Bioconversion enzymatique des composés phénoliques des effluents issus de l'extraction d'huile d'olive: une voie prometteuse de valorisation par la production de l'hydroxytyrosol naturel( Télécharger le fichier original )par Manel HAMZA KARRAY Université de Sfax école nationale d'ingénieurs de Sfax - Doctorat en biologie 2013 |
Conclusion et Perspectivesdes extraits de margine a été observé suite à la bioconversion des composés phénoliques des margines par les deux formes d'enzyme avec un taux de bioconversion plus faible observé avec l'enzyme immobilisée qui diminue de 50%. L'étude comparative de la bioconversion des composés phénoliques des margines par différentes enzymes commerciales et pures a indiqué que la préparation enzymatique d'A. niger a le même effet que le viscozyme et la â-glucosidase purifiée pour la libération de HT. L'estérase pure n'a aucun effet sur cette finalité. La bioconversion à grande échelle a été conduite pour biotransformer les composés phénoliques de 40 litres de margine de Nord et 15 litres de margine MSP et MCC de Sfax. Ceci a permis l'amélioration de la concentration de l'hydroxytyrosol de 2,70 ; 3,61 et 1,77 fois que le contrôle dans le cas de margine Nord, MSP et MCC respectivement. Le projet enzymatique de pré-traitement peut s'avérer utile non seulement pour les applications de laboratoire, mais aussi pour étendre la capacité d'application à l'echelle pilote pour le recyclage des margines. L'application des procédés de filtration membranaire permet la récupération de quatre grandes fractions liquides dans différents pourcentages volumétriques, qui sont tous adaptés pour un usage commercial en agroalimentaire, nutritionnel et cosmétique. Dans le concentrat ultime obtenu seulement 24% d'hydroxytyrosol ont été recupéré. De plus, le nouveau produit obtenu obéi aux besoins alimentaires; voir que son pH est légèrement acide, elle est concentrée en hydroxytyrosol et le sucre réducteur, il contient des minéraux bénéfiques pour la santé et ne contient pas de métaux lourds ou de produits chimiques. Pour la poursuite de ce travail, plusieurs autres axes de recherche pourraient être développés : - Pour une application industrielle l'enrichissement les
margines en - Pour conserver les activités de l'hydroxytyrsol on doit protéger la fonction ortho-diphénol contre l'oxydation. Pour cela, il est nécessaire de développer une méthode biologique permettant d'acétyler les différents groupements hydroxyles de l'hydroxytyrosol. - Pour valoriser la méthode de production de l'hydroxytyrol nous proposons d'étudier son application dans plusieurs secteurs industriels tels que l'industrie Conclusion et Perspectivesagroalimentaire et l'industrie cosmétique. L'hydroxytyrosol pourrait être testé dans des jus, des huiles alimentaires et dans des produits à application cutanné. 153 Références bibliographiques Références bibliographiques A Abid, N., & Sayadi, S. (2006). Detrimental effects of olive mill wastewater on the composting process of agricultural waste. Waste Manag. 26 (10): 1099-1107. Aguilò-Aguayo, I., Soliva-Fortuny, R., & Mart?n-Belloso, O. (2010).Color and viscosity of water melon juice treated by high-intensity pulsed electric fields or heat. Innovative Food Science and Emerging Technologies. 11: 299-305. Alan, L., & Miller, N. D. (1996). Antioxidant flavonoids : Structure, function and clinical usage. Alt Med Rev. 1(2): 103-111. Allouche N., Damak A., Ellouz R., & Sayadi S. (2004 b). Use of whole cells of Pseudomonas aeruginosa for synthesis of the antioxidant hydroxytyrosol via conversion of tyrosol. App. Environ. Microb. 70: 2105-2109. Allouche, N., Fki, I., & Sayadi, S. (2004 a) Toward a high yield recovery of antioxidants and purified hydroxytyrosol from olive mill wastewaters. J Agric Food Chem. 52: 267-73. Al-Zuhair S. (2008). The effect of crystallinity of cellulose on the rate of reducing sugars production by heterogeneous enzymatic hydrolysis. Biores. Technol. 99: 4078-4085. Amiot M. J., Fleuriet A., & Macheix J. J. (1986) Importance and evolution of phenolic compounds in olive during growth and maturation. J. Agric. Food Chem. 34: 823-826. Amiot, M.J., Fleuriet, A., & Macheix, J.J. (1989). Accumulation of oleuropein derivatives during Olive maturation. Phytochemistry. 28: 67-69. Amirante, P., Di Renzo, G. C., Di Giovacchino, L., Bianchi, B., & Catalano, P. (1993). Evolution technologique des installations d'extraction de l'huile d'olive. Olivae. 48: 43-53. Références bibliographiques Anne, K. (2011). Magnesium and calcium in drinking water and heart diseases. In J. Nriagu (Ed.), Encyclopedia of environmental health, 535-544, USA: Elsevier. Annunziato, M.E; Mohaney, R. R; Mudgett. (1986), Production of á-galactosidase from Aspergillus oryzae grown in solid- state culture. J. Food. Sci. 51 : 1370-1371. Asther, M., Haon, M., Roussos, S., Record, E., Michel Delattre, M., Lesage-Meessen, L., Labat, M., & Asther, M. (2002) Feruloyl esterase from Aspergillus niger a comparison of the production in solid state and submerged fermentation. Process Biochemistry. 38: 685-691 Aziz, N.H., Farag, S.E., Mousa, L.A., & Abo-Zaid, M.A. (1998). Comparative antibacterial and antifungal effects of some phenolic compounds. Microbios 93: 43-54. B Bai, Z.W., Zhou, Y.K. (2004) A novel enzyme support derived from aminated silica gel and polysuccinimide: preparation and application for the immobilization of porcine pancreatic lipase. Reactive & Functional Polymers. 59: 93-98. Bailey, M.J. & Nevalainen, K.M.H. (1981) Introduction, isolation and testing of stable Trichoderma reesei mutants with improved production of solubilizing cellulase. Enzyme Microb Technol. 3:153-157. Bailey, M.J., Biely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23: 257-270. Balice, V., & Cera, O. (1984). Acidic phenolic fraction of the juice of olives determined by gas chromatographic method. Grasas Aceite. 25: 178-180; Balice, V., Carveri, C., Cera, O., Rindone, B. (1988). The fate of tannin-like compounds from olive mill effluents in biological treatments. In Proceedings of the fifth International Symposium on anaerobic digestion. Academic Press, New York. 275. Barbagallo, R. N., Spagna, G., Palmeri, R., Restuccia, C., & Giudici, P. (2004) Selection, characterization and comparison of 3-glucosidase from mould and yeasts employable for enological applications. Enzyme Microb. Tech. 35: 58-66. Barhini, P., Montebove, F., Ruzzi, M. & Scheisser, A. (1998). Optimal conditions for bioconversion of ferulic acid into vanillic acid by Pseudomonas fluorescens BF13 cells. Appl. Microbiol. Biotechnol. 49: 309-314. Barlow, S. M. (1990). Toxicological aspect of antioxidants used as food additives. In : food antioxidants. Ed: Hudson B. J. F., Elsevier, Amsterdam. Références bibliographiques Ben Sassi, A., Boularbah, A., Jaouad, A., Walker, G., Boussaid, A. (2006). A comparison of Olive oil Mill Wastewaters (OMW) from three different processes in Morocco. Process Biochem. 41(1): 74-78. Bendini, A., Cerretani, L., Carrasco-Pancorbo, A., Gómez-Caravaca, A.-M., Segura, Carretero, A., Fernández-Gutiérrez, A. & Lercker, G. (2007) Phenolic Molecules in Virgin Olive Oils: a Survey of Their Sensory Properties, Health Effects, Antioxidant Activity and Analytical Methods. An Overview of the Last Decade. Review Molecules, 12: 1679-1719. Benoit, I., Navarro, D., Marnet, N., Rakotomanomana, N., Lesage-Meessen, L., Sigoillot, J.C., Asthera, M. (2006). Feruloyl esterases as a tool for the release of phenolic compounds from agro-industrial by-products. Carbohyd Resea. 341: 1820-1827. Berbee, M.L. & Taylor, JW. (1993). Ascomycete relationships: dating the origin of asexual lineages with 18S ribosomal RNA gene sequence data. In D. R. Reynolds, and J. W. Taylor (ed.), The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Wallingford, United Kingdom. 