WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Valuation Methods of Executive Stock Options

( Télécharger le fichier original )
par Ismaïl Pomiès
Université de Toulouse - Master recherche Marchés et Intermédiaires Financiers 2007
  

précédent sommaire suivant

Extinction Rebellion

3.3 The optimal trading strategy

This section treats about the Executive's optimal strategy where in this case she is endowed by 1 unit of ESO. By using a similar way that in the EIP section we are going to solve this by Hamilton-JacobiBellman principle. The problem is stated as:

max

è ?Èt,T

LG(u,x,s)=0 (39)

Where L is the inifinitesimal generator of (X,S) under P which is defined in the equation (20). By Hamilton-Jacobi-Bellman argument we have to solve:

(u - r) DG

DX + èó2D2G

DX2 + (ñçóS) D2G

DSDX = 0

And then we have a general form of the optimal trading strategy è**attimeu:

è** = -( u - r) aG

ax + ( ñçóS) a2G

aSax (40)

ó 2 a2G

ax2

Now we can express all the partial derivative functions:

1. aG

ax = - ãer(T -u)G

2. a2G

ax2 = ( ãe r(T -u))2G

3. a2G

axaS = aG aS = ( ãer(T -u)) 2G ap

ap

axaS

by separation of variables argument.

Then we obtain the optimal strategy 9** as a function of the differential of the Private Price:

9** =

-'y(u - r)er(T-u)G + (ñióS)('yer(T -u))2G ap

aS

ó2('yer(T-u))2G

((u-r) ~

9** = e-r(T -u)

ãó2

- ñçS ap

ó aS

9** = 9* +ö(S,p,ñ,i,ó,'y)

9** = 9* If ñ < 0 and 9** <9* otherwise.

Where ö(S, p, ñ, i, ó, 'y) = - ñçS aS <0. If ñ> 0 and the reverse otherwise

ap

ó

Sinceap

aS = 0 (we will see this assertion later)

précédent sommaire suivant






Extinction Rebellion





Changeons ce systeme injuste, Soyez votre propre syndic





"L'ignorant affirme, le savant doute, le sage réfléchit"   Aristote