ANNEXES
Annexe 1 : résultats de la
stationnarité sortis de STATA Tableau 1 : test de
stationnarité de DFA 
| 
 Null Hypothesis: Unit root (individual unit root process) 
 | 
   | 
 
| 
 Date: 04/27/13 Time: 09:33 
 | 
   | 
   | 
   | 
 
| 
 Sample: 1 68 
 | 
   | 
   | 
   | 
 
| 
 Series: TA, RTCSTD, RRSA, ROE, ROA, FPSTA, FPN, 
 | 
   | 
 
| 
 ETI, DPTD, DBANC, CBANC 
 | 
   | 
   | 
   | 
 
| 
 Exogenous variables: None 
 | 
   | 
   | 
   | 
 
| 
 Automatic selection of maximum lags 
 | 
   | 
   | 
 
| 
 Automatic selection of lags based on SIC: 0 to 7 
 | 
   | 
 
| 
 Total number of observations: 701 
 | 
   | 
   | 
 
| 
 Cross-sections included: 11 (1 dropped) 
 | 
   | 
   | 
 
| 
 Method 
 | 
 Statistic 
 | 
   | 
 Prob.** 
 | 
 
| 
 ADF - Fisher Chi-square 
 | 
 55.9648 
 | 
   | 
 0.0001 
 | 
 
| 
 ADF - Choi Z-stat 
 | 
 -0.56722 
 | 
   | 
 0.2853 
 | 
 
| 
 ** Probabilities for Fisher tests are computed using an asympotic
Chi 
 | 
   | 
 
| 
 -square distribution. All other tests assume asymptotic 
 | 
   | 
 
| 
 normality. 
 | 
   | 
   | 
   | 
 
| 
 Intermediate ADF test results UNTITLED 
 | 
   | 
   | 
 
| 
 Series 
 | 
 Prob. 
 | 
 Lag 
 | 
 Max Lag 
 | 
 Obs 
 | 
 
| 
 TA 
 | 
 0.0733 
 | 
 6 
 | 
   | 
 10 
 | 
 61 
 | 
 
| 
 RTCSTD 
 | 
 0.0512 
 | 
 1 
 | 
   | 
 10 
 | 
 66 
 | 
 
| 
 RRSA 
 | 
 0.0654 
 | 
 1 
 | 
   | 
 10 
 | 
 66 
 | 
 
| 
 ROE 
 | 
 0.0000 
 | 
 0 
 | 
   | 
 10 
 | 
 67 
 | 
 
| 
 ROA 
 | 
 0.0063 
 | 
 1 
 | 
   | 
 10 
 | 
 66 
 | 
 
| 
 FPSTA 
 | 
 0.0002 
 | 
 1 
 | 
   | 
 10 
 | 
 66 
 | 
 
| 
 FPN 
 | 
 0.7557 
 | 
 6 
 | 
   | 
 10 
 | 
 61 
 | 
 
| 
 ETI 
 | 
 0.6568 
 | 
 1 
 | 
   | 
 10 
 | 
 66 
 | 
 
| 
 DPTD 
 | 
 0.0685 
 | 
 7 
 | 
   | 
 10 
 | 
 60 
 | 
 
| 
 DBANC 
 | 
 0.9998 
 | 
 6 
 | 
   | 
 10 
 | 
 61 
 | 
 
| 
 CBANC 
 | 
 0.0823 
 | 
 6 
 | 
   | 
 10 
 | 
 61 
 | 
 
| 
 Null Hypothesis: Unit root (individual unit root process) 
 | 
 
| 
 Date: 04/27/13 Time: 09:36 
 | 
   | 
   | 
 
| 
 Sample: 1 68 
 | 
   | 
   | 
 
| 
 Series: TA, RTCSTD, RRSA, ROE, ROA, FPSTA, FPN, 
 | 
 
| 
 ETI, DPTD, DBANC, CBANC 
 | 
   | 
   | 
 
| 
 Exogenous variables: Individual effects 
 | 
   | 
 
| 
 Automatic selection of maximum lags 
 | 
   | 
 
| 
 Automatic selection of lags based on SIC: 0 to 6 
 | 
 
| 
 Total number of observations: 722 
 | 
   | 
 
| 
 Cross-sections included: 11 (1 dropped) 
 | 
   | 
 
| 
 Method 
 | 
 Statistic 
 | 
 Prob.** 
 | 
 
  
  
78 
| 
 ADF - Fisher Chi-square 
 | 
 184.089 
 | 
   | 
 0.0000 
 | 
 
| 
 ADF - Choi Z-stat 
 | 
 -7.46930 
 | 
   | 
 0.0000 
 | 
 
| 
 ** Probabilities for Fisher tests are computed using an asympotic
Chi 
 | 
   | 
 
| 
 Null Hypothesis: Unit root (individual unit root process) 
 | 
   | 
 
| 
 Date: 04/27/13 Time: 09:36 
 | 
   | 
   | 
   | 
 
| 
 Sample: 1 68 
 | 
   | 
   | 
   | 
 
| 
 Series: TA, RTCSTD, RRSA, ROE, ROA, FPSTA, FPN, 
 | 
   | 
 
| 
 ETI, DPTD, DBANC, CBANC 
 | 
   | 
   | 
 
| 
 Exogenous variables: Individual effects, individual linear
trends 
 | 
   | 
 
| 
 Automatic selection of maximum lags 
 | 
   | 
   | 
 
| 
 Automatic selection of lags based on SIC: 0 to 1 
 | 
   | 
 
| 
 Total number of observations: 735 
 | 
   | 
   | 
 
| 
 Cross-sections included: 11 (1 dropped) 
 | 
   | 
   | 
 
| 
 Method 
 | 
 Statistic 
 | 
   | 
 Prob.** 
 | 
 
| 
 ADF - Fisher Chi-square 
 | 
 248.869 
 | 
   | 
 0.0000 
 | 
 
| 
 ADF - Choi Z-stat 
 | 
 -13.0593 
 | 
   | 
 0.0000 
 | 
 
| 
 ** Probabilities for Fisher tests are computed using an asympotic
Chi 
 | 
   | 
 