67-78. Berndt, L., Fiestas Ros de Ursinos, J.A., Geissen, K., Kachouri, M., Xanthouis, D. (1996). Les expériences méditerranéennes dans le traitement des eaux résiduaires des huileries d'olives, GTZ, Tunis. Berset, C., & Cuvelier, M. E. (1995). Evaluer et prévenir l'oxydation des lipides. La bretagne Agroalimentaire. 1: 4-13. Bezançon, P., Debosque S., Delpeuch F., Descomps, B., Gerber, M., Léger, C. L., Padilla, M., et Puygrenier, M. (2000). Alimentation méditerranéenne et santé : actualités et perspectives. 170 pp. Editions John Libbey Eurotext, Montrouge, France. Bhanja, T., Kumari, A., Banerjee, R. (2009). Enrichment of phenolics and free radical scavenging property of wheat koji prepared with two filamentous fungi. Food Chem. 114: 806-812. Bhuiyan, M.A.R., Hoque, M.Z., Hossain, S.J. (2009) Free Radical Scavenging Activities of Zizyphus mauritiana. World J. Agri Sci.5 (3): 318-322. Bianco, A. D. & Uccella, N. ( 2000). Biophenolic componts of olives. Food Res. Int. 33: 475485. Bianco, A. D., Mozzei, R. A., Melchioni, C., Romeo, G., Scarpati, M. L., Soriero, A. & Vccella, N. (1998). Microcomponents of olive oil-III. Glucosides of 2(3,4-dihydroxyphenylethanol. Food Chem. 63: 461-464. Références bibliographiques Bianco, A., Buiarelli, F., Cartoni, G., Coccioli, F., Jasionowska, R., Margherita, P. (2003). Analysis by liquid chromatography tandem mass spectrometry of biophenolic compounds in olives and vegetation waters. Part I. J Separ Sci. 26: 409-416. Bisignano, G., Tomaino, A., Lo Cascio, R., Crisafi, G., Uccella, N. & Saija, A. (1999). On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol. J. Pharm. Pharmacol. 51: 971-974. Bitonti, M. B., Chiappetta, A., Innocent, A.M., Muzzalupo, I. & Uccella, N. (2000). Biophenol functionality and distribution in Olea Europa L. Drupes. Olivo & Olio. 3(1/2): 20-29. Bonnin, E, Saulnier, L, Brunel, M, Marot, C, Lesage-Meessen, L, Asther, M. (2002) Release of ferulic acid from agroindustrial by-products by the cell wall-degrading enzymes produced by Aspergillus niger I-1472. Enz. Microbiol Technol. 31: 1000-1005. Bonnin, E., Brunel, M., Gouy, Y., Lesage-Meessen, L., Asther, M. & Thibault, J.-F. (2001) Aspergillus niger I-1472 and Pycnoporus cinnabarinus MUCL39533, selected for the biotransformation of ferulic acid to vanillin, are also able to produce cell wall polysaccharide-degrading enzymes and feruloyl esterases. Enzyme Microb. Technol. 28: 70-80. Borja, R., Martin, A., Maestro, R., Alba, J., Fiestas, J. A. (1992). Enhancement of the anaerobic digestion of OMW by the removal of phenolic inhibitors. Process Biochem. 27: 231-237. Bothast, R. J., & Saha, B. C. (1997). Ethanol production from agricultural biomass substrat. Adv. Appl. Microbiol. 44: 261-286. Bouallagui, Z. & Sayadi, S. (2006). Production of high hydroxytyrosol yields via tyrosol conversion by Pseudomonas aeruginosa immobilized Resting Cells. J. Agric. Food Chem. 54: 9906-9911. Bouaziz, M., Grayer, R. J., Simmonds, M. S. J., Damak, M. & Sayadi, S. (2005). Identification and Antioxidant Potential of Flavonoids and Low Molecular Weight Phenols in Olive Cultivar Chemlali Growing in Tunisia. J. Agric. Food Chem. 53(2): 236-241. Bourquelot, E., & J. Vintilesco. (1908). Sur l'oleuropéine, nouveau principe de nature glucosidique retiré de l'Olivier (Olea europaea L.). C. R. Acad. Sci. 147: 533-535. Boussarsar H. (2008). Application de traitements thermique et enzymatique de solubilisation et saccharification de la fraction hémicellulosique en vue de la Références bibliographiques valorisation de la bagasse de canne à sucre. Thèse de l'université de Reims Champagne-Ardenne Bouzid, O., Navarro, D., Roche, M., Asther, M., Haon, M., Delattre, M., Lorquin, J., Labat, M., Marcel Asther, M. & Lesage-Meessen, L. (2005). Fungal enzymes as a powerful tool to release simple phenolic compounds from olive oil by-product. Process Biochemistry. 40 : 1855-1862. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248-254. Braham, M. (1997). Activité écophysiologique, état nutritif et croissance de l'Olivier soumis à une contrainte hydrique. Thèse de Doctorat, 1996 - 1997. Université de Gand - Belgique, p. 19 - 23. Brand, D., Pandey, A., Roussos, S. & Soccol, C.R. (2000). Biological detoxification of coffee husk by filamentous fungi using a solid state fermentation system. Enzyme Microb Technol. 27: 127-33. Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995) Use of a free radical method to evaluate antioxidant activity. Review article. LWT - Food Sci Technol. 28 (1): 25-30 Bravo, L. (1980). Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nut. Rev. 56: 317-333. Briante, R., La Cara, F., Febbraio, F., Barone, R., Piccialli, G., Carolla, R., Mainolfi, P., De Napoli, L., Patumi, M., Fontanazza, G. & Nucci, R. (2000). Hydrolysis of oleuropein by recombinant â-glycosidase from hyperthermophilic archaeon Sulfolobus solfataricus immobilised on chitosan matrix. J. Biotechnol. 77: 275-286 Briante, R., La Cara, F., Tonziello, M.P., Febbraio, F. & Nucci, R. (2001). Antioxidant activity of the main bioactive derivatives from oleuropein hydrolysis by hyperthermophilic beta-glycosidase. J. Agric. Food Chem. 49: 3198-3203. Briante, R., Patumi, M., Febbario, F., & Nucci, R. (2004). Production of highly purified hydroxytyrosol from Olea europaea leaf extract biotransformation by thermophilic beta-glycosidase. J. Biotechnol. 111(1): 67-77. Briante, R., Patumi, M., Limongelli, S., Febbraio, F., Vaccaro, C., Di Salle, A., La Cara, F., Nucci, R. (2002) Changes in phenolic and enzymatic activities content during fruit ripening in two Italian cultivars of Olea europaea L. Plant Science. 162: 791-/798. Références bibliographiques Brooks, S. J., Doyle, E. M., O'Connor, K. E. (2006) Tyrosol to hydroxytyrosol biotransformation by immobilized cell extracts of Pseudomonas putida F6. Enz. Microbial Tech. 39 : 191-196. Bruneton, J. (1999). Pharmacognosie, phytochimie et plantes médicinales. La Voisier TEC et DOC, Paris. 5ème édition. 250-270. Burkhaed, K. D., Peterson, S. W. & Bolen, P. L. (1994). Microbial hydroxylation. Hydroxylation of aniline by Aspergillus alliaceus, A. Albertensis and A. Terreus. J. Indus. Microbiol. 13: 233-237. C Cabello, L. & Fiestas Ros, J. A. (1981). Bassins d'évaporation. Actes séminaire international sur la valorisation des sous produits de l'olivier. FAO-UNDP, Tunisie. 81-92. Capasso, R. (1997). The chemistry, biotechnology and ecotoxicology of the polyphénols natyrally occurring in vegetable waste. Current Topics in Phytochem. 1: 145-156. Capasso, R., Cristinzio, G., Evidente, A. & Scognamiglio, F. (1992). Isolation, spectroscopy and selective phytotoxic effects of polyphenols from vegetable wastewaters. Phytochem. 31: 4125-4128. Capasso, R., Evidente, A., Avolio, S., Solla, F. (1999). A highly convenient synthesis of hydroxytyrosol and its recovery from agricultural waste waters. J. Agric. Food Chem. 47: 1745-1748. Capasso, R., Evidente, A., Cutignano, A., Vurro, M., Zonno, M.C., and Bottalico, A. (1996). Fusaric and 9, 10-dehydrofusaric acids and their methyl esters from Fusarium nygamai. Phytochem. 41: 1035-1039. Capasso, R., Evidente, A., Schivo, L., Orru, G., Marcialis, M., Cristinzio, G. (1995). Antibacterial polyphenols from olive mill wastewaters. J. Appl. Bacteriol. 79: 393398. Caputo, A.C., Scacchia, F., Pelagagge, P. M. (2003). Disposal of by-products in olive oil industry: waste-to-energy solutions. Appl Thermal Engin. 23: 197-214. Carluccio, M.A. ; Siculella, L., Ancora, M.A., Massaro, M., Scoditti, E., Storelli, C., Visioli, F., Distante, A. & De Caterina, R. (2003). Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: antiatherogenic properties of Mediterranean diet phytochemicals. Arterioscler. Thromb. Vasc. Biol. 23 : 622-629. Références bibliographiques Casalino, E., Calzaretti, G., Sbiano, C., Landriscina, V., Tecce, F. & Landriscina, C. (2002). Antioxidant effect of hydroxytyrosol and Mn+2 in liver of cadmium- intoxicated rats. