CONCLUSION GÉNÉRALE ET PERSPECTIVES
? Pour le cas de la largeur du bain de fusion, les
paramètres d'entrée ayant un indice de sensibilité plus
important sont la température du liquidus ou solidus (X1), la
conductivité thermique solide (X4), la chaleur spécifique solide
(X6) et liquide (X7), la puissance, la vitesse et la hauteur de poudre
(Figure 3.13).
De cette étude il est clair que les paramètres
procédés sont ceux qui ont le plus d'influence sur la
variabilité des réponses du module melting (Figure 3.14). Ainsi
une connaissance des données d'entrées importantes ou
négligeable permettrons d'améliorer le module de fusion.
Ce travail constitue donc une étape dans l'étude
et la modélisation des phénomènes physiques intervenant
lors de l'interaction d'un faisceau laser avec la matière en SLM en
considérant le rôle des paramètres procédés.
Il a permis de fournir des éléments de réponse sur
l'influence de la vitesse de balayage, la puissance laser et la densité
d'énergie volumique sur la caractérisation dimensionnelle
(largeur et profondeur du bain de fusion) des cordons obtenus par SLM. Une
amélioration du modèle et la mise en place d'autres
caractérisations expérimentales peuvent être entrevues
à travers une étude plus approfondie de l'aspect rapport
profondeur/largeur du bain de fusion qui permettra peut-être de trouver
une valeur optimale de ce paramètre pour un objectif principal et commun
à toutes les recherches autour du procédé SLM, celui de
l'amélioration de la qualité des pièces fabriquées
avec ce procédé.
69
MASTER II-LABORATOIRE SCIENCES DES
MATÉRIAUX
KOND NGUE PIERRE GÉRARD DAREL
(c)2021
RÉFÉRENCES
RÉFÉRENCES
[1] AFNOR. Fabrication additive-Vocabulaire, NF E
67-001,2011.
[2] A.F. Obaton, A. Bernard, G. Taillandier et J.M.
Moschetta, "fabrication additive : état de l'art et besoins
métrologiques engendrés", Revue française de
métrologie, pp. 21-36,2015.
[3] P. Dubois, A. Aoussat et R. Duchamp,
"Généralités, Techniques de l'Ingénieur", BM7017,
10/04/2000.
[4] P. Alfred, P. Ciraud. "Verfahren und Vorrichtung zur
Herstellung beliebiger Gegenstände aus beliebigem schmelzbarem Material".
German patent application, DE 2263777, July 5th 1973.
[5] J.C. André, A. Le Méhauté, O. De
Witte, "Dispositif pour réaliser un modèle de pièce
industrielle", Brevet français 2567668, Juillet 1984.
[6] C.W. Hull, «Apparatus for production of
three-dimensional objects by stereolithography», US Patent 4575330, Mars
1986.
[7] T. Wohlers and T. Gornet, «History of additive
manufacturing», pp. 12-21, In Wohlers Report 2012, 2012.
[8] L. Sexton, S. Lavin, G. Byrne, A. Kennedy,
«Laser cladding of aerospace materials», Journal of Materials
Processing Technology, pp. 63-68, Vol. 122, 2002.
[9] M. Kerschbaumer, G. Ernst, P. O'Leary, «Tool
path generation for 5-Axis laser cladding, in Proceedings of the Fourth Laser
Assisted Net Shape Engineering», Vol. 2, pp. 831-842, September
2004.
[10] M. Tomlin, J. Meyer, «Topology optimization of
an additive layer manufactured (ALM) Aerospace Part», the 7th Altair CAE
Technology conference, 2011.
[11] J.M. Williams, A.A. dewunmi, R.M. Schek, C.L.
Flanagan, P.H. Krebsbach, S.E. Feinberg, S.J. Hollister, S. Das, «Bone
tissue engineering using polycaprolactone scaffolds fabricated via selective
laser sintering, Biomaterials», Vol. 26, pp. 4817- 4827,2005.
[12] P. Bartolo, J.P. Kruth, J. Silva, G. Levy, A.
Malshe, K. Rajurkar, M. Mitsuishi, J. Ciurana, M. Leu, «Biomedical
production of implants by additive electro-chemical and physical
processes», CIRP Annals - Manufacturing Technology, Vol. 61, pp.
635-655,2012.