| 
 -square distribution. All other tests assume asymptotic 
 | 
   | 
 
| 
 normality. 
 | 
   | 
   | 
   | 
 
| 
 Intermediate ADF test results UNTITLED 
 | 
   | 
   | 
 
| 
 Series 
 | 
 Prob. 
 | 
 Lag 
 | 
 Max Lag 
 | 
   | 
 Obs 
 | 
 
| 
 TA 
 | 
 0.0000 
 | 
 0 
 | 
 10 
 | 
   | 
 67 
 | 
 
| 
 RTCSTD 
 | 
 0.0000 
 | 
 0 
 | 
 10 
 | 
   | 
 67 
 | 
 
| 
 RRSA 
 | 
 0.0237 
 | 
 1 
 | 
 10 
 | 
   | 
 66 
 | 
 
| 
 ROE 
 | 
 0.0013 
 | 
 0 
 | 
 10 
 | 
   | 
 67 
 | 
 
| 
 ROA 
 | 
 0.0035 
 | 
 0 
 | 
 10 
 | 
   | 
 67 
 | 
 
| 
 FPSTA 
 | 
 0.0000 
 | 
 0 
 | 
 10 
 | 
   | 
 67 
 | 
 
| 
 FPN 
 | 
 0.0000 
 | 
 0 
 | 
 10 
 | 
   | 
 67 
 | 
 
| 
 ETI 
 | 
 0.2974 
 | 
 1 
 | 
 10 
 | 
   | 
 66 
 | 
 
| 
 DPTD 
 | 
 0.0001 
 | 
 0 
 | 
 10 
 | 
   | 
 67 
 | 
 
| 
 DBANC 
 | 
 0.0000 
 | 
 0 
 | 
 10 
 | 
   | 
 67 
 | 
 
| 
 CBANC 
 | 
 0.0000 
 | 
 0 
 | 
 10 
 | 
   | 
 67 
 | 
 
| 
 -square distribution. All other tests assume asymptotic 
 | 
   | 
 
| 
 normality. 
 | 
   | 
   | 
   | 
 
| 
 Intermediate ADF test results UNTITLED 
 | 
   | 
   | 
 
| 
 Series 
 | 
 Prob. 
 | 
 Lag 
 | 
 Max Lag 
 | 
   | 
 Obs 
 | 
 
| 
 TA 
 | 
 0.0535 
 | 
 1 
 | 
 10 
 | 
   | 
 66 
 | 
 
| 
 RTCSTD 
 | 
 0.0000 
 | 
 0 
 | 
 10 
 | 
   | 
 67 
 | 
 
| 
 RRSA 
 | 
 0.0401 
 | 
 1 
 | 
 10 
 | 
   | 
 66 
 | 
 
| 
 ROE 
 | 
 0.0004 
 | 
 0 
 | 
 10 
 | 
   | 
 67 
 | 
 
| 
 ROA 
 | 
 0.0010 
 | 
 0 
 | 
 10 
 | 
   | 
 67 
 | 
 
| 
 FPSTA 
 | 
 0.0000 
 | 
 0 
 | 
 10 
 | 
   | 
 67 
 | 
 
| 
 FPN 
 | 
 0.0000 
 | 
 0 
 | 
 10 
 | 
   | 
 67 
 | 
 
| 
 ETI 
 | 
 0.3694 
 | 
 1 
 | 
 10 
 | 
   | 
 66 
 | 
 
| 
 DPTD 
 | 
 0.0000 
 | 
 0 
 | 
 10 
 | 
   | 
 67 
 | 
 
| 
 DBANC 
 | 
 0.9993 
 | 
 6 
 | 
 10 
 | 
   | 
 61 
 | 
 
| 
 CBANC 
 | 
 0.9801 
 | 
 6 
 | 
 10 
 | 
   | 
 61 
 | 
 
  
  
79 
Tableau 2 : test de stationnarité de Phillips
Perron 
| 
 Null Hypothesis: Unit root (individual unit root process) 
 | 
   | 
   | 
   | 
 
| 
 Date: 04/27/13 Time: 09:37 
 | 
   | 
   | 
   | 
   | 
 
| 
 Sample: 1 68 
 | 
   | 
   | 
   | 
   | 
   | 
 
| 
 Series: TA, RTCSTD, RRSA, ROE, ROA, 
 | 
   | 
   | 
   | 
 
| 
 FPSTA, FPN, ETI, DPTD, DBANC, CBANC 
 | 
   | 
   | 
   | 
 
| 
 Exogenous variables: None 
 | 
   | 
   | 
   | 
 
| 
 Newey-West bandwidth selection using Bartlett kernel 
 | 
   | 
   | 
   | 
 
| 
 Total (balanced) observations: 737 
 | 
   | 
   | 
   | 
 
| 
 Cross-sections included: 11 (1 dropped) 
 | 
   | 
   | 
   | 
 
| 
 Method 
 | 
 Statistic 
 | 
   | 
   | 
 Prob.** 
 | 
 
| 
 PP - Fisher Chi-square 
 | 
 163.411 
 | 
   | 
   | 
 0.0000 
 | 
 
| 
 PP - Choi Z-stat 
 | 
 -7.77469 
 | 
   | 
   | 
 0.0000 
 | 
 
| 
 ** Probabilities for Fisher tests are computed using an 
 | 
   | 
   | 
   | 
 