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 133: 625-632. Castera-Rossignol, A. & Bosque, F. (1994). Nouvelle approche des antioxydants. O.C.L. 1: 131-143. Castilhoa, L. R., Medronhob, R. A. & Alvesa, T. L. M. (2000). Production and extraction of pectinases obtained by solid-state fermentation of agro-industrial residues with Aspergillus niger. Bioresour. Technol. 71: 45-50. Caturla, N. , Pérez-Fons, L., Estepa, A. & Micol, V. (2005) Differential effects of oleuropein, a biophenol from Olea europaea, on anionic and zwiterionic phospholipid model membranes. Chem Phys Lipids. 137: 2-17. Chakroun, H., Mechichi, T., Martinez, M-J., Dhouib, A., & Sayadi, S. (2010). Purification and characterization of a novel laccase from the ascomycete Trichoderma atroviride: Application on bioremediation of phenolic compounds. Process Biochem. 45: 507-513. Chamkha, M. (2001). Etude de métabolisme de composés aromatiques par des bactéries anaérobies isolées de margines d'olives et de tourteaux de karité. Thèse de l'université provence, Aix-Marseille I. Chang, M.-Y. & Juang, R.-S. (2007) «Use of chitosan-clay composite as immobilization support for improved activity and stability of â-glucosidase,» Biochem. Eng. J. (35) 1: 93-98. Chen, A. R. M. & Reese, P. B. (2002). Biotransformation of terpenes from Stemodia maritima by Aspergillus niger ATCC 9142. Phytochem. 59: 57-62. Cheryan M. (1986). Ultrafiltration handbook, Technomic Publishing Company, 369. Chimi, H., Sadik, A., Le Tutour, B., & Rahmani, M. (1988). Contribution à l'étude comparative des pouvoirs antioxidants dans l'huile d'olive du tyrosol, de l'hydroxytyrosol, de l'acide caféique, de l'oleuropeine et du B.H.T. Rev FR Transfus Immu. 35: 339-344. Chung, K. T., Wong, T. Y., Wei, C. I., Huang, Y. W. & Lin, Y. (1998). Tannins and human health: a review. Crit. Rev. Food Sci. Nutr. 38: 421-464. Références bibliographiques Ciafardini, G. & Zullo, B.A. (2002) Microbiological activity in stored olive oil. Inter. J. Food Microbiol. 75: 111-118. Ciafardini, G., Marsilio, V., Lanza, B. & Pozzi, N. (1994) Hydrolysis of oleuropein by Lactobacillus plantarum strains associated with olive fermentation. App Env Microbiol. 60 (11): 4142-4147. Clifford, M. N. & Scalbert, A. (2000). Ellagitannins, occurrence in foods, biovailability and cancer prevention. J. Food Sci. Agric. 80: 1118-1125. COI. (2000). Politiques oléicoles nationales, Tunisie E. 108/Doc. N°4, Réf. 13. Commission Regulation (EC) No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in food stuffs. Available from: < http://eur lex.europa.eu/ LexUriServ/ LexUriServ.do? uri=CELEX:02006R1881-20100701:EN:NOT> visited on December 26th, 2010. Coppen, P. P. (1989). The use of antioxidants. In : Rancidity in foods. Eds : Allen J. C. and Hamilton R. J. Elsevier, Amsterdam, 83-104. Cordova, J, Nemmaoui, M, Ismaïli-Alaoui, M, Morin, A, Roussos, S, Raimbault, M & Benjilali, B (1998). Lipase production by solid state fermentation of olive cake and sugar cane bagasse. J. Mol. Catalysis . 5: 75-78. Cote, G.L. & Tao, B.Y. (1990). Oligosaccharides synthesis by enzymatic transglycosylation. Glycoconjugate J. 7: 145-162. Crea, R. (2002) Method of obtaining a hydroxytyrosol-rich composition from vegetation water. Patent No. WO0218310. Crea, R. (2003) Hydroxytyrosol-rich composition from vegetation water and method of use thereof. Patent No. US2003108651. Cruz, R. & Park, Y.K. (1982) Production of fungal a-galactosidase and its application to the hydrolysis of galactooligosaccharides in soybean milk. J. Food Sci. 47: 1973-1975. Cuvelier, M. E., Berset, C. & Richard, H. (1990). Use of a new test for determining comprarative antioxidant activity of BHA, BHT, alpha and gamma tocopherols and extracts from rosemary and sage. Sci. Alim. 10: 795-806. D Da Re, V., Papinutti, L., Villalba, L., Forchiassin, F. & Levin, L. (2007). Preliminary studies on the biobleaching of loblolly pine Kraft pulp with Trametes trogii crude extracts. Enzyme Microb. Tech. doi:10.1016/j.enzmictec. 11.004. Références bibliographiques Day, A. J., Canada, F. J., Diaz, J. C., Kroon, P. A., Mclauchlan, W. R., Faulds, C. B., Plumb, G. W., Morgan, M. R. A. & Williamson, G. (2000). Dietary flavonoid and isoflavone glycosides are hydrolysed dy lactase site of lactase phlorizin hydrolase. FEBS Lett. 468: 166-170. De la Puerta, R., Ruiz-Gutierrez, V. & Hoult, J.R. (1999). Inhibition of leukocyte 5-lipoxygynase by phenolics from virgin olive oil. Biochem. Pharmacol. 57: 445-449. De Leonardis, A, Macciola, V, Lembo, G, Aretini, A, Nag, A. (2007). Studies on oxidative stabilisation of lard by natural antioxidants recovered from olive-oil mill wastewater. Food Chem. 100: 998-1004. De Marco, E., Savarese, M., Paduano, A., Sacchi, R. (2007). Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters. Food Chem. 104(2): 858-867. De Oliveira, B. H., Dos Santos, M. C. & Leal, P. C. (1999). Biotransformation of the diperpenoid, isosteviol, by Aspergillus niger, Penicillium chrysogenum and Rhizopus arrhizus. Phytochemistry. 51: 737-741. Defrance, L. & Jaffrin, M.Y. (1999) Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux: application to a membrane bioreactor used for wastewater treatment. J. Membrane Sci. 152: 203-210. Deiana, M., Aruoma, O.I., Bianchi, M.L., Spencer, J.P., Kaur, H., Halliwell, B., Aeschbach, R., Banni, S., Dessi, M.A., Corongiu, F.P. (1999). Inhibition of peroxynitrite dependent DNA base modification and tyrosine nitration by the extra virgin olive oil-derived antioxidant hydroxytyrosol. Free Radic. Biol. Med. 26: 762769. Della Greca, M., Previtera, L., Temessi, F., Carrelli, A. (2004). Low molecular-weight components of olive oil mill waste-waters. Phytochem Anal. 15: 184-188. Demirel, D., Ozdural, A.R., Mutlu, M. (2004) Preparation and characterization of magnetic duolite-polystyrene composite particles for enzyme immobilization. J. Food Eng. 62:203-208. Demyttenaere, J. C. R. & Willemen, H. M. (1998). Biotransformation of linalool to furanoid and pyranoid linalool oxides by Aspergillus niger. Phytochem. 47: 10291036. Références bibliographiques Dersoti, E. (1991) Trace elements, micronutrients, and free radicals, The Humana Press Inc. pp 62. Di Giovacchino, L. (1996). L'influence des systèmes d'extraction sur la qualité d'olive. Olivae. 63: 52-63. Donaghy, J.A., Bronnenmeier, K., Soto-Kelly, P.F., McKay, A.M. (2000). Purification and characterization of an extracellular feruloyl esterase from the thermophilic anaerobe Clostridium stercorarium. J Appl Microbiol. 88: 458- 466. Duarte, J. C. & Costa-Ferreira, M. (1994). Aspergilli and lignocellulosics: Enzymology and biotechnological applications. FEMS Microbiol. Rev. 13: 377-386. Duenas, M., Hernandez, T., & Estrella, I. (2007). Changes in the content of bioactive polyphenolic compounds of lentils by the action of exogenous enzymes. Effect on their antioxidant activity. Food Chem. 101: 90-97. Dursun, A. Y., Uslu, G., Cuci, Y. & Aksu, Z. (2003). Bioaccumulation of copper(II), lead(II) and chromium(VI) by growing Aspergillus niger. Process Biochem. 38: 16471651. E Edlin, D. A. N., Narbad; A., Dickinson, J. R. & Lloyds, D. (1995). The biotransformation of simple phenolic compounds by Brettanomyces anomalus. FEMS Microbiol. Lett. 125: 311-316. Eggert, C., Temp, U. & Eriksson, K.E.L. (1997). Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Lett. 407: 89-92. Ellouze, M., Aloui, F. & Sayadi, S. (2008). Detoxification of Tunisian landfill leachates by selected fungi. J. Hazard. Mater. 150: 642-648. Eriksson O.E. & Hawksworth D. L. (1993) Outline of the ascomycetes. Syst. Ascomycetum 12: 51-257. Espin, J.C., Soler-Rivas, C., Cantos, E., Tomàs-Barberàn, F.A. & Wichers, H.J. (2001). Synthesis of the antioxidant hydroxytyrosol using tyrosinase as biocatalyst. J. Agric. Food Chem. 49: 1187-1193. Eyal, S., Uzi, R. & Yuval, S. (2000). Isolation of bacillus sp. Capable of transforming isoeugenol to vanillin. J. Biotechnol. 