~onc(usion genera(
Notre projet vise à réaliser un émetteur
infrarouge.
Ce travail nous a permis, premièrement, d'approfondir
nos connaissances théoriques en cherchant dans différentes
sources de documentation, les composants nécessaires et les techniques
adéquates qui peuvent nous aider à résoudre certains
problèmes. Ensuite, l'application de ces connaissances dans la pratique
nous a permis d'apprendre à manipuler ces composants de façon
plus concrète.
Tous ces efforts, ont donc donné naissance à ce
modeste, que nous considérons comme le fruit d'une première
expérience très intéressante sur tous les plans.
Cette réalisation serait, néanmoins
amélioré par un récepteur infrarouge ( pour ondes moyennes
par exemple), qui permettrait de recevoir des émetteurs locaux ou
étrangers( la nuit) ou être utilisé dans des système
antivol.
Liste ties Composants
Composant
|
Valeur
|
Puissance
|
Les résistances
|
|
|
R1
|
1KOhm
|
1/4W
|
R2
|
27KOhm
|
1/4W
|
R3
|
220Ohm
|
1/4W
|
Les condensateurs
|
|
|
C1
|
3300pf
|
Polyester
|
|
100nf
|
Polyester
|
C3
|
47uf
|
Electrolytique
|
Les diodes
|
|
|
Ds1
|
1N4007
|
|
Dl1
|
LED
|
|
Dtx
|
Diode IR émettrice (CQX89)
|
|
Circuit intégré
|
|
|
IC1
|
NE 555
|
|
[1] Pierre Mayé Aide-mémoire Composants
électroniques Les Infrarouges en électronique, Dunod,
2003
[2] ELECTRONIQUE magazine; n° 16 , page 30-38.
[3] L'image proche infrarouge : une information essentielle
(http:/ / www. ifn. fr/ spip/ IMG/ pdf/ IF_25_proche_infrarouge. pdf),
n°25, Inventaire Forestier National (France), 2010.
Consulté le 6 juillet 2010
[4] Solberg C. *, Saugen E., Swenson L. P., Bruun L.,
Isaksson T. ; Determination of fat in live farmed Atlantic salmon using
non-invasive NIR techniques ; Department of Fisheries and Natural Science,
Bodo Regional University, N-8049 Bodo, Norway ; Journal of the Science of Food
and Agriculture, 2003, Vol. 83, p. 692-696.
[5] Tahar Neffati, ÉLECTRONIQUE de A à
Z (c) Dunod, Paris, 2006 ISBN 2 10 049487 2
[6] Site web: -
http://infrarouge.hebfree.org/pr%C3%83%%A9sentation%20et%20definition.html
-www.acma.gov.au/web/standard/1001/pc=pc-9150.
-Fr.wikipedia.org/wiki/NE555.
Timer NE/SA/SE555/SE555C
D, N, FE Packages
VCC
DISCHARGE THRESHOLD CONTROL VOLTAGE
VCC NC
DISCHARGE
NC THRESHOLD
NC
CONTROL VOLTAGE
GND TRIGGER OUTPUT
RESET
GND NC TRIGGER OUTPUT NC RESET NC
TOP VIEW
DESCRIPTION
The 555 monolithic timing circuit is a highly stable controller
capable of producing accurate time delays, or oscillation. In the time delay
mode of operation, the time is precisely controlled by one external resistor
and capacitor. For a stable operation as an oscillator, the free running
frequency and the duty cycle are both accurately controlled with two external
resistors and one capacitor. The circuit may be triggered and reset on falling
waveforms, and the output structure can source or sink up to 200mA.