| 
 asympotic Chi-square distribution. All other tests 
 | 
   | 
   | 
   | 
 
| 
 assume asymptotic normality. 
 | 
   | 
   | 
   | 
 
| 
 Intermediate Phillips-Perron test results UNTITLED 
 | 
   | 
   | 
   | 
 
| 
 Series 
 | 
 Prob. 
 | 
 Bandwidth 
 | 
   | 
   | 
 Obs 
 | 
 
| 
 TA 
 | 
 0.0678 
 | 
   | 
 3.0 
 | 
   | 
   | 
 67 
 | 
 
| 
 RTCSTD 
 | 
 0.1077 
 | 
   | 
 11.0 
 | 
   | 
   | 
 67 
 | 
 
| 
 RRSA 
 | 
 0.0283 
 | 
   | 
 9.0 
 | 
   | 
   | 
 67 
 | 
 
| 
 ROE 
 | 
 0.0000 
 | 
   | 
 2.0 
 | 
   | 
   | 
 67 
 | 
 
| 
 ROA 
 | 
 0.0000 
 | 
   | 
 3.0 
 | 
   | 
   | 
 67 
 | 
 
| 
 FPSTA 
 | 
 0.0000 
 | 
   | 
 4.0 
 | 
   | 
   | 
 67 
 | 
 
| 
 FPN 
 | 
 0.0000 
 | 
   | 
 4.0 
 | 
   | 
   | 
 67 
 | 
 
| 
 ETI 
 | 
 0.5973 
 | 
   | 
 2.0 
 | 
   | 
   | 
 67 
 | 
 
| 
 DPTD 
 | 
 0.0005 
 | 
   | 
 5.0 
 | 
   | 
   | 
 67 
 | 
 
| 
 DBANC 
 | 
 0.0139 
 | 
   | 
 13.0 
 | 
   | 
   | 
 67 
 | 
 
| 
 CBANC 
 | 
 0.0249 
 | 
   | 
 0.0 
 | 
   | 
   | 
 67 
 | 
 
| 
 Null Hypothesis: Unit root (individual unit root process) 
 | 
   | 
 
| 
 Date: 04/27/13 Time: 09:41 
 | 
   | 
   | 
 
| 
 Sample: 1 68 
 | 
   | 
   | 
   | 
 
| 
 Series: TA, RTCSTD, RRSA, ROE, ROA, 
 | 
   | 
 
| 
 FPSTA, FPN, ETI, DPTD, DBANC, CBANC 
 | 
   | 
 
| 
 Exogenous variables: Individual effects 
 | 
   | 
 
| 
 Newey-West bandwidth selection using Bartlett kernel 
 | 
   | 
 
| 
 Total (balanced) observations: 737 
 | 
   | 
 
| 
 Cross-sections included: 11 (1 dropped) 
 | 
   | 
 
| 
 Method 
 | 
 Statistic 
 | 
   | 
 Prob.** 
 | 
 
| 
 PP - Fisher Chi-square 
 | 
 228.630 
 | 
   | 
 0.0000 
 | 
 
| 
 PP - Choi Z-stat 
 | 
 -11.7321 
 | 
   | 
 0.0000 
 | 
 
| 
 ** Probabilities for Fisher tests are computed using an 
 | 
   | 
 
| 
 asympotic Chi-square distribution. All other tests 
 | 
   | 
 
| 
 assume asymptotic normality. 
 | 
   | 
 
| 
 Intermediate Phillips-Perron test results UNTITLED 
 | 
   | 
 
| 
 Series 
 | 
 Prob. 
 | 
 Bandwidth 
 | 
 Obs 
 | 
 
| 
 TA 
 | 
 0.0002 
 | 
   | 
 4.0 
 | 
 67 
 | 
 
  
  