78: 1-9. F Références bibliographiques Fabiani, R., De Bartolomeo, A., Rosignoli, P., Servili, M., Montedoro, G.F. & Morozzi, G. (2002). Cancer chemoprevention by hydroxytyrosol isolated from virgin olive oil through G1 cell cycle arrest and apoptosis. Europ. J. Cancer Prev. 11: 351-358. Farag, R. S., Badei, A; Z. M. A., Hewedi, J. F. M. & El-Baroty, G. S. A. (1989). Antioxidant activity of some spice essential oils on linoleic acid oxidation in aqueous media. J. A. Q. C. S. 66: 792-799. Farr, S. B., Kogoma, T. (1991). Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol rev 55: 561-585. Faulds, C.B. & Williamson, G. (1991). The purification and characterization of 4-hydroxy-3-methoxycinnamic (ferulic) acid esterase from Streptomyces olivochromogenes . J Gen Microbiol. 137: 2339- 2345. Faulds, C.B. & Williamson, G. (1994). Purification and characterization of a ferulic acid esterase (FAE-III) from Aspergillus niger : specificity for the phenolic moiety and binding to microcrystalline cellulose. Microbiology. 140: 779-787. Feki, M., Allouche, N., Bouaziz, M., Gargoubi, A. & Sayadi, S. (2006). Effect of storage of olive mill wastewaters on hydroxytyrosol concentration. Eur. J. Lipid Sci. Technol. 108: 1021-1027. Fernández-Bolaños, J., Rodríguez, G., Rodríguez, R., Guillén, R. & Jiménez, A. (2006). Potential use of olive by-products. Extraction of interesting organic compounds from olive oil waste. GRASAS Y ACEITES. 57 (1): 95-106. ISSN: 0017-3495 Fernandez-Diaz, M. J. (1983) Olives. In biotechnology. 5: 379-397. Edited by rehm H.J. & Reed G. Chemie, Weinheim. Field, R.W., Wu, D., Howell, J.A. & Gupta, B.B. (1995). Critical flux concept for microfiltration fouling. J.Membrane Sci. 100: 259-272. Fiestas Ros, J.A. (1981). Différentes utilisations des margines: recherches en cours, résultats obtenus et applications. Séminaire international sur la valorisation des sous produits de l'olivier. FAQ, Tunisie Décembre. 93-110. Fiestas Ros, J.A. (1986). Vegetation water used as fertilizer, Proceedings of international Symposium on olive By-Products Valorisation. FAQ, UNDP. Sevilla. Spain 321-330. Fki, I., Allouche, N. & Sayadi, S. (2005) The use of polyphenolic extract, purified hydroxytyrosol and 3,4-dihydroxyphenyl acetic acid from olive mill wastewater for the stabilization of refined oils: a potential alternative to synthetic antioxidants. Food Chem. 93 (2): 197-204. Références bibliographiques Frankel, E. N. (1993). In search of better methods to evaluate natural antooxidants and oxidative stability in foods lipids. Trends in Foods Sci. technol. 4: 220-225. Frenander, U., Jonsson, A.S. (1996) Cell harvesting by cross-flow microfiltration using a shear-enhanced module, Biotechnol. Bioeng. 52: 397-403. G Galanakis, C. M., Tornberg, E., & Gekas, V. (2010). Clarification of high-added value products from olive mill wastewater. Journal of Food Engineering. 99: 190-197. Galli, S.J., Zsebo, K.M. & Geissler, E.N. (1994). The kit ligand, stem cell factor. Adv Immunol. 55: 1-96. Garcia-Kirchner, O, Segura-Granados, M, Rodriguez-Pascual, P. 2005 Effect of media composition and growth conditions on production of beta-glucosidase by Aspergillus niger C-6. Appl. Biochem. Biotechnol. 121-124:347-359 Gharsallah, N. (1987). Mise au point d'un procédé de valorisation et de dépollution des eaux usées des huileries (margines) production de protéines d'organismes unicellulaires par culture aérobie de levure, production de biogaz par fermentation anaérobie. Thèse UTC. France. Gharsallah, N. (1993). Production of single cell protein from olive mill wastewater by yeasts. Environ Technol. 14: 391-395. Gharsallah, N., Labat, M., Aloui, F. & Sayadi, S. (1999). The effect of Phanerochaete chrysosporium pretreatment of olive mill wastewaters on anaerobic digestion. Res Conserv Recycl. 27: 187-192. Ghose, T.K. (1987) Measurement of cellulase activities. Pure Appl Chem.59:257-68. Glazebrook, M.A., Vining, L.C. and White, R.L. (1992) Growth morphology of Streptomyces akiyoshiensis in submerged culture: influence of pH, inoculum, and nutrients. Canadian J. Microbiol. 38: 98-103. Goksungur Y. & Guvenc U. (1999) Production of lactic acid from beet molasses by calcium alginate immobilized L. delbrueckii IFO 3202 batch and continuous. J. Chem. Eng. Biotechnol. 74:131-136. Gómez-Alonso, S., Mancebo-Campos, V., Desamparados Salvador, M. & Fregapane, G. (2007) Evolution of major and minor components and oxidation indices of virgin olive oil during 21 months storage at room temperature. Food Chem. 100: 36-42. Références bibliographiques Gordon, M., H. (1990). The mechanism of antioxidant action in vitro. In: BJF Hudson (Ed.), Food antioxidants Elsevier Applied Science, London: 1-18. Gowthaman, M. K., Krishna, Ch., Moo-Young, M. (2001). Fungal solid state fermentation-an overview. Appl. Mycology Biotechnol. 1 : 305-352. Guarro, J., Gené, J. & Stchigel, A.M. (1999). Developments in Fungal Taxonomy. Clinic. Microbiol. Rev. 12: 454-500. Gueguen, Y, Chemardin, P, Janbon, G, Arnaud, A, Galzy, P. (1996) A very efficient â-glucosidase catalyst for the hydrolysis of flavor precursors of wines and fruit juices. J. Agr. Food Chem. 44: 2336-2340. Gueguen, Y., Chemardin, P., Arnaud, A. & Galzy, P. (1994). Purification and characterization of the endocellular â-glucosidase of a new strain of Candida entomophila isolated from fermenting agave (Agave sp.) juice. Biotechnol. Appl. Biochem. 20: 185-198. H Hamdi, M. (1993). Future prospects and constraints of olive mill wastewaters use and treatment: A review Bioprocess Eng. 8: 209-214. Hamdi, M. (1996). Anaerobic digestion of olive mill wastewaters. Process Biochem. 31: 105110. Hammerstone, J. F., Lazarus, S. A. & Schmith, H. H. (2000). Proantocyanidin content and variation in some commonly consumed foods. J. Nutr. 130: 20866S-2095S. Hamza M., Khoufi S. & Sayadi S. (2012 b). Fungal enzymes as a powerful tool to release antioxidants from olivemill wastewater. Food Chemistry, 131, 1430-1436. Hamza M., Khoufi S., Sayadi S. (2012 a). Changes in the content of bioactive polyphenolic compounds of olive mill wastewater by the action of exogenous enzymes. Journal of Agricultural and Food Chemistry, 60(1), 66-73. Hang, Y. D. & Woodams, E. E. (1994). Apple pomace: A potential substrate for production of â-glucosidase by Aspergillus foetidus. Food Sci. Tech. 27: 587-589. Harbourne, N., Marete, E., Jacquier, J. C., & O'Riordan, D. (2011). Stability of phytochemicals as sources of anti-inflammatory nutraceuticals in beverages - A review. Hawksworth, D.L., Kirk, P. M., Sutton, B. C. & Pegler, D.N. (1995). Ainsworth and Bisby's dictionary of the fungi, 8th ed. International Mycological Institute, Egham, United Kingdom. Références bibliographiques Henrissat, B. (1998). Enzymology of cell-wall degradation. Biochem. Soc. Trans. 26: 153- 209. Herrmann, K. (1989). Occurrence and content of hydroxycinnamic and hydroxybenzoic acid coumpounds in foods. Critic. Rev. Food Sci. Nutr. 28(4): 315-342. Himmel, M.E., Tatsumoto, K., Grohmann K., Johnson, D. K.& Chum, H. L. (1991). Molecular weight distribution of aspen lignins from conventional gel permeation chromatography, universal calibration and sedimentation equilibrium. J. Chromtogr. 498: 93-104. Hollman, P.C. H., Hertog, M. G. L. & Katan, M. B. (1996). Analysis and helth effects of flavanoids. Foods Chem. 57: 43-46. Hopia, A. & Heinonen, M. (1999). Antioxidant activity of flavonol aglycones and their glycosides in methyl linoleate. J.A.O.C.S. 76: 139-144. I Idris, A. & Suzana, W. (2006). Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii. Process Biochem. 41: 1117-1123. Ishii, T. (1997) Structure and functions of feruloylated polysaccharides. Plant Sci. 127: 111127. Ismail, S. (1998) Production of fatty acid alcohol esters by esterase activity from Pseudomonas fragi. Thèse, McGili University Montreal, Québec. J Jadot, G. (1994) Antioxydant et vieillissement, Jhon Libbey Eurotext, Paris. 