FEATURES
· Turn-off time less than 21.ts
· Max. operating frequency greater than 500kHz
· Timing from microseconds to hours
· Operates in both astable and monostable modes
· High output current
· Adjustable duty cycle
· TTL compatible
· Temperature stability of 0.005% per °C
APPLICATIONS
· Precision timing
· Pulse generation
· Sequential timing
· Time delay generation
· Pulse width modulation
PIN CONFIGURATIONS
ORDERING INFORMATION
DESCRIPTION
|
TEMPERATURE RANGE
|
ORDER CODE
|
DWG #
|
8-Pin Plastic Small Outline (SO) Package
|
0 to +70°C
|
NE555D
|
0174C
|
8-Pin Plastic Dual In-Line Package (DIP)
|
0 to +70°C
|
NE555N
|
0404B
|
8-Pin Plastic Dual In-Line Package (DIP)
|
-40°C to +85°C
|
SA555N
|
0404B
|
8-Pin Plastic Small Outline (SO) Package
|
-40°C to +85°C
|
SA555D
|
0174C
|
8-Pin Hermetic Ceramic Dual In-Line Package (CERDIP)
|
-55°C to +125°C
|
SE555CFE
|
|
8-Pin Plastic Dual In-Line Package (DIP)
|
-55°C to +125°C
|
SE555CN
|
0404B
|
14-Pin Plastic Dual In-Line Package (DIP)
|
-55°C to +125°C
|
SE555N
|
0405B
|
8-Pin Hermetic Cerdip
|
-55°C to +125°C
|
SE555FE
|
|
14-Pin Ceramic Dual In-Line Package (CERDIP)
|
0 to +70°C
|
NE555F
|
0581B
|
14-Pin Ceramic Dual In-Line Package (CERDIP)
|
-55°C to +125°C
|
SE555F
|
0581B
|
14-Pin Ceramic Dual In-Line Package (CERDIP)
|
-55°C to +125°C
|
SE555CF
|
0581B
|
Timer NE/SA/SE555/SE555C
BLOCK DIAGRAM
VCC
8
·
THRESH-
OLD
6 0--
COMPARATOR
CONTROL VOLTAGE
0 5
TRIGGER --0 2
DIS-
CHARGE
7 0
FLIP FLOP
RESET 0 4
COMPARATOR
OUTPUT STAGE
0 3 O 1
OUTPUT GND
EQUIVALENT SCHEMATIC
NOTE: Pin numbers are for 8-Pin package
Timer NE/SA/SE555/SE555C
ABSOLUTE MAXIMUM RATINGS
SYMBOL
|
PARAMETER
|
RATING
|
UNIT
|
|
Supply voltage
|
|
|
Vcc
|
SE555
|
+18
|
V
|
|
NE555, SE555C, SA555
|
+16
|
V
|
PD
|
Maximum allowable power dissipation1
|
600
|
mW
|
TA
|
Operating ambient temperature range
|
|
|
|
NE555
|
0 to +70
|
°C
|
|
SA555
|
-40 to +85
|
°C
|
|
SE555, SE555C
|
-55 to +125
|
°C
|
TSTG
|
Storage temperature range
|
-65 to +150
|
°C
|
TSOLD
|
Lead soldering temperature (10sec max)
|
+300
|
°C
|
NOTES:
1. The junction temperature must be kept below 125°C for the
D package and below 150°C for the FE, N and F packages. At ambient
temperatures above 25°C, where this limit would be derated by the
following factors:
D package 160°C/W FE package 150°C/VV N package
100°C/W F package 105°C/W
Timer NE/SA/SE555/SE555C
DC AND AC ELECTRICAL CHARACTERISTICS
TA = 25°C, Vcc = +5V to +15 unless
otherwise specified.
|
|
|
|
SE555
|
|
NE555/SE555C
|
|
SYMBOL
|
PARAMETER
|
TEST CONDITIONS
|
|
|
|
|
|
|
UNIT
|
|
|
|
Min
|
Typ
|
Max
|
Min
|
Typ
|
Max
|
|
Vcc
|
Supply voltage
|
|
4.5
|
|
18
|
4.5
|
|
16
|
V
|
ICC
|
Supply current (low
|
Vcc=5V, RL=0.