[13] J. Parthasarathy, B. Starly, S. Raman, «A
design for the additive manufacture of functionally graded porous structures
with tailored mechanical properties for
70
MASTER II-LABORATOIRE SCIENCES DES
MATÉRIAUX
KOND NGUE PIERRE GÉRARD DAREL
(c)2021
RÉFÉRENCES
biomedical applications», Journal of Manufacturing
Processes. Vol.13. pp.160-170. August 2011.
[14] V. Manoharan, S.M. Chou, S. Forrester, G.B. Chai,
P.W. Kong, «Application of additive manufacturing techniques in sports
footwear, Virtual and Physical Prototyping», pp. 249-252, April
2013.
[15] AFNOR, NF ISO / ASTM 52900 "Fabrication additive --
Principes généraux -- Terminologie", 2016.
[16] L.E. Rännar, A. Glad, and G.C. Gustafson,
«Efficient cooling with tool inserts manufactured by electron beam
melting,» Rapid Prototyp. J., vol. 13, no. 3, pp. 128-135, 2007.
[17] R. Rezaie, M. Badrossamay, A. Ghaie, and H. Moosavi,
«Topology Optimization for Fused Deposition Modeling Process,»
Procedia CIRP, vol. 6, pp. 521-526, Jan. 2013.
[18] B. Vayre, F. Vignat, and F. Villeneuve,
«Designing for Additive Manufacturing,» Procedia CIRP, vol. 3, pp.
632-637, Jan. 2012.
[19] M. Tomlin and J. Meyer, «Topology Optimization
of an Additive Layer Manufactured (ALM) Aerospace Part,» in The 7th Altair
CAE Technology Conference, Gaydon, UK, 10th May, 2011.
[20] G.A.O. Adam and D. Zimmer, «Design for Additive
Manufacturing--Element transitions and aggregated structures,» CIRP J.
Manuf. Sci. Technol., vol. 7, no. 1, pp. 20-28, Jan. 2014.
[21] P. Reeves, «Additive Manufacturing - A supply
chain wide response to economic uncertainty and environmental
sustainability,» Econolyst Limited, Silversmiths, Crown Yard, Wirksworth,
Derbyshire, DE4 4ET, UK, 2009.
[22] R. Becker, A. Grzesiak, and A. Henning,
«Rethink assembly design,» Assem. Autom., vol. 25, no. 4, pp.
262-266, 2005.
[23] H. Galarraga, D.A. Lados, R.R. Dehoff, M.M. Kirka,
and P. Nandwana, «Effects of the microstructure and porosity on properties
of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM),» Addit.
Manuf., vol. 10, pp. 47-57, 2016.
[24] L. Löber, C. Flache, R. Petters, U. Kühn,
and J. Eckert, «Comparison of different post processing technologies for
SLM generated 316l steel parts,» Rapid Prototype. J., vol. 19, no. 3, pp.
173-179, 2013.
[25] B. Vayre, F. Vignat, and F. Villeneuve,
«Identification on Some Design Key Parameters for Additive Manufacturing:
Application on Electron Beam Melting,» Procedia CIRP, vol. 7, pp. 264-269,
Jan. 2013.
[26] Fabrication Additive VS Fabrication Soustractive:
https://www.3dz.fr/fabrication-additive-ou-soustractive.
71
MASTER II-LABORATOIRE SCIENCES DES
MATÉRIAUX
KOND NGUE PIERRE GÉRARD DAREL
(c)2021
RÉFÉRENCES
[27] Fabrication Additive VS Fabrication Soustractive:
https://techso.ca/la-fabrication-additive-et-soustractive.
[28] Formative Manufacturing:
https://meltcollective.com/project/tool-library/formative-fabbrication.
[29] Fabrication Formative:
https://fr.slideshare.net/MonarchMetal/how-common-manfacturing-methode-compare.
[30] B.P. Conner, G.P. Manogharan, A.N. Martof, L.M.
Rodomsky, C.M. Rodomsky, D.C. Jordan, and J.W. Limperos, «Making sense of
3-D printing: Creating a map of additive manufacturing products and
services,» Addit. Manuf., vol. 1-4, pp. 64-76, 2014.
[31] N. Guo & M.C. Leu «Additive manufacturing:
Technology, applications and research needs». Frontiers of Mechanical
Engineering Front. Mech. Eng., 8(3), 215-243, 2013.
