WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Construction d'un modèle prédictif basé sur le réseau de neurones profond pour la détection de cancer de la peau


par Eddy MUTOMBO SHANGA
Institut supérieur et pédagogique de Mbanza-Ngungu - Licence 2022
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Bibliographies :

[1]. Adeyinka A. A. and Viriri S., "Skin lesion images segmentation: A survey of the stateof-the-art," in International conference on mining intelligence and knowledge exploration, 2018, pp. 321-330.

[2]. Agarwal A., Issac A., Dutta M. K., Riha K., and Uher V., "Automated skin lesion segmentation using K-means clustering from digital dermoscopic images," in 2017 40th International Conference on Telecommunications and Signal Processing (TSP), 2017, pp. 743-748.

[3]. Alfed N. and Khelifi, F. "Bagged textural and color features for melanoma skin cancer detection in dermoscopic and standard images," Expert Systems with Applications, vol. 90, pp. 101-110, 2017.

[4]. Alvarez D. and Iglesias M., "k-Means clustering and ensemble of regressions: an algorithm for the ISIC 2017 skin lesion segmentation challenge," arXiv preprint arXiv : 1702.07333, 2017.

[5]. Argenziano G., Catricalà C., Ardigo M., Buccini P., De Simone P., Eibenschutz L., Ferrari A., Mariani G., Silipo V., and Sperduti I. "Seven-point checklist of dermoscopy revisited," British Journal of Dermatology, vol. 164, pp. 785-790, 2011.

[6]. Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into Deep Learning. Aug 11, 2020 Release 0.14.3.

[7]. Barata C., Ruela M., Mendonça T., and Marques, J. S. "A bag-of-features approach for the classification of melanomas in dermoscopy images: The role of color and texture descriptors," in Computer vision techniques for the diagnosis of skin cancer, ed: Springer, 2014, pp. 49-69.

[8]. Bezdek J. C., "A convergence theorem for the fuzzy ISODATA clustering algorithms," IEEE transactions on pattern analysis and machine intelligence, pp. 1-8, 1980.

[9]. Chapman, P., Clinton, J., Kerber, R., Reinartz, T., Shaerer, C., & Wirth, R. (2000). CRISP-DM 1.0 Step by-step data mining guide. The CRISP-DM consortium.

[10]. Cheng T. W., Goldgof D. B., and Hall L. O., "Fast fuzzy clustering," Fuzzy sets and systems, vol. 93, pp. 49-56, 1998.

[11]. Dalila F., Zohra A., Reda K., and Hocine, C. "Segmentation and classification of melanoma and benign skin lesions," Optik, vol. 140, pp. 749-761, 2017

[12]. Eltayef K., Li Y., and Liu X., "Detection of melanoma skin cancer in dermoscopy images," in Journal of Physics: Conference Series, 2017, p. 012034.

[13]. Garcia-Arroyo J. L. and Garcia-Zapirain B., "Segmentation of skin lesions in dermoscopy images using fuzzy classification of pixels and histogram thresholding," Computer methods and programs in biomedicine, vol. 168, pp. 11-19, 2019.

[14]. Gashler, M., Giraud-Carrier, C., & Martinez, T. (2008). Decision tree ensemble: Small heterogeneous is better than large homogeneous. Seventh

P a g e | 77

International Conference on Machine Learning and Applications (pp. 900-905). IEEE.

[15]. Géron A., (2017). Hands-On_Machine_Learning_with_Scikit-learn and trensflow. USA: O'Reilly Media.

[16]. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

[17]. Hagerty J. R., Stanley R. J., Almubarak H. A., Lama N., Kasmi R., Guo P., Drugge R. J., Rabinovitz H. S., Oliviero M., and Stoecker, W. V. "Deep learning and handcrafted method fusion: higher diagnostic accuracy for melanoma dermoscopy images," IEEE journal of biomedical and health informatics, vol. 23, pp. 1385-1391, 2019.

[18]. Hartinger, A. "Détection du cancer de la peau par tomographie d'impédance électrique,"École Polytechnique de Montréal, 2012.

[19]. Henning J. S., Dusza S. W., Wang S. Q., Marghoob A. A., Rabinovitz H. S., Polsky D., and Kopf A. W. "The CASH (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy," Journal of the American Academy of Dermatology, vol. 56, pp. 45-52, 2007.

[20]. Hirano G., Nemoto M., Kimura Y., Kiyohara Y., Koga H., Yamazaki N., Christensen G., Ingvar C., Nielsen K., and Nakamura, A. "Automatic diagnosis of melanoma using hyperspectral data and GoogLeNet," Skin Research and Technology, vol. 26, pp. 891-897, 2020.

[21]. Ioffe S. and Szegedy, C. "Batch normalization: Accelerating deep network training by reducing internal covariate shift," in International conference on machine learning, 2015, pp. 448-456.

