Section 6.08 Conclusion
La modélisation est un exercice complexe et
risqué. La diversité des modèles et les divergences
d'approches montrent que le sujet reste largement ouvert. Aussi, faut-il dans
le choix d'un modèle, considérer la maîtrise des
paramètres d'entrée et la possibilité de produire des
résultats vraisemblables et conformes à la réalité
de terrain. A l'heure actuelle, la grande majorité des modèles
sont des `boîtes noires', difficiles à pénétrer et
d'appropriation très contraignante. Le modèle CASS utilisé
dans cette partie du travail, a l'avantage d'être transparent et dispose
d'un paramétrage adapté pour les savanes et ses processus.
Les résultats obtenus montrent qu'au niveau des
écosystèmes de savanes d'importantes modifications peuvent
subvenir soit à cause de facteurs naturels ou humains. En l'absence de
perturbations humaines, les formations végétales
dégradées ont tendance à se reconstituer. Le but de
l'aménagement forestier est justement d'équilibrer les
prélèvements avec la capacité des
écosystèmes à se reconstituer. Les facteurs humains
influent sur les stocks de biomasse différemment selon la nature de la
perturbation et de son amplitude. Nous avons testé les
conséquences de plusieurs activités humaines (feu, collecte de
bois, pâturage, abandon/jachère, plantation etc.). Il
apparaît selon les résultats des simulations que les
écosystèmes de savane sont très sensibles (réaction
rapide après le passage d'un feu ou des coupes à blanc) et les
délais de reconstitution peuvent parfois prendre beaucoup de temps (au
moins 25 ans). Le suivi dans la modélisation des autres
réservoirs de carbone (litière et carbone du sol) montre que les
modifications de la végétation influent directement sur ces
réservoirs, même si les modifications sont plus lentes que celles
de la biomasse sur pied. Ainsi, tout effort de conservation des formations
ligneuses a un effet d'entraînement sur l'amélioration des stocks
de carbone des autres réservoirs.
Toutefois, pour introduire les variations entre les
différentes formations de savane, dont le concept est unifié dans
le modèle, nous avons procédé à la modification des
paramètres de base (PPN et allocation feuilles, branches, racines). Les
simulations proposées dans cette partie sont par conséquent des
scénarios vraisemblables selon les activités en cours dans les
savanes. Cependant, les dynamiques futures du climat, les changements de
précipitations, de température, de concentration de CO2 etc.,
peuvent affecter significativement la fixation du CO2 atmosphérique et
les processus de décomposition des plantes entraînant une
libération de GES. Ces nouvelles conditions écologiques sont en
prendre en compte dans le paramétrage du modèle.
Bibliographie
Adams, A., White, A., Lenton T.M. 2004. An analysis of some
diverse approaches to modelling terrestrial net primary productivity.
Ecological Modelling (177):353-391.
Aber, J.D., Reich, P.B., Goulden M.l. 1996. Extrapolating leaf
CO2 exchange to the canopy: a generalized model of forest photosynthesis
validated by eddy correlation. Oecologia (106): 257-265
Archer, S., Boutton, T.W., McMurtry, C. R., 2004. Carbon and
Nitrogen Accumulation in a Savanna Landscape: Field and Modeling Perspectives.
In: M-Shiyomi (Editor), Global Environmental Change in the Ocean and on Land.
TERRAPUB, pp. 359-373.
Barbosa, R.I., Fearnside P.M. 2005. Above-ground biomass and
the fate of carbon after burning in the savannas of Roraima, Brazilian
Amazonia. Forest Ecology and Management, In Press, 22 p.
Baron, C., Perez, P., Maraux F., 1996. SARRA: Système
d'Analyse Régionale des Risques Agroclimatiques. Module SARRABIL: bilan
hydrique à la parcelle. Analyses comparatives des bilans annuels ou
pluriannuels. Analyses des risques climatiques. Guide d'utilisation, CIRAD-CA,
Montpellier, 32 p.
