226 |

| 2

|

1097.81

34.314

4

0.000

2.3e-09

-14.2344

-14.1051

-13.9161 |

| 3

|

1105.19

14.746*

4

0.005

2.2e-09*

-14.2788*

-14.1171*

-13.9809* |

| 4

|

1105.79

1.2088

4

0.877

2.3e-09

-14.2341

-14.0401

-13.7566 |

+

 
 
 
 
 
 
 
 

+

Endogenous: lnipc lntcen2
Exogenous: lnm4 lnm lnx

_cons

Annexe 7 : L'estimation du modèle VAR

BEN AYECHE Manel FSEG Sousse

. var lnipc lntcen1 lntcen2, lags(1/1) exog(lnm4 lnm lnx)

Vector autoregression

Sample: 2 - 156 No. of obs = 155

Ln likelihood = 1734.197 AIC = -22.10577

FPE = 5.04e-14 HQIC = -21.93829

Det(Sigma_ml) = 3.84e-14 SBIC = -21.69344

Equation Parms RMSE R-sq chi2 P>chi2

lnipc lntcen1 lntcen2

lnipc

lnipc

+

|

|

|

7

7

7

Coef.

.003294

.004896

.013938

Std. Err.

0.9969

0.9950

0.8370

z

49231.65

30878.66

795.7887

P>|z|

0.0000

0.0000

0.0000

[95% Conf.

Interval]

L1.

lntcen1

|

|

.8126812

.047362

17.16

0.000

.7198533

.9055091

L1.

lntcen2

|

|

.0564366

.02513

2.25

0.025

.0071826

.1056906

L1.

|

.0228588

.0131206

1.74

0.081

-.0028572

.0485747

lnm4

|

.0439393

.0162775

2.70

0.007

.012036

.0758426

lnm

|

.009658

.0074736

1.29

0.196

-.00499

.0243061

lnx

|

-.00846

.0069528

-1.22

0.224

-.0220872

.0051672

_cons

lntcen1

lnipc

|

|

|

.0337409

.0699087

0.48

0.629

-.1032775

.1707594

L1.

lntcen1

|

|

.0545655

.0703993

0.78

0.438

-.0834146

.1925456

L1.

lntcen2

|

|

1.009211

.0373535

27.02

0.000

.9359994

1.082422

L1.

|

.0217905

.0195026

1.12

0.264

-.0164339

.0600149

lnm4

|

-.0297134

.024195

-1.23

0.219

-.0771347

.0177079

lnm

|

.0062607

.0111089

0.56

0.573

-.0155123

.0280336

lnx

|

-.0025177

.0103347

-0.24

0.808

-.0227733

.0177379

_cons

lntcen2

lnipc

|

|

|

.0944857

.1039128

0.91

0.363

-.1091796

.2981511

L1.

lntcen1

|

|

.4394153

.2004093

2.19

0.028

.0466203

.8322103

L1.

lntcen2

|

|

-.4550786

.1063361

-4.28

0.000

-.6634936

-.2466636

L1.

|

.6977806

.055519

12.57

0.000

.5889654

.8065959

lnm4

|

.0575435

.0688771

0.84

0.403

-.0774532

.1925401

lnm

|

-.0058132

.0316241

-0.18

0.854

-.0677954

.0561689

lnx

|

-.004054

.0294203

-0.14

0.890

-.0617166

.0536087

_cons

|

-1.147905

.2958139

-3.88

0.000

-1.727689

-.5681204

BEN AYECHE Manel FSEG Sousse

Annexe 8 : Le test d'auto-corrélation de Lagrange-multiplier

. varlmar

Lagrange-multiplier test

 

+

 
 
 
 

+

|

lag

|

chi2

df

Prob > chi2

|

 

|

+

 
 
 

|

|

1

|

46.7952

9

0.00000

|

|

2

|

37.4839

9

0.00002

|

 

+

 
 
 
 

+

H0: no autocorrelation at lag order

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Des chercheurs qui cherchent on en trouve, des chercheurs qui trouvent, on en cherche !"   Charles de Gaulle