WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Analyse de sensibilité des paramètres susceptibles d'influencer l'état de surface des pièces obtenues par fabrication additive pour des applications aéronautiques


par Pierre Gérard Darel KOND NGUE
Université Yaoundé 1  - Master physique  2022
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

CONCLUSION GÉNÉRALE ET PERSPECTIVES

? Pour le cas de la largeur du bain de fusion, les paramètres d'entrée ayant un indice de sensibilité plus important sont la température du liquidus ou solidus (X1), la conductivité thermique solide (X4), la chaleur spécifique solide (X6) et liquide (X7), la puissance, la vitesse et la hauteur de poudre (Figure 3.13).

De cette étude il est clair que les paramètres procédés sont ceux qui ont le plus d'influence sur la variabilité des réponses du module melting (Figure 3.14). Ainsi une connaissance des données d'entrées importantes ou négligeable permettrons d'améliorer le module de fusion.

Ce travail constitue donc une étape dans l'étude et la modélisation des phénomènes physiques intervenant lors de l'interaction d'un faisceau laser avec la matière en SLM en considérant le rôle des paramètres procédés. Il a permis de fournir des éléments de réponse sur l'influence de la vitesse de balayage, la puissance laser et la densité d'énergie volumique sur la caractérisation dimensionnelle (largeur et profondeur du bain de fusion) des cordons obtenus par SLM. Une amélioration du modèle et la mise en place d'autres caractérisations expérimentales peuvent être entrevues à travers une étude plus approfondie de l'aspect rapport profondeur/largeur du bain de fusion qui permettra peut-être de trouver une valeur optimale de ce paramètre pour un objectif principal et commun à toutes les recherches autour du procédé SLM, celui de l'amélioration de la qualité des pièces fabriquées avec ce procédé.

69

MASTER II-LABORATOIRE SCIENCES DES MATÉRIAUX

KOND NGUE PIERRE GÉRARD DAREL (c)2021

RÉFÉRENCES

RÉFÉRENCES

[1] AFNOR. Fabrication additive-Vocabulaire, NF E 67-001,2011.

[2] A.F. Obaton, A. Bernard, G. Taillandier et J.M. Moschetta, "fabrication additive : état de l'art et besoins métrologiques engendrés", Revue française de métrologie, pp. 21-36,2015.

[3] P. Dubois, A. Aoussat et R. Duchamp, "Généralités, Techniques de l'Ingénieur", BM7017, 10/04/2000.

[4] P. Alfred, P. Ciraud. "Verfahren und Vorrichtung zur Herstellung beliebiger Gegenstände aus beliebigem schmelzbarem Material". German patent application, DE 2263777, July 5th 1973.

[5] J.C. André, A. Le Méhauté, O. De Witte, "Dispositif pour réaliser un modèle de pièce industrielle", Brevet français 2567668, Juillet 1984.

[6] C.W. Hull, «Apparatus for production of three-dimensional objects by stereolithography», US Patent 4575330, Mars 1986.

[7] T. Wohlers and T. Gornet, «History of additive manufacturing», pp. 12-21, In Wohlers Report 2012, 2012.

[8] L. Sexton, S. Lavin, G. Byrne, A. Kennedy, «Laser cladding of aerospace materials», Journal of Materials Processing Technology, pp. 63-68, Vol. 122, 2002.

[9] M. Kerschbaumer, G. Ernst, P. O'Leary, «Tool path generation for 5-Axis laser cladding, in Proceedings of the Fourth Laser Assisted Net Shape Engineering», Vol. 2, pp. 831-842, September 2004.

[10] M. Tomlin, J. Meyer, «Topology optimization of an additive layer manufactured (ALM) Aerospace Part», the 7th Altair CAE Technology conference, 2011.

[11] J.M. Williams, A.A. dewunmi, R.M. Schek, C.L. Flanagan, P.H. Krebsbach, S.E. Feinberg, S.J. Hollister, S. Das, «Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering, Biomaterials», Vol. 26, pp. 4817- 4827,2005.

[12] P. Bartolo, J.P. Kruth, J. Silva, G. Levy, A. Malshe, K. Rajurkar, M. Mitsuishi, J. Ciurana, M. Leu, «Biomedical production of implants by additive electro-chemical and physical processes», CIRP Annals - Manufacturing Technology, Vol. 61, pp. 635-655,2012.