|
|
3
|
5
|
|
3
|
6
|
mA
|
|
state)1
|
Vcc=15V, RL=oo
|
|
10
|
12
|
|
10
|
15
|
mA
|
|
Timing error (monostable)
|
RA=2k52 to 1001d2
|
|
|
|
|
|
|
|
tM
|
Initial accuracy2
|
C=0.1gF
|
|
0.5
|
2.0
|
|
1.0
|
3.0
|
%
|
Atm/AT
|
Drift with temperature
|
|
|
30
|
100
|
|
50
|
150
|
ppm/°C
|
AtM/AVS
|
Drift with supply voltage
|
|
|
0.05
|
0.2
|
|
0.1
|
0.5
|
%N
|
|
Timing error (astable)
|
RA, Rs=1k52 to 100kO
|
|
|
|
|
|
|
|
to
|
Initial accuracy2
|
C=0.1gF
|
|
4
|
6
|
|
5
|
13
|
%
|
AtA/AT
|
Drift with temperature
|
|
Vcc=15V
|
|
500
|
|
|
500
|
ppm/°C
|
AtA/AVS
|
Drift with supply voltage
|
|
|
0.15
|
0.6
|
|
0.3
|
1
|
%N
|
VC
|
Control voltage level
|
Vcc=15V
|
9.6
|
10.0
|
10.4
|
9.0
|
10.0
|
11.0
|
V
|
|
|
Vcc=5V
|
2.9
|
3.33
|
3.8
|
2.6
|
3.33
|
4.0
|
V
|
VTH
|
Threshold voltage
|
Vcc=15V
|
9.4
|
10.0
|
10.6
|
8.8
|
10.0
|
11.2
|
V
|
ITH
|
Threshold current3
|
Vcc=5V
|
2.7
|
3.33 0.1
|
4.0 0.25
|
2.4
|
3.33 0.1
|
4.2 0.25
|
V gA
|
VTRIG
|
Trigger voltage
|
Vcc=15V
|
4.8
|
5.0
|
5.2
|
4.5
|
5.0
|
5.6
|
V
|
'TRIG VRESET
|
Trigger current Reset voltage4
|
Vcc=5V VTRIG=OV Vcc=1 5V, VTH =10.5V
|
1.45 0.3
|
1.67 0.5
|
1.9 0.9 1.0
|
1.1 0.3
|
1.67 0.5
|
2.2 2.0 1.0
|
V IAA
V
|
'RESET
|
Reset current
|
VREsET=0.4V
|
|
0.1
|
0.4
|
|
0.1
|
0.4
|
mA
|
|
Reset current
|
VREsET=OV
|
|
0.4
|
1.0
|
|
0.4
|
1.5
|
mA
|
|
|
Vcc=15V
|
|
|
|
|
|
|
|
|
|
IsiNk=10mA
|
|
0.1
|
0.15
|
|
0.1
|
0.25
|
V
|
Vol
|
Output voltage (low)
|
IsiNk=50mA IsINK=100mA
|
|
0.4 2.0
|
0.5 2.2
|
|
0.4 2.0
|
0.75 2.5
|
V
V
|
|
|
lsiNk=200mA
|
|
2.5
|
V
|
|
2.5
|
|
|
|
|
VCC=5V
|
|
|
|
|
|
|
|
|
|
IsiNk=8mA
|
|
0.1
|
0.25
|
|
0.3
|
0.4
|
V
|
|
|
IsiNk=5mA
|
|
0.05
|
0.2
|
|
0.25
|
0.35
|
V
|
|
|
Vcc=15V
|
|
|
|
|
|
|
|
|
|
ISOURCE=200MA
|
|
12.5
|
|
V
|
12.5
|
|
|
VOH
|
Output voltage (high)
|
'SOURCE= 1 00mA
|
13.0
|
13.3
|
|
12.75
|
13.3
|
|
V
|
|
|
VCC=5V
|
|
|
|
|
|
|
|
tOFF
|
Turn-off times
|
IsouRcE=100mA
VRESET=VCC
|
3.0
|
3.3 0.5
|
2.0
|
2.75
|
3.3 0.5
|
2.0
|
V gs
|
tR
|
Rise time of output
|
|
|
100
|
200
|
|
100
|
300
|
ns
|
tF
|
Fall time of output
|
|
|
100
|
200
|
|
100
|
300
|
ns
|
|
Discharge leakage current
|
|
|
20
|
100
|
|
20
|
100
|
nA
|
NOTES:
1. Supply current when output high typically lmA less.
2. Tested at Vcc=5V and Vcc=15V.
3. This will determine the max value of RA+RB, for 15V
operation, the max total R=10MO, and for 5V operation, the max. total
R=3.4MO.
4. Specified with trigger input high.
5. Time measured from a positive going input pulse from 0 to
0.8xVcc into the threshold to the drop from high to low of the output. Trigger
is tied to threshold.