34. Jemai, H., Bouaziz, M. & Sayadi, S. (2009). Phenolic composition, sugar contents and antioxidant activity of Tunisian sweet olive cultivar with regard to fruit ripening. J. Agric. Food Chem. 57: 2961-2968. Jiménez, A. M., Borja, R. & Martin, A. (2003) Aerobic-anaerobic biodegradation of beet molasses alcoholic fermentation wastewater. Process Biochem. 38: 1275-1284. K Kahraman, S.S. & Gurdal, I.H. (2002). Effect of synthetic and natural culture media on laccase production by white-rot fungi. Bioresource Technol. 82: 215-217. Références bibliographiques Kapoor, A. & Viraraghavan, T. (1997) Heavy metal biosorption sites in Aspergillus niger. Bioresour. Technol. 61 : 221-227. Khoufi S., Hamza M. & Sayadi S. (2011). Enzymatic hydrolysis of olive wastewater for hydroxytyrosol enrichment. Bioresource Technology, 102 (19) : 9050-9058. Kilcast, D., & Subramaniam, P. (2003). The stability and shelf-life of food. Cambridge, England: Woodhead Publishing. Knekt, P., Jarvinen, R., Reunanen, A., & Maatela, J. (1996). Flavonoid intake and coronary mortality in Finland : a cohort study. Brit. Med. J. 312: 478-481. Kohyama, N., Nagata, T., Fujimoto, S. & Sekiya, K. (1997). Inhibition of arachidonate lipoxygenase activities by 2-(3,4-dihydroxyphenyl)ethanol, a phenolic compound from olives. Biosci. Biotechnol. Biochem. 61 : 347-350. Konno, K., Hirayama, C., Yasui, H., Nakamura, M. (1999). Enzymatic activation of oleuropein: a protein crosslinker used as a chemical defense in the privet tree. Proc. Natl. Acad. Sci. U.S.A. 96: 9159-9164. Kovács, K., Megyeri, L., Szakacsa, G., Kubicek, C. P., Galbe, M. & Zacchi, G. (2008). Trichoderma atroviride mutants with enhanced production of cellulase and â- glucosidase on pretreated willow. Enzyme and Microbial Technology. 43: 48-55. Kroner, K.H., Nissen, N., Ziegler, H., (1987) Improved dynamic filtration of microbial suspensions, Bio/Techn. 5: 921-926. Kroon, P.A., Faulds, C.B. & Williamson, G..(1996) Purification and characterization of a novel esterase induced by growth of Aspergillus niger on sugar beet pulp. Biotechnol Appl Biochem. 23: 255-262. Kulkarni, A. G., Lele, S. S. & Kulkarni, P. R. (1998). Improved adsorption of Aspergillus niger 589 spores on high-density polyethylene for progesterone biotransformation. J. Ferment. Bioeng. 86: 510-512. Kumar, D., Jain, V. K., Shanker, G. & Srivastava, A. (2003) Citric acid production by solid-state fermentation using sugarcane bagasse. Process Biochem. 38 (12): 17311738 L Labat, M., Augur, C., Rio, B., Perraud-Gainé, I. & Sayadi, S. (2000). Biotechnological potentialities of polyphenolic compounds of coffee and comparison with olive. In Coffee Biotechnology and Quality. 517-531. Edited by Sera, T., Socco C. R., Pandey A. & Roussos S. Dordrecht, Netherlands: Kluywer. M Références bibliographiques Lambrechts, M.G., & Pretorius, I.S. (2000) Yeast and its importance to wine aroma. Review. S Afr J Enol Vitic. 21:97-129. Lesage-Meessen, L., Navarro, D., Maunier, S., Sigoillot, J-C, Lorquin, J., Delattre, M. (2001). Simple phenolic content in olive oil residues as a function of extraction systems. Food Chem. 75: 501- 507. Leung, S. W., Siddhanti, S., Williams, B., Chan, A. W. K., Minski, M. J., Daniels, C. K., & Lai, J. C. K. (2010). Effects of diet intakes on metal and electrolyte distributions in vital organs. Procedia Environmental Sciences. 2: 92-97. Levi-Minzi, R., Saviozzi, A., Raffaldi, R., Martorana, F. (1992). Dynamique de certaines caractéristiques des margines épandues sur le sol. Oléa. 47: 459-463. Levin, L., Forchiassin, F., Ramos, A.M. (2002). Copper induction of lignin modifying enzymes in the white-rot fungus Trametes trogii. Mycologia. 94: 377e383. Levin, L., Melignani, E., Ramos, A.M. (2010). Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates. Bioresource Technol. 101: 4554-4563. Liebgott, P.P., Labat, M., Casalot, L., Amouric, A. et Lorquin, J. (2007). Bioconversion of tyrosol into hydroxytyrosol and 3,4-dihydroxyphenylacetic acid under hypersaline conditions by a new Halomonas sp. strain HTB24. FEMS Microbiology Letters. 276: 24-33. Limiroli, R., Consonni, R., Ottolina, G., Marsilio, V., Bianchi, G., Zetta, L. (1995). 1H and 13C NMR characterisation of new oleuropein aglycones. J. Chem. Soc. Perkin Trans. 1: 1519-1523. Litridou, M, Linssen, J, Schols, H, Bergmans, M, Posthumus, M, Tsimodou, M. (1997) Phenolic compounds in virgin olive oils: fraction by solid phase extraction and antioxidant activity assessment. J. Sci. Food Agric. 74: 169-74. Lojkine MH, Field RW, Howell JA. (1992). Crossflow microfiltration of cell suspension: A review of models with emphasis on particle size effects. Transactions of Industrial Chemistry and Engineering. 70 (C): 149-164. Loussert, R. & Brousse, G. (1978). L'olivier. G.P. Maisonneuve et Larose (ed): 167 - 175. Références bibliographiques Ma, S.C., He, Z.D., Deng, X.L., But, P.P., Ooi, V.E., Xu, H.X., Lee, S.H., , S.F. (2001). In vitro evaluation of secoiridoid glucosides from the fruits of Ligustrum lucidum as antiviral agents. Chem. Pharm. Bull. (Tokyo) 49: 1471-1473. Mackness, M. I., Walker, C. H., Rowlands, D. C. & Price, N. R. (1983). Esterase activity in homogenates of three strains of the rust red flour beetle Tribolium castaneum (Herbst). Comp. Biochem. Physiol. C. 74: 65-68. Mahadik, N. D., Puntambekar, U. S., Bastawde, K. B., Khire, J. M. & Gokhale, D. V. (2002). Production of acidic lipase by Aspergillus niger in solid-state fermentation. Process Biochem. 38: 715-721. Mandviwala, T.N. & Khire, J.M. (2000). Production of high activity thermostable phytase from thermotolerant Aspergillus niger in solid state fermentation. J. Ind. Microbiol. Biotechnol. 24: 237-243. Manna, C, Galletti, P, Cucciolla, V, Moltedo, O, Leone, A, Zappia, V. (1997 a) The protective effect of the olive oil polyphenols (3-4-dyhydroxyphenyl)-ethanol counteracts reactive oxygen metabolite induced cytoxicity in caco-2-cells. J. Nutr. 12: 286-92. Manna, C., Galletti, P., Cucciolla, V., Montedoro, G.F., Zappia, V. (1997 b). Olive oil hydroxytyrosol protects human erythrocytes against oxidative damages. J. Nutr. Biochem. 10: 159-165. Martin, M., Ferrer, E., Sanz, J., Gibello, A. (1998) Process for the biodegradation of aromatic compounds and synthesis of pigments and colorants, alkaloids and polymers, with the use of the recombinant strain Escherichi coli P260. Patent N° WO98/04679 (5.02.1998). Martino, A., Durante, M., Pifferi, P. G., Spagna, G. & Bianchi, G. (1996). «Immobilization of â-glucosidase from a commercial preparation, part 1: a comparative study of natural supports,» Process Biochem. 31(3): 281-285. Maymone, B., A. Battaglini and M. Tiberio. (1961). Ricerche sul valore nutritivo della sansa d'olive. Alimentazione Animale. 5: 219-250. Mazzeia, R., Giornoa, L., Piacentinia, E., Mazzucab, S., Drioli, E., 2009. Kinetic study of a biocatalytic membrane reactor containing immobilized b-glucosidase for the hydrolysis of oleuropein. J. Membr. Sci. 339: 215-223. Références bibliographiques McCrae, SI, Leith, KM, Gordon, AH, Wood, TM. (1994) Xylan-degrading enzyme system produced by the fungus Aspergillus awamori: isolation and characterization of a feruloyl esterase and a p-coumaroyl esterase. Enzyme Microb. Technol. 