Batjes N.H. 2003. Estimation of soil carbon gains upon
improved management within croplands and grasslands of Africa Environment,
Development and Sustainability (6): 133-143,.
Brown S., 1997. Estimating Biomass and Biomass Change of
Tropical Forests: a Primer. (FAO Forestry Paper -134). FAO - Food and
Agriculture Organization of the United Nations, Roma, 48 p.
Elberling, B., Touré, A., Rasmussen K. 2002. Changes in
soil organic matter following groundnut-millet cropping at three locations in
semi-arid Senegal, West Africa. Agriculture Ecosystems & Environment (96):
37-47.
Farage, P.K., Ardo, J., Olsson, L., Rienzi, E.A., Ball, A.S.,
Pretty J.N. 2007. The potential for soil carbon sequestration in three tropical
dryland farming systems of Africa and Latin America: A modelling approach. Soil
and Tillage Research ( 94):457-472.
Fearnside P.M. 2000. Global warming and tropical land-use
change: greenhouse gas emission from biomass burning decomposition and soils in
forest conversion, shifting cultivation and secondary vegetation. Climatic
Change (46):115-148.
Giese, L.A.B., Aust, W.M., Kolka, R.K., Trettin C.C. 2003.
Biomass and carbon pools of
disturbed riparian forests. Forest Ecology and Management,
180:493-508.
Gray K.M., 2005. Changing soil degradation trends in Senegal with
carbon sequestration
payments. Monograph, Montana State University, Montana.
Grepperud S. 1996. Population Pressure and Land Degradation: The
Case of Ethiopia. Journal of Environmental Economics and Management
(30):18-33.
Hary, I., Schwartz, H-J., Pielert, V.H.C., Mosler C. 1996. Land
degradation in African pastoral systems and the destocking controversy.
Ecological Modelling (86):227-233.
Hashimotio, T., Kojima, K., Tange, T., Sasaki S. 2000. Changes
in carbon storage in fallow forests in the tropical lowlands of Borneo. Forest
Ecology and Management, 126:331-337.
Haxeltine, A., Prentice I.C. 1996a. BIOME3: an equilibrium
terrestrial biosphere model based on ecophysiological constraints, resource
availability and competition among plant functional types. Global
Biogeochemical Cycles, 10 (4):693-709.
Haxeltine, A., Prentice I.C. 1996b. A general model for the light
use efficiency of primary production. . Functional Ecology, 10:551-561.
IPCC, 2003. Good Practice Guidance for Land Use, Land-Use Change
and Forestry. Penman J., Kruger D., Galbally I., Hiraishi T., Nyenzi B.,
Emmanuel S., Buendia L.,
Hoppaus R., Martinsen T., Meijer J., Miwa K., and Tanabe K.
(Eds). Institute for Global Environmental Strategies, Kanagawa, Japan.
King, A.W., Post, W.M., Wullshleger S.D. 1997. . The potential
response of terrestrial carbon storage to change in climate and atmospheric
CO2. Climate Change, 35:199- 227.
Kuhlbusch, T.A.J., Crutzen P.J. 1995. Towards a global
estimate of black carbon in residues of vegetation fires representing a sink of
atmospheric CO2 and a source of CO2. Global Biogeochemical Cycles, 9
(4):491-501.
Lambin, E., F., Geist, H.J., Lepers E. 2003. Dynamics of land
use and land cover change in tropical regions. Annual Reviews of
Environmental Resources (28):205-241.
Landsberg, J.J., Waring R.H. 1997. A generalised model of
forest productivity using simplified concepts of radiation use efficiency,
carbon balance and partitioning Forest Ecology Management, 95:209-228.
Leith H., 1975. Modeling the primary productivity of the world.
In: Leith, et al. (Editor), Primary Productivity of the Biosphere. .
Springer-Verlag, New York.