Timer NE/SA/SE555/SE555C
0 0 1 0.2 0 3 0.4 (XVCC)
LOWEST VOLTAGE LEVEL OF TRIGGER PULSE
SUPPLY VOLTAGE - VOLTS
5.0 10.0 15.0
-50 -25 0 +25 +50 +75 +100+125
TEMPERATURE - °C
10
1.0
VOUT --VOLTS
0.1
100
100
1 0 2.0
1 0 2.0
50 100
5.0 10 20 50
5.0 10 20 50
(SINK - mA
(SINK mA
(SINK mA
Delay Time vs Supply Voltage
High Output Voltage Drop vs Output Source
Current
Propagation Delay vs Voltage Level of Trigger
Pulse
20
1.0
20
50 100
5 0 10 20
'SOURCE - mA
0 5 10 15
SUPPLY VOLTAGE - V
0 01 02 03 04
LOWEST VOLTAGE LEVEL OF TRIGGER PULSE - XVcc
Low Output Voltage vs Output Sink
Current
Low Output Voltage vs Output Sink
Current
Low Output Voltage vs Output Sink
Current
|
|
|
|
I I I
Vcc = 10V _
|
|
|
|
|
|
|
|
|
|
|
-55°C
|
ApP.--- M
|
|
|
|
|
+25°C
|
|
|
|
|
|
1+25°C
|
|
|
|
|
+25°C
MP"
|
|
|
|
+25°C
.7):
17:2-
|
|
|
|
|
|
|
|
|
|
---'''-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I I I
0.01
10
10
1.015
1.010
0.985
V CC VOUT -- VOLTS
2.0 1.8
1.6
1.4 1.2
1.0 0.8 0.6
0.4 0.2 0
+125°C
-55°C
+25°C
5V Vcc 15V
NORMALIZED DELAY TIME
300
1.005
0.995
0.990
1.000
PROPAGATION DELAY -- ns
250
200
150
100
50
+25°C
SUPPLY CURRENT -- mA
8.0
6.0
4.0
2.0
Minimum Pulse Width Required for
Triggering
Supply Current Delay Time
vs Supply Voltage vs Temperature
1.015
· · · ·
· ·
150
7, 125 8 100
w w
01 75
2 50
7
2 z
25
10.0
NORMALIZED DELAY TIME
0
1.010
1.005
1.000
0.995
0.990
0.985
10
1.0
to
0
1- 0.1
7 0
0.01
TYPICAL PERFORMANCE CHARACTERISTICS
Timer NE/SA/SE555/SE555C
CONTROL - VOLTAGE
.01pF THRESHOLD
DISCHARGE
7-7
TRIGGER
vcc
Astable Operation
vcc
DISCHARGE
CONTROL VOLTAGE
.01pF 1 THRESHOLD
1:
3V
TRIGGER
Monostable Operation
TYPICAL APPLICATIONS
Timer NE/SA/SE555/SE555C
TYPICAL APPLICATIONS
NOTE: All resistor values are in Q
Figure 1. AC Coupling of the Trigger Pulse
Trigger Pulse Width Requirements and Time
Delays
Due to the nature of the trigger circuitry, the timer will
trigger on the negative going edge of the input pulse. For the device to time
out properly, it is necessary that the trigger voltage level be returned to
some voltage greater than one third of the supply before the time out period.
This can be achieved by making either the trigger pulse sufficiently short or
by AC coupling into the trigger. By AC coupling the trigger, see Figure 1, a
short negative going pulse is achieved when the trigger signal goes to ground.
AC coupling is most frequently used in conjunction with a switch or a signal
that goes to ground which initiates the timing cycle. Should the trigger be
held low, without AC coupling, for a longer duration than the timing cycle the
output will remain in a high state for the duration of the low trigger signal,
without regard to the threshold comparator state. This is due to the
predominance of Q15 on the base of Q16, controlling the state of the bi-stable
flip-flop. When the trigger signal then returns to a high level, the output
will fall immediately. Thus, the output signal will follow the trigger signal
in this case.
Another consideration is the 'turn-off time". This is the
measurement of the amount of time required after the threshold reaches 2/3 Vcc
to turn the output low. To explain further, Q1 at the threshold input turns on
after reaching 2/3 Vcc, which then turns on Q5, which turns on Q6. Current from
Q6 turns on Q16 which turns Q17 off. This allows current from Q19 to turn on
Q20 and Q24 to given an output low. These steps cause the 2jts max. delay as
stated in the data sheet.
