3.3. ANALYSE DE VARIANCE POUR LE DIAMETRE
L'analyse de la variance faite pour le diamètre
cherche à mettre en évidence l'action isolée de chaque
facteur et l'effet interactif de ces derniers. Après analyse et
traitement de nos données brutes au MINITAB 13, le tableau suivant
expose les variances possibles au seuil de probabilité de 5% y compris
leur degré de liberté.
Tableau 8: Analyse de variance pour le
diamètre des arbres.
Source
|
DF
|
SS
|
MS
|
F
|
P
|
Opérateur
|
1
|
0.23
|
0.23
|
0.00
|
0.960
|
Technique
|
1
|
7.20
|
7.20
|
0.08
|
0.774
|
Opérateur x Technique
|
1
|
0.07
|
0.07
|
0.00
|
0.978
|
Error
|
116
|
10127.62
|
87.31
|
|
|
Total
|
119
|
10135.11
|
|
|
|
|
Avec, DF : Degré de liberté, SS : sommes des
carrées, MS : carrée moyen
Les résultats de l'analyse de variance des effets
estimés confirment ceux qui sont présentés sur
l'intervalle de confiance au seuil de probabilité de 5%,
l'écart-type et les coefficients du modèle d'ajustement tels que
représentés non seulement dans les figures 3 et 4 mais aussi dans
les tableaux 6 et 7. En considérant les coefficients pour le
diamètre, il parait irréfutable que l'opérateur et
l'interaction ont plutôt un effet nul sur le diamètre pendant que
la technique influence certainement le diamètre mais, l'écart est
statistiquement moins significatif. Ceci correspond à l'analyse
précédemment faite sur l'effet de chaque facteur et se
résume enfin sur le graphique suivant.
-1
1
47,8 48 48,2 48,4 48,6 48,8
diamètre moyen (cm)
technique opérateur
Figure 5 : Variance de diamètre due aux
opérateurs et aux techniques de mesure.
3.4. LES SOURCES D'ERREURS
Lors des opérations de mesure de diamètre sur
terrain, certaines erreurs ont été décelées. Parmi
les erreurs susceptibles d'rtre commise lors de l'utilisation de
matériel expérimental, il convient de distinguer tant pour le
compas que le ruban, les erreurs instrumentales des erreurs de mesure. Ces
erreurs occasionnent des écarts entre le diamètre mesuré
et le diamètre réel de la section transversale de
l'arbre et ces derniers représentent des biais
négatifs lorsque la mesure fournie par un appareil ou par une
méthode sous-estime la valeur exacte à mesurer pendant que pour
les biais positifs, la même valeur est surestimée.
Ces irrégularités corrèlent avec celles
identifiées par Begin (2008), ATIBT (2006), Rondeux (1999) et
Branthomme, et al. (2002) dont les détails sont donnés
dans les lignes suivantes.
3.4 1 161KrM IERIIIKIs IVII DK IRP SDMIIIINIFI
ü Un compas forestier non perpendiculaire à l'axe
longitudinal de la tige MI1stiE 11l11 diamètre et son ampleur
dépend de l'inclinaison de l'instrument et du dhp 1; 1
ü Un contact trop serré des bras sur l'arbre
écrase l'écorce et tend à sous-1stiE 1r1l11 VIE Vr1 1;
1
ü 91199E 9\41f9 1sti1r1p \9911[99 119 9 191ut119 s-1stiE
1r1la1E 1sur11; 1
ü 9 919 as1E 99 111999 191r919V1911A4r11911\19VI11911/191
1(99911l119 aV1919 1999V1i9991 1 u9111ur1stiE VI99 19 119 s-1stiE VI99111114AE
VI11; 1
ü 9 911hW1ur1111E 1IE11i9w99 \41 1999V119991 1s1l99
1l119VI, 1[9 19 VE1991iE919u1b ais1 négatif selon que l'on
s'éloigne de la haut1lr1E191111 199111la191is1 111119911911131Is1la1
9Vs1 1L9 1131rs1l1 1s9E E 1t1111Ia1tI91 1; 1
ü Une mauvaise lecture sur l'échelle graduée,
occasionnée par la position prise par l'opérateur 1; 1
ü 9 9 1E W3aiI1E V9 a9111111a19VIt1E1d1 1r999119911911u911E
au3NiI11utiliFVI991d111a1 9V9 1tt11d119999 E . 1
|