[32] A. Stwora & G. Skrabalak, «Influence of
selected parameters of Selective Laser Sintering process on properties of
sintered materials». Journal of Achievements in Materials and
Manufacturing Engineering, 61(2), 375-380, 2013.
[33] 3D Printing Electronics Laser Additive Manufacturing
Systems. (n.d.). Retrieved May 19, 2016, from
http://www.optomec.com
[34] J. Gausemeier, N. Echterhoff, M. Kokoschka & M.
Wall,» Thinking ahead the Future of Additive Manufacturing - Analysis of
Promising Industries». DMRC study, Paderborn, 2011.
[35] J.P. Swensen, L.U. Odhner, B. Araki & A.M. Dollar,
«Printing Three-Dimensional Electrical Traces in Additive Manufactured
Parts for Injection of Low Melting Temperature Metals». Journal of
Mechanisms and Robotics, 7(2), 021004, 2015.
[36] J.M. Chua, «Are 3D-Printed Fabrics the Future of
Sustainable Textiles». Ecouter re, 2010.
[37] L. Ingham. (2014, November 20). In Pictures: 3D printed
art showcases incredible possibilities of additive manufacturing - Factor.
Retrieved May 19, 2016, from
http://factor-tech.com/3d-printing/9685-in-pictures-3d-printed-art-showcases-incredible-possibilities-of-additive-manufacturing/.
[38] Wohlers report 2017
[39] NF ISO, «NF ISO 17296-2 Fabrication additive -
Principes généraux - Partie 2 : Vue d'ensemble des
catégories de procédés et des matériaux de
base.» 2015.
[40] J.C. André, A. Le Méhauté & O.
de Witte, «Dispositif pour réaliser un modèle de
pièce industrielle,» 25676681984.
[41] C.W. Hull, «Apparatus for production of
three-dimensional ojects by stereolithography,» US Patent
4,575,330,1986.
72
MASTER II-LABORATOIRE SCIENCES DES
MATÉRIAUX
KOND NGUE PIERRE GÉRARD DAREL
(c)2021
RÉFÉRENCES
[42] F. Laverne, F. Segonds & P. Dubois, "Fabrication
additive : Principes généraux", Techniques de L'ingénieur,
1-15, 2016.
[43] T.T. Wohlers, «Wohlers Report 2013: Additive
Manufacturing and 3D Printing State of the Industry: Annual Worldwide Progress
Report,» Fort Cllins, CO: Wohlers Associates, Inc, 2011.
[44] Moulage à cire perdue : du modèle
à la pièce, B. Anglade, H. Horsin Molinaro, F. Ventura, ressource
Culture Sciences de l'Ingénieur,
http://eduscol.education.fr/sti/si-ens-paris-saclay/ressources_pedagogiques/moulage-cire-perdue-du-modele-ala-piece.
[45]
http://www.maxisciences.com/imprimante-3d/un-robot-va-imprimer-en-3d-un-pont-en-acier-au-dessus-d-un-canal-d-amsterdam
art35128.html.
[46] Stratasys, «Stratasys Design Series.»
[Online]. Available:
http://www.stratasys.com/3dprinters/design-series/connex-systems.
[47] Du prototypage rapide à la fabrication additive
- Cours de Bruce Anglade, ENS Paris-Saclay.
[48] S.S Crump, «Apparatus and method for creating
three-dimensional objects,»US Patent 5,121,329, 1992.
[49] K.P. Karunakaran, A. Bernard, S. Suryakumar, L.
Dembinski, and G. Taillandier, «Rapid manufacturing of metallic
objects,» Rapid Prototyp. J., vol. 18, no. 4, pp. 264-280, 2012.
[50] Impression 3D : procédé de fusion sur lit
de poudre, D. Comberton, N. Muller, ressource
Culture Sciences de l'Ingénieur,
http://eduscol.education.fr/sti/si-ens-paris- saclay/ressources_pedagogiques/impression-3d-procede-de-fusion-sur-lit-de-poudre
[51] Moulage à cire perdue : du modèle
à la pièce, B. Anglade, H. Horsin Molinaro, F. Ventura, ressource
Culture Sciences de l'Ingénieur,
http://eduscol.education.fr/sti/si-ens-paris-saclay/ressources_pedagogiques/moulage-cire-perdue-du-modele-ala-piece
[52] J. Fréchard and E. Laubriat, «CLAD Process
to build and repair aeronautic parts,» in AEFA, 2015.