Also, a delay comparable to the turn-off time is the trigger
release time. When the trigger is low, Qic, is on and turns on Q11 which turns
on Q15. Q15 turns off Q16 and allows Q17 to turn on. This turns off current to
Q20 and Q24, which results in output high. When the trigger is released, Q10
and Q11 shut off, Q15 turns off, Q16 turns on and the circuit then follows the
same path and time delay explained as "turn off time". This trigger release
time is very important in designing the trigger pulse width so as not to
interfere with the output signal as explained previously.
SIEMENS
GaAs-IR-Lumineszenzdiode GaAs Infrared
Emitter
Area not flat
0.6
0.4
OQ C)
I
5.9
5.5
0.6
0.4
E
E .5
c=,_
1.8 1.2
29
27
Cathode (Diode) Collector (Transistor) Approx. weight 0.5 g
00.
Chip position
2
9.0 8.2
7.8 7.5
GEX06260
5.7
5.1 -6--
0 CO CNI CO 0 X CD
Malle in mm, wenn nicht anders angegeben/Dimensions in mm, unless
otherwise specified.
Wesentliche Merkmale
· Sehr enger Abstrahlwinkel
· GaAs-IR-LED, hergestellt
im Schmelzepitaxieverfahren
· Hohe Zuverlassigkeit
· Hohe Impulsbelastbarkeit
· Gruppiert lieferbar
· Gehausegleich mit SFH 484
Anwendungen
· IR-Fernsteuerung von Fernseh- and
Rundfunkgeraten, Videorecordern, Lichtdimmern, Gersten
Features
· Extremely narrow half angle
· GaAs infrared emitting diode, fabricated in a
liquid phase epitaxy process
· High reliability
· High pulse handling capability
· Available in groups
· Same package as SFH 484
Applications
· IR remote control of hi-fi and TV-sets, video
tape recorders, dimmers,
of various equipment
Typ Type
|
Bestellnummer Ordering Code
|
Gehause Package
|
LD 274
|
Q62703-Q1031
|
5-mm-LED-Gehause (T 1 3/4), graugettintes
EpoxyGiel,harz, Anschlusse im 2.54-mm-Raster (1/101
Kathodenkennzeichnung: Kurzerer Lotspiefl, flat
5 mm LED package (T 1 3/4), grey
colored epoxy resin lens, solder tabs lead spacing 2.54 mm (1/10"),
cathode marking: shorter solder lead, flat
|
LD 274-21)
|
Q62703-Q1819
|
LD 274-3
|
Q62703-Q1820
|
1) Nur auf Anfrage lieferbar. 1) Available
only on request.
Grenzwerte (TA = 25 °C)
Maximum Ratings
Bezeichnung Description
|
Symbol Symbol
|
Wert Value
|
Einheit Unit
|
Betriebs- und Lagertemperatur
Operating and storage temperature range
|
T ·
op T 1 stg
|
-- 55 ... + 100
|
°C
|
Sperrschichttemperatur Junction temperature
|
T
,
|
100
|
°C
|
Sperrspannung Reverse voltage
|
VR
|
5
|
V
|
Durchlaastrom Forward current
|
IF
|
100
|
mA
|
Stollstrom, tp = 10us, D = 0 Surge current
|
-IFSM
|
3
|
A
|
Verlustleistung Power dissipation
|
Ptot
|
165
|
mW
|
Warmewiderstand Thermal resistance
|
RthJA
|
450
|
K/W
|
Kennwerte (TA = 25 °C)
Characteristics
Bezeichnung Description
|
Symbol Symbol
|
Wert Value
|
Einheit Unit
|
Wellenlange der Strahlung Wavelength at peak emission
IF = 100 mA, tp = 20 ms
|
kpeak
|
950
|
nm
|
Spektrale Bandbreite bei 50 % von Imax Spectral
bandwidth at 50 % of Imax
/F = 100 m A, tp = 20 ms
|
AX
|
55
|
nm
|
Abstrahlwinkel Half angle
|
ce
|
#177; 10
|
Grad
|
Aktive Chipflache Active chip area
|
A
|
0.09
|
mm2
|
Abmessungen der aktive Chipflache Dimension of the active chip
area
|
L x B L x W
|
0.3 x 0.3
|
mm
|
Abstand Chipoberflache bis Linsenscheitel Distance chip front to
lens top
|
H
|
4.9 ... 5.5
|
mm
|
Schaltzeiten, Ie von 10 % auf 90 % und von 90 % auf
10 %, bei IF = 100 mA, RL = 50 SI Switching times, I. from 10 % to
90 % and from 90 % to 10 %, IF = 100 mA, RL = 50 SI
|
tr, tf
|
1
|
Rs
|
Kennwerte (TA = 25 °C)
Characteristics
Bezeichnung Description
|
Symbol Symbol
|
Wert Value
|
Einheit Unit
|
Kapazitat
Capacitance
VR = 0 V, f = 1 MHz
|
Ce
|
25
|
pF
|
Durchlallspannung
Forward voltage
IF = 100 mA, tp = 20 ms IF = 1 A,
tp = 100 .ts
|
VF VF
|
1.30 1.5)
1.90 2.5)
|
V V
|
Sperrstrom, VR = 5 V Reverse current
|
IR
|
0.01 1)
|
RA
|
Gesamtstrahlungsflufl Total radiant flux
IF = 100 mA, tp = 20 ms
|
(De
|
15
|
mW
|
Temperaturkoeffizient von Ie bzw.