80 
| 
 RTCSTD 
 | 
 0.0000 
 | 
 2.0 
 | 
 67 
 | 
 
| 
 RRSA 
 | 
 0.0916 
 | 
 1.0 
 | 
 67 
 | 
 
| 
 ROE 
 | 
 0.0004 
 | 
 2.0 
 | 
 67 
 | 
 
| 
 ROA 
 | 
 0.0009 
 | 
 3.0 
 | 
 67 
 | 
 
| 
 FPSTA 
 | 
 0.0000 
 | 
 0.0 
 | 
 67 
 | 
 
| 
 FPN 
 | 
 0.0000 
 | 
 2.0 
 | 
 67 
 | 
 
| 
 ETI 
 | 
 0.3164 
 | 
 2.0 
 | 
 67 
 | 
 
| 
 DPTD 
 | 
 0.0000 
 | 
 4.0 
 | 
 67 
 | 
 
| 
 DBANC 
 | 
 0.0590 
 | 
 1.0 
 | 
 67 
 | 
 
| 
 CBANC 
 | 
 0.0000 
 | 
 4.0 
 | 
 67 
 | 
 
| 
 Null Hypothesis: Unit root (individual unit root process) 
 | 
 
| 
 Date: 04/27/13 Time: 09:42 
 | 
   | 
 
| 
 Sample: 1 68 
 | 
   | 
   | 
 
| 
 Series: TA, RTCSTD, RRSA, ROE, ROA, 
 | 
 
| 
 FPSTA, FPN, ETI, DPTD, DBANC, CBANC 
 | 
 
| 
 Exogenous variables: Individual effects, individual linear 
 | 
 
| 
 Trends 
 | 
   | 
   | 
 
| 
 Newey-West bandwidth selection using Bartlett kernel 
 | 
 
| 
 Total (balanced) observations: 737 
 | 
 
| 
 Cross-sections included: 11 
 | 
 
| 
 Method 
 | 
 Statistic 
 | 
 Prob.** 
 | 
 
| 
 PP - Fisher Chi-square 
 | 
 251.193 
 | 
 0.0000 
 | 
 
| 
 PP - Choi Z-stat 
 | 
 -13.3844 
 | 
 0.0000 
 | 
 
| 
 ** Probabilities for Fisher tests are computed using an 
 | 
 
| 
 asympotic Chi-square distribution. All other tests 
 | 
 
| 
 assume asymptotic normality. 
 | 
 
| 
 Intermediate Phillips-Perron test results UNTITLED 
 | 
 
| 
 Series 
 | 
 Prob. 
 | 
 Bandwidth 
 | 
 Obs 
 | 
 
| 
 TA 
 | 
 0.0000 
 | 
 4.0 
 | 
 67 
 | 
 
| 
 RTCSTD 
 | 
 0.0000 
 | 
 2.0 
 | 
 67 
 | 
 
| 
 RRSA 
 | 
 0.0000 
 | 
 3.0 
 | 
 67 
 | 
 
| 
 ROE 
 | 
 0.0011 
 | 
 2.0 
 | 
 67 
 | 
 
| 
 ROA 
 | 
 0.0028 
 | 
 3.0 
 | 
 67 
 | 
 
| 
 FPSTA 
 | 
 0.0000 
 | 
 0.0 
 | 
 67 
 | 
 
| 
 FPN 
 | 
 0.0000 
 | 
 17.0 
 | 
 67 
 | 
 
| 
 ETI 
 | 
 0.2526 
 | 
 1.0 
 | 
 67 
 | 
 
| 
 DPTD 
 | 
 0.0001 
 | 
 5.0 
 | 
 67 
 | 
 
| 
 DBANC 
 | 
 0.0000 
 | 
 3.0 
 | 
 67 
 | 
 
| 
 CBANC 
 | 
 0.0000 
 | 
 2.0 
 | 
 67 
 | 
 
  
  
81 
Tableau 3 : TEST DE DFA EN DIFFERENCE
PREMIERE 
 
| 
 Null Hypothesis: Unit root (individual unit root process) 
 | 
   | 
   | 
 
| 
 Date: 05/01/13 Time: 07:38 
 | 
   | 
   | 
   | 
   | 
 
| 
 Sample: 1 68 
 | 
   | 
   | 
   | 
   | 
 
| 
 Series: TA, RTCSTD, RRSA, ROE, ROA, FPSTA, FPN, 
 | 
   | 
   | 
 
| 
 ETI, DPTD, DBANC, CBANC 
 | 
   | 
   | 
   | 
   | 
 
| 
 Exogenous variables: None 
 | 
   | 
   | 
   | 
   | 
 
| 
 Automatic selection of maximum lags 
 | 
   | 
   | 
   | 
 
| 
 Automatic selection of lags based on SIC: 0 to 5 
 | 
   | 
   | 
 
| 
 Total number of observations: 715 
 | 
   | 
   | 
   | 
 
| 
 Cross-sections included: 11 
 | 
   | 
   | 
   | 
 
| 
 Method 
 | 
 Statistic 
 | 
   | 
   | 
 Prob.** 
 | 
 
| 
 ADF - Fisher Chi-square 
 | 
 2421.85 
 | 
   | 
   | 
 0.0000 
 | 
 
| 
 ADF - Choi Z-stat 
 | 
 -47.1423 
 | 
   | 
   | 
 0.0000 
 | 
 
| 
 ** Probabilities for Fisher tests are computed using an asympotic
Chi 
 | 
   | 
   | 
 
| 
 -square distribution. All other tests assume asymptotic 
 | 
   | 
   | 
 
| 
 normality. 
 | 
   | 
   | 
   | 
   | 
 
| 
 Intermediate ADF test results D(UNTITLED) 
 | 
   | 
   | 
   | 
 
| 
 Series 
 | 
 Prob. 
 | 
 Lag 
 | 
 Max Lag 
 | 
   | 
 Obs 
 | 
 
| 
 D(TA) 
 | 
 0.0000 
 | 
 0 
 | 
   | 
 10 
 | 
   | 
 66 
 | 
 
| 
 D(RTCSTD) 
 | 
 0.0000 
 | 
 0 
 | 
   | 
 10 
 | 
   | 
 66 
 | 
 
| 
 D(RRSA) 
 | 
 0.0000 
 | 
 0 
 | 
   | 
 10 
 | 
   | 
 66 
 | 
 
| 
 D(ROE) 
 | 
 0.0000 
 | 
 0 
 | 
   | 
 10 
 | 
   | 
 66 
 | 
 
| 
 D(ROA) 
 | 
 0.0000 
 | 
 0 
 | 
   | 
 10 
 | 
   | 
 66 
 | 
 
| 
 D(FPSTA) 
 | 
 0.0000 
 | 
 1 
 | 
   | 
 10 
 | 
   | 
 65 
 | 
 
| 
 D(FPN) 
 | 
 0.0000 
 | 
 5 
 | 
   | 
 10 
 | 
   | 
 61 
 | 
 
| 
 D(ETI) 
 | 
 0.0000 
 | 
 0 
 | 
   | 
 10 
 | 
   | 
 66 
 | 
 
| 
 D(DPTD) 
 | 
 0.0000 
 | 
 0 
 | 
   | 
 10 
 | 
   | 
 66 
 | 
 
| 
 D(DBANC) 
 | 
 0.0000 
 | 
 0 
 | 
   | 
 10 
 | 
   | 
 66 
 | 
 
| 
 D(CBANC) 
 | 
 0.0000 
 | 
 5 
 | 
   | 
 10 
 | 
   | 
 61 
 | 
 
  
Tableau 4 : TEST DE Phillips Perron EN DIFFERENCE
PREMIERE 
| 
 Null Hypothesis: Unit root (individual unit root process) 
 | 
   | 
 
