WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Modélisation en risques de crédit : dérivés de crédit et calibration de modèles structurels

( Télécharger le fichier original )
par Mohamed Naji JELLALI
Université de Sfax-Tunisie - MASTÈRE 2011
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

ANNEXE3

et d'âpres le principe de réflexion :

car W est un e -mouvement brownien. Ceci achève la démonstration

Bibliographie

Vivien BRUNEL- Benoît ROGERT-version: September 23, 2009

Risque de crédit-Ecole Nationale des Ponts et Chausses

Couverture des risques dans les marchés financiers

Nicole El Karoui Ecole Polytechnique, CMAP, 91128 Palaiseau Cedex

Aurelien ALFONSI, Thèse de doctorat ,L'ECOLE NATIONALE DES PONTS ET CHAUSSÉES,

David KURTZ & Thomas B. PIGNARD,Modélisation du risque de crédit, DEA de Statistique et Modèles

aléatoires en économie et finance Université Paris 7 -- Université Paris 1

[1] Aven (T.). A theorem for determining the compensator of a counting process. Scandinavian Journal of Statistics, 12(1), pp. 69-72 (1985).

[2] Bielecki (T. R.), Rutkowski (M.). Credit Risk : Modeling, Valuation and Hedging. Springer (2002).

[3] Bomfim (A. N.). Credit Derivatives and Their Potential to Synthesize Riskless Assets. The Journal of Fixed Income December 2002, Vol. 12, No. 3, pp. 6-16 (2002).

[4] Crosbie (P. J.). Modeling Default Risk. KMV Corporation, San Francisco, www.kmv.com (1997).

[5] Dellacherie (C.) Meyer (P.A.). Probabilités et potentiels, chapitres I `a IV, Hermann, Paris (1975).

[6] Duffie (D.), Filipovi_c (D.) & Schachermayer (W.). Affine Processes and Applications in Finance. Annals of Applied Probability, Vol.13, No 3, August 2003 (2003).

[7] Duffie (D.). A Short Course on Credit Risk Modeling with Affine Processes. Working Paper. Stanford University and Scuola Normale Superior (2002). Disponible sur http ://fibonacci.dm.unipi.it/ finance/duffie notes.pdf.

[8] Duffie (D.), Lando (D.). The Term Structure of Credit Spreads with Incomplete Accounting Information. Econometrica 69, pp. 633-664 (2001).

[9] Duffie (D.), Pan (J.), Singleton (K.). Transform Analysis and Asset Pricing for Affine Jump Diffusions. Econometrica, Vol. 68, pp. 1343-1376 (2000).

[10] Duffie (D.), Singleton (K. J.). Modeling Term Structure of Defaultable Bonds. The Review of Financial Studies Special 1999 Vol. 12, No. 4, pp. 687-720 (1999).

[11] Duffie (D.), Singleton (K. J.). Credit Risk . Princeton University Press (2003).

[12] _Emery (M.). Classical Probability Theory : An Outline of Stochastic Integrals and Diffusions. Quantum Probability Communications, QP-PQ, Vol. XI,World Scientific (1999). Disponible sur http :// www-irma.u-strasbg.fr

[13] El Karoui (N.) & Mazliak (L.). Backward Stochastic Differential Equations. Pitman Research Notes in Mathematic Series (1997).

[14] Geske (R.). The valuation of compound options. J. Finan. Econom. 7, pp. 63-81 (1979).

[15] Hull (J. C.), Nelken (I.), White (A.). Merton's Model, Credit Risk, and Volatility Skews. Working Paper. University of Toronto (2003).

[16] ISDA 2003 Credit Derivatives Definitions. www.isda.org.

[17] Krylov (N. V.). Introduction to the theory of diffusion processes. American Mathematical Society, Providence.

[18] Laurent (J.-P.). I will survive. Risk, June 2003. www.risk.net (2003).

[19] Leland (H. E.). Corporate debt value, bond covenants, and optimal capitalstructure. J.Finance 49, pp. 1213-1252.

[20] Longstaff (F. A.), Schwartz (E. S.). A simple approach to valuing risky fixed and floating rate debt. J. Finance 50, pp. 789-819 (1995).

[21] Merton (R. C.). On the pricing of corporate debt :The risk structure of interest rates. J.Finance 29, pp. 449-470 (1974).

[22] Pan (G.). Equity to credit pricing. Risk, November 2001. www.risk.net (2001).

[23] Protter (P.). Stochastic Integration and Differentiel Equations. Springer (1990).

[24] Pye (G.). Gauging the Default Premium. Financial Analyst's Journal, January-February, pp.49-50 (1974).

[25] Credit Derivatives Survey. Risk, February 2003. www.risk.net (2003).

[26] Roncalli (T.). La gestion des risques financiers. Cours du DESS de Gestion des risques et des actifs de l'universit'e d' Evry. gro.creditlyonnais.fr.

[27] Rudin (W.). Real and Complex Analysis. McGraw-Hill, New York, third edition(1987).

[28] Schonb
·ucher (P.), Rogge (E.). Modeling Dynamic Portfolio Credit Risk.Working Paper. ETH Z·urich (2002). Disponible sur www.schonbucher.de.

[29] Schonb
·ucher (P.), Schubert (D.). Copula-Dependent Default Risk in Intensity Models. Working Paper. University of Bonn (2000). Disponible sur www.schonbucher.de.

[30] Vasicek (O.). Credit Valuation. Working Paper. KMV Corporation. www.kmv.com (1984). Merton R. (1974). On the pricing of corporate debt : The risk structure of interest

rates, Journal of Finance, Vol. 29, pp. 449-470.

Black F., Cox J. C. (1976), Valuing corporate securities : Some e_ects of bond indenture provisions, Journal

of Finance, Vol. 31, pp. 351-367..

Laure Coutin, Laboratoire de Probabilités-Statistiques, Université Paul Sabatier Toulouse,

Jean-Claude Gabillon, Groupe de Finance, ESC Toulouse,

Laurent Germain, Groupe de Finance, ESC Toulouse,

Monique Pontier, Laboratoire de Probabilités-Statistiques, Université Paul Sabatier Toulouse,

Clémentine Prieur, Laboratoire de Probabilités-Statistiques, Université Paul Sabatier Toulouse,

Anne Vanhems, Groupe de Finance, ESC Toulouse

Correspondant du projet: Laurent Germain, ESC Toulouse.

précédent sommaire






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Entre deux mots il faut choisir le moindre"   Paul Valery