[22]. Jaisakthi S. M., Mirunalini P., and Aravindan C., "Automated skin lesion segmentation of dermoscopic images using GrabCut and k-means algorithms," IET Computer Vision, vol. 12, pp. 1088-1095, 2018.

[23]. Jaworek-Korjakowska J., "Computer-aided diagnosis of micro-malignant melanoma lesions applying support vector machines," BioMed research international, vol. 2016, 2016.

[24]. Jay Kuo, C.-C. University of Southern California, Los Angeles Understanding Convolutional Neural Networks with A Mathematical Model. 02/09/2016.

[25]. Jojoa Acosta M. F., Caballero Tovar L. Y., Garcia-Zapirain M. B., and Percybrooks, W. S. "Melanoma diagnosis using deep learning techniques on dermatoscopic images," BMC Medical Imaging, vol. 21, pp. 1-11, 2021.

[26]. Kasmi R. and Mokrani, K. "Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule," IET Image Processing, vol. 10, pp. 448-455, 2016.

[27]. Kingma D. P. and Ba, J. "Adam: A method for stochastic optimization," arXiv preprint arXiv : 1412.6980, 2014.

[28]. Lin B. S., Michael K., Kalra S., and Tizhoosh, H. R. "Skin lesion segmentation: U-nets versus clustering," in 2017 IEEE Symposium Series on Computational Intelligence (SSCI), 2017, pp. 1-7.

[29]. MacQueen J., "Some methods for classification and analysis of multivariate observations," in Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 1967, pp. 281-297.

P a g e | 78

[30]. Majumder S. and Ullah, M. A. "Feature extraction from dermoscopy images for an effective diagnosis of melanoma skin cancer," in 2018 10th International Conference on Electrical and Computer Engineering (ICECE), 2018, pp. 185188.

[31]. Masood A. and Al-Jumaily A. A., "Fuzzy C mean thresholding based level set for automated segmentation of skin lesions," Journal of signal and information processing, vol. 4, p. 66, 2013.

[32]. Mitchell, T. M. (1997). Machine Learning. McGraw-Hil.

[33]. Moura N., Veras R., Aires K., Machado V., Silva R., Araújo F., and Claro, M. "ABCD rule and pre-trained CNNs for melanoma diagnosis," Multimedia Tools and Applications, vol. 78, pp. 6869-6888, 2019.

[34]. Nachbar F., Stolz W., Merkle T., Cognetta A. B., Vogt T., Landthaler M., Bilek P., Braun-Falco O., and Plewig G., "The ABCD rule of dermatoscopy: high prospective value in the diagnosis of doubtful melanocytic skin lesions," Journal of the American Academy of Dermatology, vol. 30, pp. 551-559, 1994.

[35]. Nachbar F., Stolz W., Merkle T., Cognetta A. B., Vogt, M. Landthaler T., Bilek P., Braun-Falco O., and Plewig G. "The ABCD rule of dermatoscopy: high prospective value in the diagnosis of doubtful melanocytic skin lesions," Journal of the American Academy of Dermatology, vol. 30, pp. 551-559, 1994.

[36]. Nguyên HOANG, La formule du savoir, juin 2018.

[37]. Oliveira R. B., Mercedes Filho E., Ma Z., Papa J. P., Pereira A. S., and Tavares J. M. R., "Computational methods for the image segmentation of pigmented skin lesions: a review," Computer methods and programs in biomedicine, vol. 131, pp. 127-141, 2016.

[38]. Patterson J., & Gibson A. (2017). Deep Learning: A Practitioner's Approach. Beijing: OReilly Media.

[39]. Rosenblatt, F. (1958). THE PERCEPTRON: A PROBABILISTIC MODEL FOR. Psychological Review, 65.

[40]. Rother C., Kolmogorov V., and Blake A., "" GrabCut" interactive foreground extraction using iterated graph cuts," ACM transactions on graphics (TOG), vol. 23, pp. 309-314, 2004.

[41]. Schmidhuber, J. (2015). Deep Learning. Scholarpedia, 10, 32832.

[42]. Sung H., Ferlay J., Siegel R. L., Laversanne M., Soerjomataram I., Jemal A., and Bray F. "Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries," CA: a cancer journal for clinicians, vol.71, pp. 209-249, 2021.

[43]. Sutton, R. S. (1988). Learning to predict by the method of temporal differences. Machine Learning.

[44]. Szilagyi L., Benyo Z., Szilágyi S. M., and Adam H., "MR brain image segmentation using an enhanced fuzzy c-means algorithm," in Proceedings of the 25th annual international conference of the IEEE engineering in medicine and biology society (IEEE Cat. No. 03CH37439), 2003, pp. 724-726.

[45]. Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine Learning.

P a g e | 79

[46]. Yang X., Zeng Z., Yeo S. Y., Tan C., Tey H. L., and Su, Y. "A novel multi-task deep learning model for skin lesion segmentation and classification," arXiv preprint arXiv : 1703.01025, 2017.