| 
 Date: 05/01/13 Time: 07:40 
 | 
   | 
   | 
 
| 
 Sample: 1 68 
 | 
   | 
   | 
   | 
 
| 
 Series: TA, RTCSTD, RRSA, ROE, ROA, 
 | 
   | 
 
| 
 FPSTA, FPN, ETI, DPTD, DBANC, CBANC 
 | 
   | 
 
| 
 Exogenous variables: None 
 | 
   | 
   | 
 
| 
 Newey-West bandwidth selection using Bartlett kernel 
 | 
   | 
 
| 
 Total (balanced) observations: 726 
 | 
   | 
 
| 
 Cross-sections included: 11 
 | 
   | 
 
| 
 Method 
 | 
 Statistic 
 | 
 Prob.** 
 | 
   | 
 
| 
 PP - Fisher Chi-square 
 | 
 2897.30 
 | 
 0.0000 
 | 
   | 
 
| 
 PP - Choi Z-stat 
 | 
 -53.0660 
 | 
 0.0000 
 | 
   | 
 
| 
 ** Probabilities for Fisher tests are computed using an 
 | 
   | 
 
| 
 asympotic Chi-square distribution. All other tests 
 | 
   | 
 
| 
 assume asymptotic normality. 
 | 
   | 
 
| 
 Intermediate Phillips-Perron test results D(UNTITLED) 
 | 
   | 
 
| 
 Series 
 | 
 Prob. 
 | 
 Bandwidth 
 | 
   | 
 Obs 
 | 
 
| 
 D(TA) 
 | 
 0.0000 
 | 
 19.0 
 | 
   | 
 66 
 | 
 
  
  
82 
 
| 
 D(RTCSTD) 
 | 
 0.0000 
 | 
 12.0 
 | 
 66 
 | 
 
| 
 D(RRSA) 
 | 
 0.0000 
 | 
 10.0 
 | 
 66 
 | 
 
| 
 D(ROE) 
 | 
 0.0000 
 | 
 5.0 
 | 
 66 
 | 
 
| 
 D(ROA) 
 | 
 0.0000 
 | 
 4.0 
 | 
 66 
 | 
 
| 
 D(FPSTA) 
 | 
 0.0000 
 | 
 47.0 
 | 
 66 
 | 
 
| 
 D(FPN) 
 | 
 0.0000 
 | 
 65.0 
 | 
 66 
 | 
 
| 
 D(ETI) 
 | 
 0.0000 
 | 
 2.0 
 | 
 66 
 | 
 
| 
 D(DPTD) 
 | 
 0.0000 
 | 
 38.0 
 | 
 66 
 | 
 
| 
 D(DBANC) 
 | 
 0.0000 
 | 
 16.0 
 | 
 66 
 | 
 
| 
 D(CBANC) 
 | 
 0.0000 
 | 
 65.0 
 | 
 66 
 | 
 
  
Annexe 2 : résultats des régressions
par les MCO et des tests d'autocorrélation et
d'hétéroscédasticité 
Tableau 1 : résultats des
régressions par les MCO, des tests d'autocorrélation et
d'hétéroscédasticité et la régression par
les MCG du modèle ROE. 
| 
 Equation de ROE 
 | 
  df MS 
 8 1474.6534 
 59 121.141 
 67 282.75442 
 | 
   | 
 Number of obs = 68 
F( 8, 59) = 12.17 
Prob > F = 0.0000 
R-squared = 0.6227 
Adj R-squared = 0.5716 
Root MSE = 11.006 
 | 
 
| 
 Regression par les MCO 
 | 
 
| 
  Source | SS 
 +  
 Model | 11797.2272 
 Residual | 7147.319 
 +  
 Total | 18944.5462 
 | 
 
| 
 roe | Coef. 
 | 
 Std. Err. 
 | 
 t 
 | 
 P>|t| 
 | 
 [95% Conf. 
 | 
 Interval] 
 | 
 
| 
 fpsta | 
 | 
 .3291626 
 | 
 .3588413 
 | 
 0.92 
 | 
 0.363 
 | 
 -.3888772 
 | 
 1.047203 
 | 
 
| 
 rrsa | 
 | 
 2.294563 
 | 
 .8906147 
 | 
 2.58 
 | 
 0.013 
 | 
 .5124471 
 | 
 4.076679 
 | 
 
| 
 ta | 
 | 
 .0000238 
 | 
 .0000236 
 | 
 1.01 
 | 
 0.318 
 | 
 -.0000235 
 | 
 .0000711 
 | 
 
| 
 dptd | 
 | 
 .0700445 
 | 
 .1692866 
 | 
 0.41 
 | 
 0.681 
 | 
 -.2686971 
 | 
 .4087861 
 | 
 
| 
 fpn | 
 | 
 .0004475 
 | 
 .0001753 
 | 
 2.55 
 | 
 0.013 
 | 
 .0000968 
 | 
 .0007982 
 | 
 
| 
 rtcstd | 
 | 
 -126.1769 
 | 
 75.76681 
 | 
 -1.67 
 | 
 0.101 
 | 
 -277.7859 
 | 
 25.43218 
 | 
 
| 
 cbanc | 
 | 
 -.0001542 
 | 
 .0000866 
 | 
 -1.78 
 | 
 0.080 
 | 
 -.0003275 
 | 
 .0000191 
 | 
 
| 
 dbanc | 
 | 
 -.0000273 
 | 
 .0000465 
 | 
 -0.59 
 | 
 0.559 
 | 
 -.0001203 
 | 
 .0000657 
 | 
 
| 
 _ cons | 17.36273 
 | 
 13.66144 
 | 
 1.27 
 | 
 0.209 
 | 
 -9.973761 
 | 
 44.69921 
 | 
 