Lenton T.M. 2000. Land and ocean carbon cycle feedback effects on
global warming in a simple Earth system model. Tellus, 52B:1159-1188.
Lufafa, A., Bolte, J., Wright, D., Khouma, M., Diedhiou, I.,
Dick, R.P., Kizito, F., Dossa, E., Noller J.S. 2008. Regional carbon stocks and
dynamics in native woody shrub communities of Senegal's Peanut Basin.
Agriculture, Ecosystems and Environment (In press).
Manlay, R.J., Ickowicz, A., Masse, D., Floret, C., Richard,
D., Feller C. 2004. Spatial carbon, nitrogen and phosphorus budget of a village
in the West African savanna-I. Element pools and structure of a mixed-farming
system. Agricultural Systems (79):55-81.
Mbow, C., Goita, K., Bénié G.B. 2004. Spectral
indices and fire behavior simulation for fire risk assessment in savanna
ecosystems. Remote Sensing of Environment (91):1-13.
Mbow, C., Nielsen, T.T., Rasmussen K. 2000. Savanna Fires in
East-Central Senegal: Distribution Patterns, Resource Management and
Perceptions. Human Ecology, 28 (4):561-583.
Mbow, C., Sambou, B., Ba, A.T., Goudiaby A. 2003. Vegetation
and fire readiness in main morphological units of Niokolo Koba National Park
(Southeast Senegal). Danish Journal of Geography, 103 (1):55-62.
Mbow, C., Mertz, O., Diouf, A., Rasmussen, K., Reenberg, A.,
2008. The history of environmental change and adaptation in eastern
Saloum-Senegal - driving forces and perceptions. Journal of Arid Environment,
64: 210-221.
Monserud R.A. 2003. Evaluating forest models in a sustainable
forest management context. FBMIS, 1:22-47.
Moura-Costa, P., Stuart M., 1999. Issues related to monitoring,
verification and certification of forestry-based carbon offset projects. In:
W.F.A. Conference, et al. (Editor).
Nielsen, T.T., Rasmussen, K., Mbow, C., Touré A. 2003. The
fire regime of Senegal and its determinants. Danish Journal of Geography, 103
(1):43-53.
Nsabimana, D., Klemedtson, L., Kaplin, B.A., Wallin G. 2008.
Soil carbon and nutrient accumulation under forest plantations in southern
Rwanda. African Journal of Environmental Science and Technology, 2
(6):142-149.
Polglase, P.J, Wang Y.P. 1992. Potential CO2-enhanced Carbon
Storage by the Terrestrial Biosphere Australian Journal of Botany,
40:641-656.
Post, W.M., King, A.W., Wullshleger S.D. 1997. Historical
variations in terrestrial biospheric carbon storage. Global Biogeochemical
Cycles, 11 (1 ):99-109.
Prentice, C., Cramer, W., Harrison, S.P., Leemans, R.,
Monserud, R.A., Solomon A.M. 1992. A global biome model based on plant
physiology and dominance, soil properties and climate Journal of Biogeography,
19:117-134.
Ravindranath, N.H., Sudha, P, Rao S. 2001. Forestry for
sustainable biomass production and carbon sequestration in India. Mitigation
and Adaptation Strategies for Global Change (6):233-256.
Reenberg, A., Mbow, C., Diallo B., 2003. Temporal and spatial
diversity of Sudano-Sahelian landscapes: Land use and land cover dynamics in
forest reserves and their margins. In: D.A. Wardell, et al. (Editor),
Negotiated frontiers in Sudano-Sahelian landscapes Implication for natural
resource management strategies. Sahel-Sudan Environmental Research Initiative
(SEREIN), Denmark, pp. 137-161.
Ribot J., 1998. Decentralization and participation in Sahelian
Forestry: Legal instruments of central political-administrative control,
Harvard Center for Population and Development Studies. Cambridge, 47 p.
Ribot J., 2002. African Decentralization. Local Actors, Powers
and Accountability, United Nations Research Institute for Social Development.