[13] J. Parthasarathy, B. Starly, S. Raman, «A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for

70

MASTER II-LABORATOIRE SCIENCES DES MATÉRIAUX

KOND NGUE PIERRE GÉRARD DAREL (c)2021

RÉFÉRENCES

biomedical applications», Journal of Manufacturing Processes. Vol.13. pp.160-170. August 2011.

[14] V. Manoharan, S.M. Chou, S. Forrester, G.B. Chai, P.W. Kong, «Application of additive manufacturing techniques in sports footwear, Virtual and Physical Prototyping», pp. 249-252, April 2013.

[15] AFNOR, NF ISO / ASTM 52900 "Fabrication additive -- Principes généraux -- Terminologie", 2016.

[16] L.E. Rännar, A. Glad, and G.C. Gustafson, «Efficient cooling with tool inserts manufactured by electron beam melting,» Rapid Prototyp. J., vol. 13, no. 3, pp. 128-135, 2007.

[17] R. Rezaie, M. Badrossamay, A. Ghaie, and H. Moosavi, «Topology Optimization for Fused Deposition Modeling Process,» Procedia CIRP, vol. 6, pp. 521-526, Jan. 2013.

[18] B. Vayre, F. Vignat, and F. Villeneuve, «Designing for Additive Manufacturing,» Procedia CIRP, vol. 3, pp. 632-637, Jan. 2012.

[19] M. Tomlin and J. Meyer, «Topology Optimization of an Additive Layer Manufactured (ALM) Aerospace Part,» in The 7th Altair CAE Technology Conference, Gaydon, UK, 10th May, 2011.

[20] G.A.O. Adam and D. Zimmer, «Design for Additive Manufacturing--Element transitions and aggregated structures,» CIRP J. Manuf. Sci. Technol., vol. 7, no. 1, pp. 20-28, Jan. 2014.

[21] P. Reeves, «Additive Manufacturing - A supply chain wide response to economic uncertainty and environmental sustainability,» Econolyst Limited, Silversmiths, Crown Yard, Wirksworth, Derbyshire, DE4 4ET, UK, 2009.

[22] R. Becker, A. Grzesiak, and A. Henning, «Rethink assembly design,» Assem. Autom., vol. 25, no. 4, pp. 262-266, 2005.

[23] H. Galarraga, D.A. Lados, R.R. Dehoff, M.M. Kirka, and P. Nandwana, «Effects of the microstructure and porosity on properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM),» Addit. Manuf., vol. 10, pp. 47-57, 2016.

[24] L. Löber, C. Flache, R. Petters, U. Kühn, and J. Eckert, «Comparison of different post processing technologies for SLM generated 316l steel parts,» Rapid Prototype. J., vol. 19, no. 3, pp. 173-179, 2013.

[25] B. Vayre, F. Vignat, and F. Villeneuve, «Identification on Some Design Key Parameters for Additive Manufacturing: Application on Electron Beam Melting,» Procedia CIRP, vol. 7, pp. 264-269, Jan. 2013.

[26] Fabrication Additive VS Fabrication Soustractive: https://www.3dz.fr/fabrication-additive-ou-soustractive.

71

MASTER II-LABORATOIRE SCIENCES DES MATÉRIAUX

KOND NGUE PIERRE GÉRARD DAREL (c)2021

RÉFÉRENCES

[27] Fabrication Additive VS Fabrication Soustractive: https://techso.ca/la-fabrication-additive-et-soustractive.

[28] Formative Manufacturing: https://meltcollective.com/project/tool-library/formative-fabbrication.

[29] Fabrication Formative: https://fr.slideshare.net/MonarchMetal/how-common-manfacturing-methode-compare.

[30] B.P. Conner, G.P. Manogharan, A.N. Martof, L.M. Rodomsky, C.M. Rodomsky, D.C. Jordan, and J.W. Limperos, «Making sense of 3-D printing: Creating a map of additive manufacturing products and services,» Addit. Manuf., vol. 1-4, pp. 64-76, 2014.

[31] N. Guo & M.C. Leu «Additive manufacturing: Technology, applications and research needs». Frontiers of Mechanical Engineering Front. Mech. Eng., 8(3), 215-243, 2013.

[32] A. Stwora & G. Skrabalak, «Influence of selected parameters of Selective Laser Sintering process on properties of sintered materials». Journal of Achievements in Materials and Manufacturing Engineering, 61(2), 375-380, 2013.