16: 826-834. Mekki, A, Dhouib, A. & Sayadi, S. (2006). Changes in microbial and soil properties following amendement with treated and untreated olive mill wastewater. Microbiol Res. 161 (2): 93-101. Mercade, M.E., Manresa, M.A. (1994). The use of agroindustrial by-products for biosurfactant production. J. Am. Oil Chem. Soc. 71: 61-64. Metche, M. & Giarardin, M. (1980). Les polymères végétaux pariétaux et alimentaires non azotés. C. Costes, Ed.: Gauthier-Villars: 251-287. Metsamuuronen, S., Howell, J. & Nystrom, M. (2002). Critical flux in ultrafiltration of myoglobin and baker's yeast. J. Membrane Sci. 196: 13-25. Micol, V., Caturla, N., Pérez-Fons, L., Mas, V., Pérez, L., Estepa, A. (2005). The olive leaf extract exhibits antiviral activity against viral haemorrhagic septicaemia rhabdovirus (VHSV). Antivir. Res. 66: 129-136. Miller, G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-429. Miro-casas, E., Covas, M. L., Fito, M., Farre-Albadalejo, M., Marrugat, & De la Torre, R. (2003). Tyrosol and hydroxytytrosol are absorbed from moderate and sustained doses of virgin olive oil in humans. Eur. J. Clin. Nutr. 57(1): 186-190. Miró-Casas, E.; Covas, M.I.; Farre, M.; Fito, M.; Ortuño, J.; Weinbrenner, T.; Roset, P.; De la Torre, R. (2003) Hydroxytyrosol disposition in humans. Clinical Chem. 49: 945-951. Molla, A. H., Fakhru'l-Razi, A., Abd-Aziz, S., Hanafi, M. M., Roychoudhury, P. K. & Alam, M. Z. (2002). A potential resource for bioconversion of domestic wastewater sludge. Bioresour. Technol. 85 : 263-272. Moure, A., Cruz, J.M., Franco, D., Dominguez, J.M., Sineiro, J., Dominguez, H., Nunez, M.J., Pajaro, J.C. (2001). Oxidative stabilization of cold-pressed sunflower oil using phenolic compounds of the same seeds. Food Chem. 72: 145. Msallem, M., Mehri, H. & Radhouane, L. (2000). Inventaire des collections d'olivier en Tunisie. Plant Genet Resour News lett. 122: 36-40. Muheim, A. & Lerch, K. (1999). Towards a high yield bioconversion of ferulic acid to vanillin. Appl. Microbiol. Biotechnol. 51: 456-461. P Références bibliographiques Munoz, S. (1998) Procedimiento para la produccion de vitamina B12 a partir de residuos contaminantes de la industria de la aceituna. Patent N° ES2122927 (16.12.1998). N Nagatomo, H., Matsushita, Y., Sugamoto, K., & Matsui, T. (2005) «Preparation and properties of gelatin-immobilized â-glucosidase from Pyrococcus furiosus,» Bioscience, Biotechnol. Biochem. 69(1): 128-136. Nefzaoui, A (1983). Etude de l'utilisation des sous-produits de l'oliver en alimentation animale en Tunisie. FAO Animal Production and Health Division, Rome. Nefzaoui, A. (1991). Valorisation des sous produits de l'olivier. Options Méditerranéennes-Série séminaire. 16: 101-108. Norkrans, B. (1950). Influence of cellulolytic enzymes from Hymenocetes on cellulose preparations of different crystallinity. Physiol. Plant. 3: 75-81 O O Dowd, Y., Driss, F., Dang, P. M., Elbim, C., Gougerot, P. M. A. Pasquier, C. & El-Benna, J. (2004). Antioxidant effect of hydroxytyrosol, a polyhenol from olive: scavenging of hydrogen peroxide but not superoxide anion produved by human neutrophils. Biochem. Pharmacol. 68(10): 2003-2008. Obied H.K., Bedgood Jr. D.R., Prenzler P.D., Robards K. (2007). Bioscreening of Australian olive mill waste extracts: Biophenol content, antioxidant, antimicrobial and molluscicidal activites. Food Chemical Toxicol 45: 1238-1248. Obied, H.K., Allen, M.S., Bedgood, D.R., Prenzler, P.D., Robards, K., Stockmann, R. (2005). Bioactivity and analysis of biophenols recovered from olive mill waste. J. Agricul Food Chem. 53: 823-837. Ohta, T., Shimojo, H., Hashimoto, K., Kondo, H., Samuta, T. & Ohba, T. (1991). â-glucosidase activity in Shiro-Koji and it contribution to sweet potato Shochu flavor. J. Brew. Soc. Japan. 86: 536-539. Owen, R.W., Giacosa, A., Hull, W.E., Haubner, R., Spiegelhalder, B. & Bartsch, H. (2000). The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. Euro J Cancer. 36: 1235-1247. Références bibliographiques Paiva-Martins, F., Gordon, M.H. & Gameiro, P. (2003). Activity and location of olive oil phenolic antioxidants in liposomes. Chem. Phys. Lipids. 124: 23-36. Pandey, A., Soccol, C.R., Nigam, P. & Soccol, V.T. (2000). Biotechnologica potential of agro-industrial residues. I: sugarcane bagasse. Biores Technol. 74: 69-80. Panizzi, L. M., J. M. Scarpati, et E. G. Oriente. (1960). Constituzione della oleuropeina, glucoside, glucoside amaro e ad azione ipotensiva dell olivo. Nota H. Gazz. Chim. Ital. 90: 1449-1485. Parr, A. J. & Bolwell, G. P. (2000). Phenols in the plant and in the man. J. Sci. Food Agri. 80: 1013-1032. Perrin, J. L. (1992). Les composés mineurs et les antioxydants naturels de l'olive et de son huile. Rev. Fr. Corps Gras. 39: 25-32. Petroni, A., Blasevich, M., Salami, M., Papini, N., Montedero, G.F. & Galli, C. (1995). Inhibition of platelet aggregation and eicosanoid production by phenolic components of olive oil. Thromb. Res. 78: 151-160. Petruccioli, M., Servili, M., Montedoro, F., Federici, F. (1988) Development of recycle procedure for the utilization of vegetation waters in the olive-oil extraction process. Biotechnol. Lett. 10: 55 - 60. Pizzichini M. & Russo C. (2005). Process for recovering the components of olive mill wastewater with membrane technologies. International. Patent WO2005123603. Pozo, C., Martinez-Toledo, M.V., Rodelas, B., Gonzalez-Lopez, J. (2002). Effects of culture conditions on the production of polyhydroxyalkanoates by Azotobacter chroococcum H23 in media containing a high concentration of alpechin (wastewater from olive oil mills) as primary carbon source. J. Biotechnol. 97: 125-131. R Ramachandran, S., Roopesh, K., Nampoothiri, K.M., Szakacs, G., Pandey, A. (2005). Mixed substrate fermentation for the production of phytase by Rhizopus spp. using oilcakes as substrates. Process Biochem. 40: 1749-1754. Ranalli, A. (1991). L'effluent des huileries d'olive : propositions en vue de son utilisation et de son épuration. Références aux normes italiennes en la matière. Sciences et Techniques. 37: 30-39. Randhir, R, Shetty, K. (2007). Mung beans processed by solid-state bioconversion improves phenolic content and functionality relevant for diabetes and ulcer management. Innov Food Sci Emerg Technol. 8: 197-204. Références bibliographiques Rayan, D. & Robards, K. (1998). Phenolic compounds in olives. Analyst. 123: 31R-44R. Rebro, M., Rosenberg, M., Mlichová, Z., & Kritofíková L. (2007). «Hydrolysis of sucrose by invertase entrapped in polyvinyl alcohol hydrogel capsules,» Food Chem. 102(3): 784-787. Reddy, M. C., Lindsay, R. C. & Montgomery, M. W. (1970). Ester production by Pseudomenas frogi. IV. Demonstration of esterase activity. App. Microbio. 20 : 555557. Reithner, B., Schuhmacher, R., Stoppacher, N., Pucher, M., Brunner, K. & Zeilinger, S. (2007). Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection. Fungal Genet. Biol. 44: 1123-1133. Robards, K., Prenzler, P. D., Tucker, G., Swatsitang, P. & Glover, W. (1999). Phenolic compounds and their role in oxidative process in fruits. Food Chem. 66: 401-436. Romero, C., Brenes, M., Garcia, P., & Garrido, A. (2002). Hydroxytyrosol 4-beta-D-glucoside, an important phenolic compound in olive fruits and derived products. J. Agric. Food Chem. 50(13): 3835-3839. Roussos, S., Lonsane, B.K., Raimbault, M., Viniegra-Gonzalez, G. (1995). Advances in solid state fermentation. Proceedings of the 2nd International Symposium on Solid State Fermentation. FMS-95. Kluwer Academic Publishers. Ruiz-Bravo, A., Jimenez-Valera, M., Moreno, E., Guerra, V., Ramos-Cormenzana, A. (2001). Biological response modifier activity of an exopolysaccharide from Paenibacillus jamilae CP-7. Clinical and Diagnostic. Laboratory Immunol. 8: 706710. Russo C. (2007). A new membrane process for the selective fractionation and total recovery of polyphenols, water and organic substances from vegetation waters. Journal of Membrane Science, 288, 239-246. Ryan, D. & Robards, K. (1998). Phenolic compounds in olives. Analyst. 123: 31R-44R. S Saha, B. C., Freer, S. N. & Bothast, R. J. (1994). Production, purification, and properties of a thermostable â-glucosidase from a color variant strain of Aureobasidium pullulans. Appl. Environ. Microbiol. 60: 3774-3780. Références bibliographiques Saha, B. C.; Bothast, R. J. (1996). Production, purification, and characterization of a highly glucose-tolerant novel 18-glucosidase from Candida peltata. Appl. Environ. Microbiol. 62: 3165-3170. Saija, A. & Uccella, N. (2001). Olive biophenols: functional effects on human wellbeing. TIFS. 11: 357-363. Saudagar, P.S. & Singhal, R.S. (2004) Curdlan as a support matrix for immobilization of enzyme. Carbohydr Polymers. 