  
Test d'heteroscedasticité 
| 
 Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho:
Constant variance 
 | 
 
| 
 Variables: 
 | 
 fitted values of roe 
 | 
 
| 
 chi2(1) 
 | 
 = 
 | 
 19.09 
 | 
 
| 
 Prob > chi2 
 | 
 = 
 | 
 0.0000 
 | 
 
  
Test d'heteroscedasticité à travers le VIF 
| 
 Variable 
 | 
 | 
 | 
 VIF 
 | 
 1/VIF 
 | 
 
| 
  + 
 | 
   | 
   | 
   | 
 
| 
 cbanc 
 | 
 | 
 | 
 60.38 
 | 
 0.016561 
 | 
 
| 
 dbanc 
 | 
 | 
 | 
 32.87 
 | 
 0.030427 
 | 
 
| 
 fpn 
 | 
 | 
 | 
 24.92 
 | 
 0.040120 
 | 
 
| 
 ta | 
 | 
   | 
 16.63 
 | 
 0.060120 
 | 
 
| 
 rrsa 
 | 
 | 
 | 
 6.35 
 | 
 0.157357 
 | 
 
| 
 rtcstd 
 | 
 | 
 | 
 4.15 
 | 
 0.241239 
 | 
 
| 
 dptd 
 | 
 | 
 | 
 1.82 
 | 
 0.549482 
 | 
 
| 
 fpsta 
 | 
 | 
 | 
 1.15 
 | 
 0.870648 
 | 
 
| 
  + 
 | 
   | 
   | 
   | 
 
| 
 Mean VIF 
 | 
 | 
 | 
 18.53 
 | 
   | 
 
  
Test d'heteroscedasticité conditionnelle 
LM test for autoregressive conditional heteroskedasticity
(ARCH) 
 lags(p) | chi2 df Prob > chi2 
 +  
1 | 38.981 1 0.0000 
 H0: no ARCH effects vs. H1: ARCH(p) disturbance 
Test d'autocorrelation de Breusch godfrey 
83 
  
84 
Breusch-Godfrey LM test for autocorrelation 
 lags(p) | chi2 df Prob > chi2 
 +  
1 | 47.769 1 0.0000 
H0: no serial correlation 
Test d'autocorrelation de durbin Watson 
Durbin's alternative test for autocorrelation 
 lags(p) | chi2 df Prob > chi2 
 +  
1 | 136.947 1 0.0000 
H0: no serial correlation 
Determination de la valeur de AIC 
 Model | Obs ll(null) ll(model) df AIC BIC 
 +  
 . | 68 -287.8998 -254.7573 9 527.5146 547.4902 
Note: N=Obs used in calculating BIC; see [R] BIC note
Correction de l'heteroscedasticité par la procedure de white 
Linear regression Number of obs = 68 
F( 8, 59) = 12.57 
Prob > F = 0.0000 
R-squared = 0.6227 
Root MSE = 11.006 
| 
 | 
roe | 
fpsta | rrsa | 
ta | 
 | 
  +  
Robust 
 Coef. Std. Err. t 
 .3291626 .1498602 2.20 
 2.294563 .9915612 2.31 
.0000238 .0000135 1.77 
 | 
 P>|t| [95% Conf. 
0.032 .029293 
0.024 .3104536 
0.082 -3.14e-06 
 | 
 Interval] 
.6290323 
4.278672 
.0000508 
 | 
 
| 
 dptd | 
 | 
 .0700445 .3119628 0.22 
 | 
 0.823 -.5541917 
 | 
   | 
 .6942806 
 | 
 
| 
 fpn | 
 | 
 .0004475 .0001957 2.29 
 | 
 0.026 .0000559 
 | 
   | 
 .0008391 
 | 
 
| 
 rtcstd | 
 | 
 -126.1769 76.12553 -1.66 
 | 
 0.103 -278.5037 
 | 
   | 
 26.14999 
 | 
 
| 
 cbanc | 
 | 
 -.0001542 .0001275 -1.21 
 | 
 0.231 -.0004093 
 | 
   | 
 .0001009 
 | 
 
| 
 dbanc | 
 | 
 -.0000273 .00004 -0.68 
 | 
 0.498 -.0001074 
 | 
   | 
 .0000528 
 | 
 
| 
 _ cons | 17.36273 11.40456 1.52 
 | 
 0.133 -5.457752 
 | 
   | 
 40.18321 
 | 
 
| 
 Estimation par la method moindres carrées
generalisées 
 | 
   | 
   | 
 
| 
 Iteration 0: log likelihood = -254.75731 
 | 
   | 
   | 
   | 
 
| 
 Generalized linear models 
 | 
 No. of obs 
 | 
 = 
 | 
 68 
 | 
 
| 
 Optimization : ML 
 | 
 Residual df 
 | 
 = 
 | 
 59 
 | 
 
   | 
 Scale parameter 
 | 
 = 
 | 
 121.141 
 | 
 
| 
 Deviance = 7147.319001 
 | 
 (1/df) Deviance 
 | 
 = 
 | 
 121.141 
 | 
 
| 
 Pearson = 7147.319001 
 | 
 (1/df) Pearson 
 | 
 = 
 | 
 121.141 
 | 
 
  
  
85 
Variance function: V(u) = 1 [Gaussian] 
Link function : g(u) = u [Identity] 
AIC = 7.757568 
Log likelihood = -254.7573067 BIC = 6898.368 
 | OIM 
 roe | Coef. Std. Err. z P>|z| [95% Conf. Interval] 
 +  
 fpsta | .3291626 .3588413 0.92 0.359 -.3741535 1.032479 
 rrsa | 2.294563 .8906147 2.58 0.010 .5489903 4.040136 
ta | .0000238 .0000236 1.01 0.314 -.0000225 .0000701 
 dptd | .0700445 .1692866 0.41 0.679 -.2617511 .40184 
 fpn | .0004475 .0001753 2.55 0.011 .000104 .000791 
 rtcstd | -126.1769 75.76681 -1.67 0.096 -274.6771 22.32336 
 cbanc | -.0001542 .0000866 -1.78 0.075 -.0003239 .0000156 
 dbanc | -.0000273 .0000465 -0.59 0.557 -.0001184 .0000638 
cons | 17.36273 13.66144 1.27 0.204 -9.413213 44.13867 
_ 
Test de normalité des residus 
Shapiro-Wilk W test for normal data 
 Variable | Obs W V z Prob>z 
 +  
 resid | 68 0.99270 0.439 -1.787 0.96300 
  
