Abstract
Our work, in this thesis, lies in the study, under some
conditions on p, m and the functional g, the existence and asymptotic behavior
of solutions of a nonlinear viscoelastic hyperbolic problem of the form
utt ~ Xu ~ W~ut + Rt g(t - s)iu(s, x)ds
0
+a jutjm~2 ut = b jujp~2 u, x 2 l, t >
0
u(0,x) = u0 (x), x 2 ~ ut (0,x) = u1 (x), x 2 ~
u(t,x) = 0, x 2 [', t > 0
8
<>>>>>>>>>>>>>>>
>
>>>>>>>>>>>>>>>>:
, (P)
where is a bounded domain in RN (N ~ 1), with smooth
boundary [', a, b, w are positive constants, m ~ 2, p ~ 2, and the function g
satisfying some appropriate conditions.
Our results contain and generalize some existing results in
literature. To prove our results many theorems were introduced.
Keywords: Nonlinear damping, strong damping, viscoelasticity,
nonlinear source, local solutions, global solutions, exponential decay,
polynomial decay, growth.
Résumé
Notre travail, dans ce memoire consiste a étudier
l'éxistence et le comportement asymptotique des solutions d'un
problème de viscoelasticité non lineaire de type hyperbolique
suivant:
utt ~ Xu ~ W~ut + Rt g(t - s)iu(s, x)ds
0
+a jutjm~2 ut = b jujp~2 u, x 2 l, t >
0
u(0,x) = u0 (x), x 2 ~ ut (0,x) = u1 (x), x 2 ~
u(t,x) = 0, x 2 [', t > 0
8
<>>>>>>>>>>>>>>>
>
>>>>>>>>>>>>>>>>:
, (P)
on, est un domaine borné de RN (N ~ 1), avec
frontière assez regulière [1, a, b, w sont des constantes
positives, n-i ~ 2, p ~ 2, et la fonction g satisfaite quelques conditions.
Nos résultats contiennent et généralisent
certains résultats d'existences dans la littérature. Pour la
preuve, beaucoup théorèmes ont été
présentés
Mots dlés: Dissipation nonlinéaire,
viscoelasticité, source nonlinéaire, solutions locale, solutions
globale, décroissance exponentielle de l'énergie,
décroissance polynomiale, croissement.
iv
Notations
a : bounded domain in RN.
~ : topological boundary of a.
x = (xi, x2, ...,xN) : generic point of RN.
dx = dx1dx2...dxN : Lebesgue measuring on a.
Vu : gradient of u.
Au : Laplacien of u.
f+, f- : max(f, 0), max(--f,0).
a.e : almost everywhere.
p' : conjugate of p, i.e 1
p
D(a) : space of differentiable functions with compact support in
a.
D'(a) : distribution space.
Ck (a) : space of functions k--times continuously
differentiable in a. Co (a) : space of continuous functions null board in a.
Lp (a) : Space of functions p--th power integrated on a with
measure of dx.
1 p
.
11f11p = (11 I f(x)Ip)
W1,p (a) = {u E Lp (a) , Vu E
(Lp (a))N1 .
1
p .
= (11urp+ 11Vurp)
W 1;p
0(a) : the closure of D (a) in W1,p (a). W
~1;p0(a) : the dual space of W0 "p (a).
H : Hilbert space. H1 0 =W0 1;2 .
If X is a Banach space
T
Lp (0, T; X) = {f : (0, T) --> X is measurable ; f 11f(t)111
dt < oo} .
0
{ )
L°° (0, T; X) = f : (0, T) --> X is
measurable ;ess -- sup 11f(t)11pX < oo .
tE(0,T)
Ck ([0, T] ; X) : Space of functions k--times
continuously differentiable for [0, T] --> X.
D ([0, T] ; X) : space of functions continuously differentiable
with compact support in [0, T] . Bx = Ix E X; 11x11 < 1} : unit
ball.
|