[53] P. Muller, «Fabrication Additive de pièces
multimatériaux,» 2013.
[54] K. M. Taminger and R. A. Hafley, «Electron Beam
Freeform Fabrication (EBF3) for Cost Effective Near-Net Shape
Manufacturing,» 2006.
[55] F. Hild, H.H. Molinaro, S. Roux "La tomographie en
sciences et mécanique des matériaux : voyage au centre de la
matière", ressource Culture Sciences de l'Ingénieur,
http://eduscol.education.fr/sti/si-ens-cachan/ressources_pedagogiques/la-tomographie-en-sciences-et-mecanique-des-materiaux
73
MASTER II-LABORATOIRE SCIENCES DES
MATÉRIAUX
KOND NGUE PIERRE GÉRARD DAREL
(c)2021
RÉFÉRENCES
[56] Introduction of SLM process. (n.d.). Retrieved
from
http://www.birmingham.ac.uk/Documents/college
-eps/irc/amp-lab/SLM.pdf
[57] G. Dongdong, «Laser Additive Manufacturing of
High -Performance Materials», Springer-Verlag Berlin Heidelberg
2015.
[58] N.T. Aboulkhair, N.M. Everitt, I. Ashcroft & C.
Tuck, "Reducing porosity in AlSi10Mg parts processed by selective laser
melting». Additive Manufacturing, 1-4, 77-86, 2014.
[59] T. Kurzynowski, E. Chlebus, B. Ku·nicka &
J. Reiner, «Parameters in selective laser melting for processing metallic
powders». High Power Laser Materials Processing: Lasers, Beam Delivery,
Diagnostics, and Applications 8239, 317-322, 2012.
[60] L.V. Belle, "Analyse, modélisation et
simulation de l'apparition de contraintes en fusion laser métallique",
Mechanics of the solides, INSA de Lyon, France, 2013.
[61]
https://accsimia-software.com/fabrication-additive
[62] Modélisation des procédés de
fabrication additive,
https://www.ec2-modelisation.fr
[63] S. Jedid, «La simulation numérique au
service de la fabrication additive SLM», ressource Metalblog,
https://metalblog.ctif.com/2018/06/25/la-simulation-de-la-fabrication-additve-slm/,
2018
[64] A.V. Gusarov, I. Smurov, «Two-dimensional
numerical modelling of radiation transfer in powder beds at selective laser
melting», Applied Surface Science 255, 5595-5599, 2009.
[65] A.V. Gusarov, I. Smurov, «Modelling the
interaction of laser radiation with powder bed at selective laser
melting», Physics Procedia, pp. 381-394, 2010.
[66] A.V. Gusarov, I. Yadroitsev, Ph. Bertrand, I.
Smurov, «Model of Radiation and Heat Transfer in Laser-Powder Interaction
Zone at Selective Laser Melting», Journal of Heat Transfer, Vol. 131, no
7, 2009.
[67] F. Verhaeghe, T. Craeghs, J. Heulens, L. Pandelaers,
«A pragmatic model for selective laser melting with evaporation»,
Acta Materialia, Vol. 57, no 20 6006 6012,2009.
[68] D. Dai, D. Gu, «Thermal behavior and
densification mechanism during selective laser melting of copper matrix
composites: Simulation and experiments», Materials & Design, pp.
482-491, Vol. 55, 2014.
[69] S.A. Khairallah, A. Anderson, «Mesoscopic
simulation model of selective laser melting of stainless steel powder»,
Journal of Materials Processing Technology, Vol. 214, no11, 2627 36.
2014.
74
MASTER II-LABORATOIRE SCIENCES DES
MATÉRIAUX
KOND NGUE PIERRE GÉRARD DAREL
(c)2021
KOND NGUE PIERRE GÉRARD DAREL
(c)2021
RÉFÉRENCES
[70] K. Antony, N. Arivazhagan, K. Senthilkumaran,
«Numerical and experimental investigations on laser melting of stainless
steel 316L metal powders», Journal of Manufacturing Processes 16,no 3,345
55, 2014.