86 
Annexe 3: résultats des
régressions par les MCO, des tests d'autocorrélation et
d'hétéroscédasticité et la régression par
les MCG du modèle ROA. 
| 
 Equation de ROA 
 | 
 df MS 
 | 
   | 
 Number of obs 
F( 8, 59) 
 | 
 = 68 
= 12.09 
 | 
 
| 
 Regression par les MCO 
 | 
 
| 
 Source | 
 +  
 | 
 SS 
 | 
 
| 
 Model | 
 | 
 18.5175555 
 | 
 8 2.31469444 
 | 
   | 
 Prob > F 
 | 
 = 0.0000 
 | 
 
| 
 Residual | 
 | 
 11.296186 
 | 
 59 .19146078 
 | 
   | 
 R-squared 
 | 
 = 0.6211 
 | 
 
| 
  +  
 | 
   | 
   | 
   | 
 Adj R-squared 
 | 
 = 0.5697 
 | 
 
| 
 Total | 
 | 
 29.8137416 
 | 
 67 .444981218 
 | 
   | 
 Root MSE 
 | 
 = .43756 
 | 
 
| 
 roa | 
 | 
 Coef. 
 | 
 Std. Err. t 
 | 
 P>|t| 
 | 
 [95% Conf. 
 | 
 Interval] 
 | 
 
| 
  +  
fpsta | 
 | 
 .012863 
 | 
 .0142658 0.90 
 | 
 0.371 
 | 
 -.0156828 
 | 
 .0414089 
 | 
 
| 
 rrsa | 
 | 
 .1006643 
 | 
 .0354066 2.84 
 | 
 0.006 
 | 
 .0298159 
 | 
 .1715128 
 | 
 
| 
 ta | 
 | 
 -1.15e-07 
 | 
 9.39e-07 -0.12 
 | 
 0.903 
 | 
 -1.99e-06 1.76e-06 
 | 
   | 
 
| 
 dptd | 
 | 
 .002146 
 | 
 .00673 0.32 
 | 
 0.751 
 | 
 -.0113208 
 | 
 .0156127 
 | 
 
| 
 fpn | 
 | 
 .000012 
 | 
 6.97e-06 1.73 
 | 
 0.090 
 | 
 -1.92e-06 
 | 
 .000026 
 | 
 
| 
 rtcstd | 
 | 
 -9.129399 
 | 
 3.012127 -3.03 
 | 
 0.004 
 | 
 -15.15665 
 | 
 -3.102146 
 | 
 
| 
 cbanc | 
 | 
 -3.21e-06 
 | 
 3.44e-06 -0.93 
 | 
 0.356 
 | 
 -.0000101 
 | 
 3.68e-06 
 | 
 
| 
 dbanc | 
 | 
 -1.55e-06 
 | 
 1.85e-06 -0.84 
 | 
 0.404 
 | 
 -5.25e-06 
 | 
 2.14e-06 
 | 
 
| 
 _cons | 
 | 
 1.58716 
 | 
 .543114 2.92 
 | 
 0.005 
 | 
 .5003917 
 | 
 2.673929 
 | 
 
  
Test d'heteroscedasticité 
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho:
Constant variance 
Variables: fitted values of roa 
chi2(1) = 13.37 
Prob > chi2 = 0.0003 
Test d'heteroscedasticité à travers le VIF 
| 
 Variable 
 | 
 | 
 | 
 VIF 
 | 
 1/VIF 
 | 
 
| 
 cbanc 
 | 
 | 
 | 
 60.38 
 | 
 0.016561 
 | 
 
| 
 dbanc 
 | 
 | 
 | 
 32.87 
 | 
 0.030427 
 | 
 
| 
 fpn 
 | 
 | 
 | 
 24.92 
 | 
 0.040120 
 | 
 
| 
 ta | 
 | 
   | 
 16.63 
 | 
 0.060120 
 | 
 
| 
 rrsa 
 | 
 | 
 | 
 6.35 
 | 
 0.157357 
 | 
 
| 
 rtcstd | 
 | 
 4.15 
 | 
 0.241239 
 | 
 
| 
 dptd | 
 | 
 1.82 
 | 
 0.549482 
 | 
 
| 
 fpsta | 
 | 
 1.15 
 | 
 0.870648 
 | 
 
| 
  + 
 | 
   | 
   | 
 
| 
 Mean VIF | 
 | 
 18.53 
 | 
   | 
 
  
Test d'heteroscedasticité conditionnelle 
LM test for autoregressive conditional heteroskedasticity
(ARCH) 
 lags(p) | chi2 df Prob > chi2 
 +  
1 | 40.732 1 0.0000 
 H0: no ARCH effects vs. H1: ARCH(p) disturbance 
Test d'autocorrelation de Breusch godfrey 
Breusch-Godfrey LM test for autocorrelation 
 lags(p) | chi2 df Prob > chi2 
 +  
1 | 52.830 1 0.0000 
H0: no serial correlation 
Test d'autocorrelation de durbin Watson 
Durbin's alternative test for autocorrelation 
 lags(p) | chi2 df Prob > chi2 
 +  
1 | 201.978 1 0.0000 
H0: no serial correlation 
Determination de la valeur de AIC 
 Model | Obs ll(null) ll(model) df AIC BIC 
 +  
 . | 68 -287.8998 -254.7573 9 527.5146 547.4902 
Note: N=Obs used in calculating BIC; see [R] BIC note 
| 
 = 
 | 
 68 
 | 
 
| 
 = 
 | 
 13.26 
 | 
 
| 
 = 
 | 
 0.0000 
 | 
 
| 
 = 
 | 
 0.6211 
 | 
 
| 
 = 
 | 
 .43756 
 | 
 
  
  
87 
Correction de l'heteroscedasticité par la procedure de
white 
Linear regression Number of obs 
F( 8, 59) Prob > F R-squared Root MSE 
  