Democracy, Governance and Human Rights Paper Number 8, Geneva.
Riedacker A., 2004. Changements Climatiques et Forêts.
SILVA, RIAT, 231 p.
Rosenberg, N.J., Blad, B.L., Verma S.B., 1983. Microclimate.
The Biological Environment. Chapter 8-Field Photosynthesis, respiration, and
the carbon balance (pp 288-390). John Willey and Sons, New
York-Chichester-Brisbane-Toronto-Singapore, 495 p.
Roxburgh S., 2004. The CASS Terrestrial Carbon Cycle Model,
V.1.2. User Guide and Tutorial exercises, CRC for Greenhouse Accounting, GPO
Box 475. Canberra ACT 2601, Australia.
Saarnak, C., Nielsen, T.T., Mbow C. 2003. A local-scale study
of the trace gas emissions from vegetation burning around the village of Dalun,
Ghana, with respect to seasonal vegetation changes and burning practices.
Climate Change (56):321-338.
Sambou B., 2004. Evaluation de l'état, de la dynamique
et des tendances évolutives de la flore et de la
végétation ligneuse dans les domaines soudanien et
sub-guinéen au Sénégal. Doctorat d'Etat, Université
Cheikh Anta Diop de Dakar (UCAD), Dakar, 231 p.
Svirezhev, Y.M., Bloh, v. W. 1997. Climate, vegetation and global
carbon cycle: the simplest zero-dimensional model. Ecological Modeling,
101:79-95.
Svirezhev, Y.M., Bloh, v. W. 1998. A zero-dimensional
climate-vegetation model containing global carbon and hydrological cycle.
Ecological Modeling, 106:119-127.
Takimoto, A., Nair, P.K.R., Nair V.D. 2008. Carbon stock and
sequestration potential of traditional and improved agroforestry systems in the
West African Sahel. Agriculture, Ecosystems and Environment (125):159-166.
Tappan, G.G., Sall, M., Wood, E.C., Cushing M. 2004. Ecoregions
and land cover trends in Senegal. Journal of Arid Environments (59):427-462.
Tieszen, L.L., Tappan, G.G, Touré A. 2004. Sequestration
of carbon in soil organic matter in Senegal: an overview. Journal of Arid
Environments (59):409-425.
Touré A., 2002. Contribution à l'étude de
l'évolution des réservoirs de carbone en zone nordsoudanienne au
Sénégal., Ecole Polytechnique Fédérale de Lausane
(EPFL), 158 p.
Tschakert, P., Khouma, M., Sène M. 2004. Biophysical
potential for soil carbon sequestration in agricultural systems of the Old
Peanut Basin of Senegal. Journal of Arid Environments (59):511-533.
Vagen, T-G., Lal, R., Singh B.R. 2005. Soil carbon sequestration
in Sub-Saharan Africa: A Review. Land Degradation and Development
(16):53-71.
Waring, R.H., Running S.W., 1998. Forest Ecosystems. Analysis at
multiple scales. Academic Press, California, 370 p.
Wood, E.C, Tappan, G.G, Hadj A. 2004. Understanding the drivers
of agricultural land use change in south-central Senegal. Journal of Arid
Environments (59):565-582.
Woomer, P.L., Tieszen, L.L., Tschakert, P., Parton, W.J.,
Touré A., 2001. Landscape carbon sampling and biogeochimical modeling. A
two-week skills development workshop conducted in Senegal., USGS, CSE.
Woomer, P.L., Touré, A., Sall M. 2004. Carbon stocks in
Senegal's Sahel Transition Zone. Journal of Arid Environments (59):499-510.
Zhang, Y.H., Wooster, M.J., Tutubalina, O., Perry G.L.W. 2003.
Monthly burned area and forest fire carbon emission estimates for the Russian
Federation from SPOT VGT. Remote Sensing of Environment (87):1-15.
|
|