[71] B. Zhang, H. Liao, C. Coddet, «Microstructure
evolution and density behavior of CP Ti parts elaborated by Self-developed
vacuum selective laser melting system», Applied Surface Science
279,310-316, 2013.
[72] C. Tix, G. Simon, «A transport theoretical
model of the keyhole plasma in penetration laser welding» J. Phys. D:
Appl. Phys. 26, 2066-2074, 1993.
[73] R.B. Bird, W.E. Stewart, E.N. Lightfoot,
«Transport phenomena», New York: John Wiley & Sons. p 780,
1960.
[74] R. Ansorge, T. Sonar, «Mathematical models of
fluid dynamics: modeling, theory, basic numerical fact-an introduction»,
John Wiley & Sons, 2009
[75] P.W. Fuerschbach, J.T. Norris, X. He, T. DebRoy,
«Understanding metal vaporization from laser welding», Sandia
National Laboratories Report No.: SAND2003-3490, 2003.
[76] D. Bäuerle, «Laser processing and
chemistry», Springer Verlag, 2011.
[77] J. Trapp, A.M. Rubenchik, G. Guss, et al., «In
situ absorptivity measurements of metallic powders during laser powder-bed
fusion additive manufacturing», Appl. Mater.Today 9, 341-349,
2017.
[78] C. Tang, J.L. Tan, C.H. Wong, «A numerical
investigation on the physical mechanisms of single-track defects in selective
laser melting», Int. J. Heat Mass Transf.126 ,957-968, 2018.
[79] P.A. Hooper, «Melt pool temperature and cooling
rates in laser powder bed fusion». Additive Manufacturing, 22, 548-559,
2018.
[80] S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E.
King,» Laser powder-bed fusion additive manufacturing: Physics of complex
melt flow and formation mechanisms of pores, spatter, and denudation
zones», Acta Mater., 108, 36-45, 2016.
[81] M.J. Matthews, G. Guss, S.A. Khairallah, A.M.
Rubenchik, P.J. Depond, W.E. King, "Denudation of metal powder layers in laser
powder bed fusion processes» Acta Mater., 114 (Supplement C), 33-42,
2016.
[82] K.H. Leitz, P. Singer, A. Plankensteiner, B.
Tabernig, H. Kestler, L.S. Sigl, «Thermo-Fluiddynamical Modelling of Laser
Beam-Matter Interaction in Selective Laser Melting». Proceedings of the
2016 COMSOL Conference in Munich.
[83] T. Moscicki, J. Hoffman, Z. Szymanski,
«Modelling of plasma formation during nanosecond laser ablation».
Arch. Mech., 63 (2), 99-116, 2011.
75
MASTER II-LABORATOIRE SCIENCES DES
MATÉRIAUX
RÉFÉRENCES
[84] S. Schiller, U. Heisig and S. Panzer, «Electron
Beam Technology» John Wiley & Sons, 1982.
[85] E.A. Brandes. «Keyhole modeling during laser
welding». Journal of applied physics and Brook G B (ed) 1992 Smithells
Metals Reference Book 7th edn (Boston, MA: Butterworth- Heinemann)
[86] E.T. Turkdogan «Physical Chemistry of High
Temperature Technology» New York: Academic, 1980.
[87] C.Y. Ho, P.E. Liley and R.W. Power, «Thermal
Conductivity of Selected Materials Part 2» National Bureau of Standards
National Standard Reference Data Series: No 16, 1968.
[88] D.R Lide «CRC Book of Chemistry and
Physics» 81st edn (Boca Raton, FL: CRC Press) 2000.
[89] X. He, J.W. Elmer, T. DebRoy, «Heat transfer
and fluid flow in additive manufacturing». J. Appl. Phys. 97 (2005)
84909
[90] C.L. Yaws," Handbook of Thermal Conductivity».
Houston, TX: Gulf (1997)
[91] U.S. Bertoli, A.J. Wolfer, M.J. Matthews, et al,
«On the limitations of volumetric energy density as a design parameter for
selective laser melting»,Mater.Des. 113, 331-340, 2017.
[92] X. He, J. Elmer, T. DebRoy, «Heat transfer and
fluid flow in additive manufacturing». J. Appl. Phys. 97, 84909,
2005.
76
MASTER II-LABORATOIRE SCIENCES DES
MATÉRIAUX
|
|