56: 483-488. Sayadi, S. & Odier, E. (1995). Degradation of synthetic lignin by protoplasts of Phanerochaete chrysosporium with prurified lignin peroxydase or manganese peroxydase. Acta Biotechnologica.15:57-66. Sayadi, S., Allouche, N., Jaoua, M., Aloui, F. (2000). Detrimental effects of high molecular mass polyphenols on olive mill wastewater biotreatment. Process Biochem. 35: 725735. Sayadi, S., Ellouz, R. (1993). The use of Phanerochaete chrysosporium for the treatment of olive mill wastewaters. In "Proceedings of the Second Arab Conferences on Perspectives of Modern Biotechnology". 24-28, Amman, Jordan, 409-425. Sayadi, S., Ellouz, R. (1995). Role of lignin peroxidase and manganese peroxidase from Phanerochaete chrysoxporium in the decolorization of olive mill wastewaters by the Phanerochaete chrysosporium. Appl Environ Microbiol. 61: 1028-1030. Schuster E., Dunn-Coleman N., Frisvad J. C. & Van Dijck P. W. M. (2002). On the safety of Aspergillus niger. A review. Appl. Microbiol. Biotechnol. 59: 426-435. Scott, K. (1995) Handbook of Industrial Membranes, 1st ed., Elsevier Advanced Technol. 23-110. Selvakumar, P., Ashakumary, L. & Pandey, A. (1998). Biosynthesis of glucoamylase from Aspergillus niger by solid-state fermentation using tea waste as the basis of a solid susbtrate. Bioresour. Technol. 65: 83-85. Sharmila, T.; Sreeramulu, G.; Nand, K. Purification and characterization of 18-glucosidase from Clostridium papyrosolvens. Biotechnol. Appl. Biochem. 1998, 27, 175-179. Sheehan J.J., Hamilton B.K., Levy P.F. (1988) Pilot-scale membrane filtration process for the recovery of an extracellular bacterial protease, ACS Symp. Ser. 419: 130-155. Six, P. (1994). Current research in natural food antioxidants. Infom. 5: 679-688. Références bibliographiques Soni, M.G., Burdog, G.A., Christian, M.S., Bitler, C.M., Crea, R. (2006). Safety assessment of aqueous olive pulpe extract as an antioxidant or antimicrobial agent in foods. Food Chemical Toxicol. 44, 903-915. Sorensen; A, Lubeck; PS, Lubeck; M, Teller; PJ, Ahring; BK. (2011) â-glucosidases from a new Aspergillus species can substitute commercial â-glucosidases for saccharification of lignocellulosic biomass. Can: J: Microbiol. 57(8): 638-650. Stahl Biskup, E, Intert, F, Holthnujzen, JH, Stengele, M, Schultz, G. (1993) Glycosidically bound volatiles-a review 1986-1991. Flav Fragr J. 8:61-80. Steffen, K.T. (2003) Degradation of recalcitrant biopolymers and polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Academic Dissertation in Microbiology To be presented, with the permission of the Faculty of Agriculture and Forestry of the University of Helsinki, for public criticism in the auditorium 1041 at the Viikki Biocenter (Viikinkaari 5) of the University of Helsinki on October the 28th 2003 at 12 o'clock noon. Helsinki 2003. Strathmann H., (1985) Membranes and membrane processes in biotechnology, Trends Biotechnol. 3: 112-118. Synowiecki, J. & Woosowska, S. (2006) «Immobilization of thermostable â-glucosidase from Sulfolobus shibatae by cross-linking with transglutaminase,» Enzyme Microbial. Technology. 39(7):1417-1422. Szent-Györgyi, A. (1938). Therapeutic properties of vitamins. Presse Medicale 46 (995): 1893-1971. T Talcott, S. C. & Hoaward, L. R. (1999). Phenolic autooxidation is responsible for color degradation in processed carrot puree. J. Agric. Food Chem. 47 : 2109-2115. Tamburino, V., Zimbone, S. M. & Quattrone, P. (1999) Accumulation et écoulement des margines par épandage sur le sol agricole. Olivae. 76: 36-45. Tanabe, M., Kanda, T. & Yanagida, A. (1995). Fruit polyphenols ; process for production thereof ; and antioxydant, hypotensive agent, antimutagenic agent, antiallergic agent and anticariogenic agent, each comprising said polyphenol. Brevet N° : EP0657167. Tanchev, S., Joncheva, N., Genov, N., & Codounis, M. (1980). Identification of antocyanins contained in olives. Georgike Ereuna. 4: 5-13. Taqieddin, E., Amiji, M. (2004) Enzyme immobilization in novel alginate-chitosan core-shell microcapsules. Biomaterials. 25:1937-1945. Références bibliographiques Tomati, U., Di Lena, G., Galli, E., Grappelli, A., Buffone, R. (1990). Indolacetic acid production from olive waste water by Arthrobacter spp. Agrochimica. 34: 228-232. Tuck, K. & Hayball, P.-J. (2002) Major phenolic compounds in olive oil: metabolism and health effects. Reviews: current topics. J. Nutri Biochem. 13: 636-644. V Van Den Berg, G.B. & Smolders, C.A. (1990). Flux Decline in Ultrafiltration Processes. Desalination. 77. 101-133. Vasserot, Y., Arnaud, A. & Galzy, P. (1995). Monoterpenyl glycosides in plants and their biotechnological transformation. Acta Biotechnol. 15: 77-95. Vassilev, N., Fenice, M., Federeci, F. & Azcon, R. (1997). Olive mill wastewater treatment by immobilized cells of Aspergillus niger and its enrichment with soluble phosphate. Process Biochem. 32: 617-620. Veer W. L. C., Gerris V., Ribbers J. E., Oud P. J., Van Ree P. J., Beyerman H. C. & Bontekol J. S. (1957). A compound isolated from Olea europea. J. Rec. Trav. Chim. Pays Bas. 76: 839. Verhe, R., Papadopoulos, G., Boskou, D. (1992) Preparation of hydroxytyrosol bull. Liason Groupe Polyphenols. 15: 237-244. Visioli, F. & Galli, C. (2002). Biological properties of olive oil phytochemicals. Crit. Rev. Food Sci. Nutr. 42: 209-221. Visioli, F., & Galli, C. 2003. Olives and their production waste products as sources of bioactive compounds. Cur Top Nutraceutical Res. 1: 85-88. Visioli, F., Bellomo, G. 1 Galli, C. (1998). Free radical-scavenging properties of olive oil polyphenols. Biochem. Biophys. Res. Commun. 247: 60-64. Visioli, F., Bellomo, G., Montedoro, G. & Galli, C. (1995 a). Low density lipoprotein oxidation is inhibited in vitro by olive oil constituents. Atherosclerosis. 117: 25-32. Visioli, F., Galli, C., Galli, G. & Caruso, D. (2002) Biological activities and metabolic fate of olive oil phenols. Eur J Lipid Sci Technol. 104: 677-84. Visioli, F., Vinceri, F.F. & Galli, C. (1995 b). Waste waters from olive oil production are rich in natural antioxidants. Experientia. 51: 32-34. Visioli, F.; Caruso, D.; Grande, S.; Bosisio, R.; Villa, M.; Galli, G.; Sirtori, C.; Galli, C. Virgin Olive Oil Study (VOLOS): vasoprotective potential of extra virgin olive oil in mildly dyslipidemic patients. Eur. J. Nutr. 2005, 44, 121-127. Références bibliographiques Visioli, F.; Grande, S.; Bogani, P.; Galli, C. The role of antioxidants in the Mediterranean diets: focus on cancer. Eur. J. Cancer Prevention. 2004, 13, 337-343. Volke-Sepulveda, T. L., Gutierrez-Rojas, M. & Favela-Torres, E. (2003). Biodegradation of hexadecane in liquid and solid-state fermentations by Aspergillus niger. Bioresour. Technol. 87: 81-86. W Wahner, R.S., Mendez, B.A., Giulietti, A.M. (1988). Olive black water as raw material for butanol production. Biol. Wastes. 23: 215-220. Walter, W. M. Jr., Fleming, H. P., Etchells, J. L. (1973). Preparation of Antimicrobial Compounds by Hydrolysis of Oleuropein from Green Olives. App. Microbiology. 26 (5): 773-776. Wei, D. L.; Kirimura, K.; Usami, S.; Lin, T. H. (1996) Purification and characterization of an extracellular â-glucosidase from the wood-grown fungus Xylaria regalis. Curr. Microbiol. 33: 297-301. Weitzman, I., Whittier, S., McKitrick, J. C. & Della-Latta, P. (1995). Zygospores: the last word in identification of rare and atypical zygomycetes isolated from clinical specimens. J. Clin. Microbiol. 33:781-783 Weitzman, I., Whittier, S., McKitrick, J. C. & Della-Latta, P. (1995). Zygospores: the last word in identification of rare and atypical zygomycetes isolated from clinical specimens. J. Clin. Microbiol. 33:781-783 Williams, P.J., Sefton, M.A., Francis, I.L. (1992) Glycosidic precursors of varietal grape and wine flavor. Flav Precurs ACS Symp Ser. 74-86. Williams, P.J., Sefton, M.A., Francis, I.L. (1992) Glycosidic precursors of varietal grape and wine flavor. Flav Precurs ACS Symp Ser. 74-86. Williamson, G., Faulds, C.B., Kroon, P.A. (1998). Specificity of ferulic acid (feruloyl) esterases. Biochem. Soc. Trans. 