WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Existence et comportement asymptotique des solutions d'une équation de viscoélasticité non linéaire de type hyperbolique

( Télécharger le fichier original )
par Khaled ZENNIR
Université Badji Mokhtar Algérie - Magister en Mathématiques 2009
  

précédent sommaire suivant

Extinction Rebellion

1.1.2 Hilbert spaces

The proper setting for the rigorous theory of partial differential equation turns out to be the most important function space in modern physics and modern analysis, known as Hilbert spaces. Then, we must give some important results on these spaces here.

Definition 1.1.8 A Hilbert space H is a vectorial space supplied with inner product (u,v) such that Jkuk = (u, u) is the norm which let H complete.

Theorem 1.1.2 ([42], Theorem 1.1.1)

Let (un)mEN is a bounded sequence in the Hilbert space H, then it possess a subsequence which converges in the weak topology of H.

Theorem 1.1.3 ([42], Theorem 1.1.2)

In the Hilbert space, all sequence which converges in the weak topology is bounded.

Theorem 1.1.4 ([42], Corollary 1.1.1)

Let (un)mEN be a sequence which converges to u, in the weak topology and (vfl)mEN is an other sequence which converge weakly to v, then

lim

Th-400

(vn,un) = (v,u). (1.5)

Theorem 1.1.5 ([42], Theorem 1.1.3)

Let X be a normed space, then the unit ball

{ }

B' = i 2 X' : klk < 1 , (1.6)

of X' is compact in a (X', X).

Proposition 1.1.4 ([42], Proposition 1.1.1)

Let X and Y be two Hilbert spaces, let (un)nEN E X be a sequence which converges weakly to u E X, let A E £(X, Y ). Then, the sequence (A (un))nEN converges to A(u) in the weak topology of Y.

Proof. For all u E X, the function

u i-- (A(u), v)

is linear and continuous, because

1(A(u), v)1 < IIAII,c(x, IT) IIuIIX IIvIII , Vu E X, v E Y. So, according to Riesz theorem, there exists w E X such that

(A(u), v) = (u, w), Vu E X.

Then,

lim

n-->o

(A (un) , v) = lim

n-->o

(um, w)

= (u, w) = (A(u), v). (1.7)

This completes the proof.

précédent sommaire suivant






Extinction Rebellion





Changeons ce systeme injuste, Soyez votre propre syndic





"I don't believe we shall ever have a good money again before we take the thing out of the hand of governments. We can't take it violently, out of the hands of governments, all we can do is by some sly roundabout way introduce something that they can't stop ..."   Friedrich Hayek (1899-1992) en 1984