88 
 
| 
 roa 
 | 
 | 
| 
 | 
 Coef. 
 | 
 Robust 
Std. Err. 
 | 
 t 
 | 
 P>|t| 
 | 
 [95% Conf. 
 | 
 Interval] 
 | 
 
| 
 fpsta 
 | 
 | 
 | 
 .012863 
 | 
 .0056025 
 | 
 2.30 
 | 
 0.025 
 | 
 .0016524 
 | 
 .0240737 
 | 
 
| 
 rrsa 
 | 
 | 
 | 
 .1006643 
 | 
 .0371351 
 | 
 2.71 
 | 
 0.009 
 | 
 .0263571 
 | 
 .1749716 
 | 
 
| 
 ta | 
 | 
 -1.15e-07 
 | 
 5.05e-07 
 | 
 -0.23 
 | 
 0.820 
 | 
 -1.13e-06 
 | 
 8.95e-07 
 | 
 
| 
 dptd 
 | 
 | 
 | 
 .002146 
 | 
 .0118866 
 | 
 0.18 
 | 
 0.857 
 | 
 -.0216391 
 | 
 .0259311 
 | 
 
| 
 fpn 
 | 
 | 
 | 
 .000012 
 | 
 7.57e-06 
 | 
 1.59 
 | 
 0.117 
 | 
 -3.11e-06 
 | 
 .0000272 
 | 
 
| 
 rtcstd 
 | 
 | 
 | 
 -9.129399 
 | 
 2.750259 
 | 
 -3.32 
 | 
 0.002 
 | 
 -14.63265 
 | 
 -3.626143 
 | 
 
| 
 cbanc 
 | 
 | 
 | 
 -3.21e-06 
 | 
 4.85e-06 
 | 
 -0.66 
 | 
 0.511 
 | 
 -.0000129 
 | 
 6.50e-06 
 | 
 
| 
 dbanc 
 | 
 | 
 | 
 -1.55e-06 
 | 
 1.65e-06 
 | 
 -0.94 
 | 
 0.351 
 | 
 -4.86e-06 
 | 
 1.75e-06 
 | 
 
| 
 _cons 
 | 
 | 
 | 
 1.58716 
 | 
 .4185245 
 | 
 3.79 
 | 
 0.000 
 | 
 .7496946 
 | 
 2.424626 
 | 
 
  
Estimation par la method moindres carrées
generalisées 
| 
 Iteration 0: log likelihood = -35.456373 
Generalized linear models 
Optimization : ML 
 | 
 No. of obs = 
Residual df = 
 | 
 68 
59 
 | 
 
   | 
   | 
   | 
   | 
   | 
 Scale parameter = 
 | 
 .1914608 
 | 
 
| 
 Deviance 
 | 
   | 
 = 11.29618604 
 | 
   | 
 (1/df) Deviance = 
 | 
 .1914608 
 | 
 
| 
 Pearson 
 | 
   | 
 = 11.29618604 
 | 
   | 
 (1/df) Pearson = 
 | 
 .1914608 
 | 
 
| 
 Variance function: V(u) = 
 | 
 1 
 | 
   | 
 [Gaussian] 
 | 
   | 
 
| 
 Link function 
 | 
 : g(u) = 
 | 
 u 
 | 
   | 
 [Identity] 
 | 
   | 
 
   | 
   | 
   | 
   | 
 AIC = 
 | 
 1.30754 
 | 
 
| 
 Log likelihood 
 | 
 = -35.4563734 
 | 
   | 
 BIC = 
 | 
 -237.6548 
 | 
 
   | 
 | 
 | 
   | 
 OIM 
 | 
   | 
   | 
   | 
 
| 
 roa 
 | 
 | 
 | 
 Coef. 
 | 
 Std. Err. 
 | 
 z 
 | 
 P>|z| [95% Conf. 
 | 
 Interval] 
 | 
 
| 
 fpsta 
 | 
 | 
 | 
 .012863 
 | 
 .0142658 
 | 
 0.90 
 | 
 0.367 -.0150975 
 | 
 .0408235 
 | 
 
| 
 rrsa 
 | 
 | 
 | 
 .1006643 
 | 
 .0354066 
 | 
 2.84 
 | 
 0.004 .0312687 
 | 
 .17006 
 | 
 
| 
 ta | 
 | 
   | 
 -1.15e-07 
 | 
 9.39e-07 
 | 
 -0.12 
 | 
 0.902 -1.96e-06 
 | 
 1.73e-06 
 | 
 
| 
 dptd 
 | 
 | 
 | 
 .002146 
 | 
 .00673 
 | 
 0.32 
 | 
 0.750 -.0110446 
 | 
 .0153366 
 | 
 
| 
 fpn 
 | 
 | 
 | 
 .000012 
 | 
 6.97e-06 
 | 
 1.73 
 | 
 0.084 -1.63e-06 
 | 
 .0000257 
 | 
 
| 
 rtcstd 
 | 
 | 
 | 
 -9.129399 
 | 
 3.012127 
 | 
 -3.03 
 | 
 0.002 -15.03306 
 | 
 -3.225738 
 | 
 
| 
 cbanc 
 | 
 | 
 | 
 -3.21e-06 
 | 
 3.44e-06 
 | 
 -0.93 
 | 
 0.352 -9.95e-06 
 | 
 3.54e-06 
 | 
 
| 
 dbanc 
 | 
 | 
 | 
 -1.55e-06 
 | 
 1.85e-06 
 | 
 -0.84 
 | 
 0.400 -5.17e-06 
 | 
 2.07e-06 
 | 
 
| 
 _cons 
 | 
 | 
 | 
 1.58716 
 | 
 .543114 
 | 
 2.92 
 | 
 0.003 .5226764 
 | 
 2.651644 
 | 
 
  
Test de normalité des residus 
Shapiro-Wilk W test for normal data 
 Variable | Obs W V z Prob>z 
 +  
. 
 resid2 | 68 0.98853 0.690 -0.807 0.79007 
  
89 
 |