[47]. Yu L., Chen H., Dou Q., Qin J., and Heng, P.-A. "Automated melanoma recognition in dermoscopy images via very deep residual networks," IEEE transactions on medicalimaging, vol. 36, pp. 994-1004, 2016.

[48]. Yuan Y., Chao M., and Lo, Y.-C. "Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance," IEEE transactions on medical imaging,vol. 36, pp. 1876-1886, 2017.

[49]. Zhang X., "Melanoma segmentation based on deep learning," Computer assisted surgery, vol. 22, pp. 267-277, 2017.

Webographie :

[1]. Bremme, L. (2015). Définition : Qu'est-ce que le Big Data. Retrieved Mai 18, 2020, from lebigdata: https://www.lebigdata.fr/definition-big-data

[2]. Cayla, B. (2018). La star des algorithmes de ML : XGBoost. Retrieved 05 18, 2021, from datacorner: https://www.datacorner.fr/xgboost/

[3]. Claw, S. (2020). Python. Retrieved 07 19, 2021, from TkInter: https://wiki.python.org/moin/TkInter

[4]. Clayton R., (2019). Qu'est-ce que le machine learning ? Retrieved Novembre 08, 2022, from Oracle Algeria: https://www.oracle.com/dz/artificial-intelligence/what-is-machine learning.html

[5]. Dave, A. (2020). Regression in Machine Learning. Retrieved 19 10,2021,

from Medium: https://medium.com/datadriveninvestor/regression-in-
machine-learning-296caae933ec

[6]. Dupré, X. (2020). La classification. Retrieved 19 10,2021 from Xavierdupre: http://www.xavierdupre.fr/app/mlstatpy/helpsphinx/c_ml/rn/rn_ 3_clas.html

[7]. GAËL. (2019). Machine Learning. Retrieved 04 05, 2022, from Datakeen: https://datakeen.co/8-machine-learning-algorithms-explained-in-human-language/

[8]. Grossfeld, B. (2020). Deep learning vs machine learning: a simple way to understand the difference. Retrieved from zendesk blog: https://www.zendesk.com/blog/machine-learning-anddeep-learning/

[9]. Grossfeld, B. (2020). Le programme du Master en intelligence artificielle.

Retrieved 08 04, 2021, from Unidistance:
https://unidistance.ch/intelligenceartificielle/master/modules/?gclid=Cj0KC Qjwj7v0BRDOARIsAGh37io1ERDQK4Wb

[10]. Gupta, N. (2019). Why is Python Used for Machine Learning? from Hacker

Noon: https://hackernoon.com/why-python-used-for-machine-
learningu13f922ug

[11]. https://www.kaggle.com/code/manoprathabans/skin-cancer-classification-using-cnn/data. Consulté le 30/10/2022.

P a g e | 80

[12]. https://www.maxicours.com/se/cours/aires-visuelles-et-

perception/tolerance%209999/emergencystretch%203em/hfuzz%20.5/p@% 20/vfuzz%20/hfuzz%20-visuelle/. Consulté le 30/10/2021.

[13]. Issarane, H. (2019). Apprentissage Non Supervisé. Retrieved 04 05, 2021, from Le DataScientist: https://le-datascientist.fr/apprentissage-non-supervise

[14]. Li, H. (2017). Which ML Algorithms to Use? Retrieved from The Eponymous Pickle: http://eponymouspickle.blogspot.com/2017/04/which-ml-algorithms-touse.html

[15]. Nuageo. (2017). Deep Learning : définition, concept et usages potentiels. Retrieved 03 21, 2021, from eurocloud: https://www.eurocloud.fr/deep-learning-definition-concept-usagespotentiels/

[16]. python.doctor. (2019). Apprendre le langage de programmation python. Retrieved 04 29, 2022, from python.doctor: https://python.doctor/

[17]. Spyder Website Contributors. (2018). Overview. Retrieved 04 29, 2021, from pyder-ide: https://www.spyder-ide.org

[18]. The Pallets Projects. (2010). Flask. Retrieved 07 19, 2021, from Flask palletsprojects: https://flask.palletsprojects.com/en/1.1.x/

[19]. Vázquez, F. (2018). A «weird» Introduction to Deep Learning. Retrieved from

bbvadata&analytics: https://www.bbvadata.com/a-weird-introduction-to-
deep-learning/

[20]. Werfelli, O. (2015). Présentation générale des réseaux de neurones artificiels.

Cours. Retrieved 04 05, 2021, from

https://fr.slideshare.net/OussamaWerfelli/rseaux-de-neurones-artificiels

[21]. WIENER M. & LIAW A. (2002), http://www.bios.unc.edu/ Classification and Regression by random Forest.R News, consulté le 14 novembre 2021.

précédent sommaire






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Je voudrais vivre pour étudier, non pas étudier pour vivre"   Francis Bacon