(I)e,
IF = 100 mA
Temperature coefficient of 1. or
(De,
IF = 100 mA
|
TC,
|
-- 0.55
|
%X
|
Temperaturkoeffizient von VF, IF = 100
mA Temperature coefficient of VF, IF = 100 mA
|
TCv
|
-- 1.5
|
mV/K
|
Temperaturkoeffizient von X, IF = 100 mA Temperature
coefficient of X, IF = 100 mA
|
TCA,
|
+ 0.3
|
nm/K
|
Gruppierung der Strahlstarke I. in Achsrichtung gemessen
bei einem Raumwinkel S2 = 0.001 sr Grouping of radiant intensity le
in axial direction at a solid angle of SI = 0.001 sr
Bezeichnung Description
|
Symbol Symbol
|
Wert Value
|
Einheit Unit
|
|
|
LD 274
|
LD 274-21)
|
LD 274-3
|
|
Strahlstarke
|
Ie min
|
50
|
50
|
80
|
mW/sr
|
Radiant intensity
|
Ie max
|
--
|
100
|
--
|
mW/sr
|
IF = 100 mA, tp = 20 ms
|
|
|
|
|
|
Strahlstarke
|
|
|
|
|
|
Radiant intensity
|
|
|
|
|
|
IF = 1 A, tp = 100 45
|
le tYP.
|
350
|
600
|
800
|
mW/sr
|
1) Nur auf Anfrage lieferbar.
1) Available only on request.
SIEMENS
Relative Irel=f
100
Irel 80
60 40 20 0
|
spectral emission
(X)
OH 001938
|
Radiant intensity Single pulse,
102
|
tp =
|
f
|
(IF)
OHR01038
|
IF =f (TA) 120
F mA
100
80 60 40 20 0
|
Max. permissible
forward current
0HR00883
|
Ie 100 mA 20 j.ts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ie (100
|
mA) 101 10°
10
10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RthjA
|
450
|
K/W
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
880
920 960
|
1000
|
nm 1060
A
|
10 1
|
0° A
|
101
|
0 20 40 60 80 100 °C 120
TA
|
|
CIF
|
Forward current
IF = f (VF), single pulse tp = 20 las
10 1 0HR01041
IF A
10°
10-1
102
15 2 25 3 35 4 V 4 5
VF
Permissible pulse handling capability IF =f
(t), Tc < 25 °C,
duty cycle D = parameter
104
IF mA
5
5
102
10-5 101 10-3 10-2
101 10° 101 8102
0HR00860
max.
YP.
1
Radiation characteristics, Ire! =f
((p)
40°
0°
10°
1.0
0.8
0.6
0.4
20°
40°
60°
80°
100° 120°
50°
Emu Emu NNE; Non Non Nom
IIIIIIII
111111 1/111/11
D = 0 005
I
161E1111111111111111111
PI nil 0 02
hi& 0 05
II.kIL MEM MEM MEM NMI EM 111:41 Man
NM
· ·Il 111 · ·Il
· ·Il · ·Il · ·
111 %V111 ·111111
0.2
Mk MI
MI11111111111
1111111111115al 1111111111 111111
1111 111 1:1 11
11111111111110
IN
|