26: 205-209. Winterhalter, P. & Skouroumounis, G.K. (1997) Glyconjugated aroma compounds: occurrence, role and biotechnological transformation. Adv. Biochem. Eng. Biotech. 55:73-105. Winterhalter, P. & Skouroumounis, G.K. (1997) Glyconjugated aroma compounds: occurrence, role and biotechnological transformation. Adv. Biochem. Eng. Biotech. 55:73-105. Références bibliographiques Woese, C.R. (1987). Bacterial evolution. Microbiol. Rev. 5: 221-271. Woese, C.R. (1987). Bacterial evolution. Microbiol. Rev. 5: 221-271. Woese, C.R., Kandler, O. & Wheelis, M.L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87: 4576-4579 Woese, C.R., Kandler, O. & Wheelis, M.L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87: 4576-4579 Y Y Yan, T. R.; Lin, Y. H.; Lin, C. L. (1998) Purification and characterization of an extracellular 18-glucosidase II with high hydrolysis and transglucosylation activities from Aspergillus niger. J. Agric. Food Chem. 46: 431-437. Yan, T. R.; Lin, Y. H.; Lin, C. L. (1998) Purification and characterization of an extracellular 18-glucosidase II with high hydrolysis and transglucosylation activities from Aspergillus niger. J. Agric. Food Chem. 46: 431-437. Yang, F.C. & Lian, C.B. (1998) Effect of cultivating conditions on the mycelial growth of Ganoderma lucidum in submerged flask cultures. Bioprocess Eng. 19: 233-236. Yang, F.C. & Lian, C.B. (1998) Effect of cultivating conditions on the mycelial growth of Ganoderma lucidum in submerged flask cultures. Bioprocess Eng. 19: 233-236. Yang, F.C., Ke, Y.F. & Kuo, S.S. (2000) Effect of fatty acids on the mycelial growth and polysaccharides formation by Ganoderma lucidum in shake flask cultures. Enzyme Microbial Technol. 27: 295-301. Yang, F.C., Ke, Y.F. & Kuo, S.S. (2000) Effect of fatty acids on the mycelial growth and polysaccharides formation by Ganoderma lucidum in shake flask cultures. Enzyme Microbial Technol. 27: 295-301. Yaropolov, A.I., Skorobogatko, O.V., Vartanov, S.S. & Varfolomeyev, S.D. (1994). Laccase: Properties, catalytic mechanism and applicability. Appl. Biochem. Biotechnol. 49: 257-278. Références bibliographiques Yaropolov, A.I., Skorobogatko, O.V., Vartanov, S.S. & Varfolomeyev, S.D. (1994). Laccase: Properties, catalytic mechanism and applicability. Appl. Biochem. Biotechnol. 49: 257-278. Yesilada, O., Sik, S. & Sam, M. (1998). Biodegradation of olive oil mill wastewater by Coriolus versicolor and Funalia Trogii: effects of agitation, initial COD concentration, inoculum size and immobilization. World J Microbiol Biotechnol. 14: 37-42. Yesilada, O., Sik, S. & Sam, M. (1998). Biodegradation of olive oil mill wastewater by Coriolus versicolor and Funalia Trogii: effects of agitation, initial COD concentration, inoculum size and immobilization. World J Microbiol Biotechnol. 14: 37-42. Yurekli F., Yesilada O., Yurekli M., Topcuoglu S.F. (1999). Plant growth hormone production from olive oil mill and alcohol factory wastewaters by white rot fungi. World J. Microb. Biot. 15: 503-505. Yurekli F., Yesilada O., Yurekli M., Topcuoglu S.F. (1999). Plant growth hormone production from olive oil mill and alcohol factory wastewaters by white rot fungi. World J. Microb. Biot. 15: 503-505. Z Z Zafra-Gómez A., B. Luzón-Toro, Capel-Cuevas S., Carlos Morales J. (2011). Stability of Hydroxytyrosol in Aqueous Solutions at Different Concentration, Temperature and with Different Ionic Content: A Study Using UPLC-MS. Food and Nutrition Sciences. 2 : 1114-1120 doi:10.4236/fns.2011.210149. Zbakh H., El Abbassi A. (201é). Potential use of olive mill wastewater in the preparation of functional beverages: A review. Journal of functional foods 4:53-65 Zhao, Y. & Hagerman, A. E. (1995). Simultaneous determination of hydrolysable tannin and condensed tannin. Am. Chemis. Soc. 210-228. Zhao, Y. & Hagerman, A. E. (1995). Simultaneous determination of hydrolysable tannin and condensed tannin. Am. Chemis. Soc. 210-228. Zheng, Z., Shetty, K. (2000) Solid-state bioconversion of phenolics from cranberry pomace and role of Lentinus edodes b-glucosidase. J Agric Food Chem. 48: 895-900. Références bibliographiques Zheng, Z., Shetty, K. (2000) Solid-state bioconversion of phenolics from cranberry pomace and role of Lentinus edodes b-glucosidase. J Agric Food Chem. 48: 895-900. Ziogas V, Tanou G, Molassiotis A, Diamantidis G, Vasilakakis M. (2010) Antioxidant and free radical-scavenging activities of phenolic extracts of olive fruits. Food Chem. 120: 1097-1103 République Tunisienne Ecole Doctorale Sciences et Technologies Thèse Génie Biologique N° d'ordre: GB Ministère de l'Enseignement Supérieur,de la Recherche Scientifiqueet de la Technologie Université de Sfax École Nationale d'Ingénieurs de Sfax BIOCONVERSION ENZYMATIQUE DES COMPOSES PHENOLIQUDES
DES Manel Hamza Karray Résumé: Au cours de ce travail, nous avons étudié et optimisé la production de 13-glucosidase par fermentation en milieu liquide du son de blé par Aspergillus niger. Un essai de la production de 13-glucosidase dans un fermenteur de 100 litre a été entrepri et a permis l'obtention de 3895 UI/ml comme activité maximale. L'utilisation de la préparation enzymatique d'A. niger pour l'hydrolyse des margines a montré une augmentation significative de la concentration de l'hydroxytyrosol. L'effet hydrolytique de la préparation enzymatique produite lors de ce travail a été comparable à celui trouvé lors de l'hydrolyse de margines par la 13-glucosidase pure. La bioconversion a été entreprise à grande échelle pour biotransformer les composés phénoliques de 40 litres de margine de Nord et 15 litres de margine MSP et MCC de Sfax. Ceci a permis l'amélioration de la concentration de l'hydroxytyrosol de 2,70 ; 3,61 et 1,77 fois dans le cas de margine Nord, MSP et MCC respectivement. Une série de procédés a été par la suite effectuée pour la purification et la concentration de l'hydroxytyrosol. Une microfiltration, une ultrafiltration de 70 litres de margine hydrolysée et une concentration du perméat de l'UF ont été effectuées dans l'ordre. Uniquement 24% d'hydroxytyrosol a été récupéré dans le concentrat final. Le nouveau produit obtenu obéi aux besoins alimentaires. Mots clés Aspergillus niger, 13-glucosidase, fermentation en milieu liquide, margine, hydrolyse enzymatique, composés phénoliques, antioxydants, microfiltration, ultrafiltration. Abstract: During this work, we have studied and optimized the 13-glucosidase production by liquid state fermentation of wheat bran by Aspergillus niger. A trial production of 13-glucosidase in a fermenter with 100 liters was companies and helped obtain 3895 IU/ml as the maximum activity. The use of A. niger enzyme preparation for olive mill wastewater (OMW) hydrolysis showed a significant increase of simples phenolics and reduced sugars. The hydrolytic effect of the enzyme preparation produced during this study was comparable to that found during the hydrolysis of OMW by different commercial enzyme preparations. The bioconversion was carried out large-scale biotransformation of phenolic compounds of 40 liters of North OMW and 15 liters of MSP and MCC from Sfax. This has helped improve the concentration of hydroxytyrosol 2.70, 3.61 and 1.77 times in the case North OMW, MSP and MCC respectively. A series of processes was subsequently performed for the purification and concentration of hydroxytyrosol. Microfiltration, ultrafiltration of 70 liters of hydrolyzed OMW and concentration of the UF permeate were carried out in order. Only 24% of hydroxytyrosol was recovered in the final concentrate. The new product obtained obeyed the dietary needs. Key-words Aspergillus niger, 13-glucosidase, liquid state fermentation, OMW, enzymatic hydrolysis, phenolic compounds, antioxydants, microfiltration, ultrafiltration. |
|