[33] 3D Printing Electronics Laser Additive Manufacturing Systems. (n.d.). Retrieved May 19, 2016, from http://www.optomec.com

[34] J. Gausemeier, N. Echterhoff, M. Kokoschka & M. Wall,» Thinking ahead the Future of Additive Manufacturing - Analysis of Promising Industries». DMRC study, Paderborn, 2011.

[35] J.P. Swensen, L.U. Odhner, B. Araki & A.M. Dollar, «Printing Three-Dimensional Electrical Traces in Additive Manufactured Parts for Injection of Low Melting Temperature Metals». Journal of Mechanisms and Robotics, 7(2), 021004, 2015.

[36] J.M. Chua, «Are 3D-Printed Fabrics the Future of Sustainable Textiles». Ecouter re, 2010.

[37] L. Ingham. (2014, November 20). In Pictures: 3D printed art showcases incredible possibilities of additive manufacturing - Factor. Retrieved May 19, 2016, from http://factor-tech.com/3d-printing/9685-in-pictures-3d-printed-art-showcases-incredible-possibilities-of-additive-manufacturing/.

[38] Wohlers report 2017

[39] NF ISO, «NF ISO 17296-2 Fabrication additive - Principes généraux - Partie 2 : Vue d'ensemble des catégories de procédés et des matériaux de base.» 2015.

[40] J.C. André, A. Le Méhauté & O. de Witte, «Dispositif pour réaliser un modèle de pièce industrielle,» 25676681984.

[41] C.W. Hull, «Apparatus for production of three-dimensional ojects by stereolithography,» US Patent 4,575,330,1986.

72

MASTER II-LABORATOIRE SCIENCES DES MATÉRIAUX

KOND NGUE PIERRE GÉRARD DAREL (c)2021

RÉFÉRENCES

[42] F. Laverne, F. Segonds & P. Dubois, "Fabrication additive : Principes généraux", Techniques de L'ingénieur, 1-15, 2016.

[43] T.T. Wohlers, «Wohlers Report 2013: Additive Manufacturing and 3D Printing State of the Industry: Annual Worldwide Progress Report,» Fort Cllins, CO: Wohlers Associates, Inc, 2011.

[44] Moulage à cire perdue : du modèle à la pièce, B. Anglade, H. Horsin Molinaro, F. Ventura, ressource Culture Sciences de l'Ingénieur, http://eduscol.education.fr/sti/si-ens-paris-saclay/ressources_pedagogiques/moulage-cire-perdue-du-modele-ala-piece.

[45] http://www.maxisciences.com/imprimante-3d/un-robot-va-imprimer-en-3d-un-pont-en-acier-au-dessus-d-un-canal-d-amsterdam art35128.html.

[46] Stratasys, «Stratasys Design Series.» [Online]. Available:
http://www.stratasys.com/3dprinters/design-series/connex-systems.

[47] Du prototypage rapide à la fabrication additive - Cours de Bruce Anglade, ENS Paris-Saclay.

[48] S.S Crump, «Apparatus and method for creating three-dimensional objects,»US Patent 5,121,329, 1992.

[49] K.P. Karunakaran, A. Bernard, S. Suryakumar, L. Dembinski, and G. Taillandier, «Rapid manufacturing of metallic objects,» Rapid Prototyp. J., vol. 18, no. 4, pp. 264-280, 2012.

[50] Impression 3D : procédé de fusion sur lit de poudre, D. Comberton, N. Muller, ressource

Culture Sciences de l'Ingénieur, http://eduscol.education.fr/sti/si-ens-paris-
saclay/ressources_pedagogiques/impression-3d-procede-de-fusion-sur-lit-de-poudre

[51] Moulage à cire perdue : du modèle à la pièce, B. Anglade, H. Horsin Molinaro, F. Ventura, ressource Culture Sciences de l'Ingénieur, http://eduscol.education.fr/sti/si-ens-paris-saclay/ressources_pedagogiques/moulage-cire-perdue-du-modele-ala-piece

[52] J. Fréchard and E. Laubriat, «CLAD Process to build and repair aeronautic parts,» in AEFA, 2015.

[53] P. Muller, «Fabrication Additive de pièces multimatériaux,» 2013.

[54] K. M. Taminger and R. A. Hafley, «Electron Beam Freeform Fabrication (EBF3) for Cost Effective Near-Net Shape Manufacturing,» 2006.

[55] F. Hild, H.H. Molinaro, S. Roux "La tomographie en sciences et mécanique des matériaux : voyage au centre de la matière", ressource Culture Sciences de l'Ingénieur, http://eduscol.education.fr/sti/si-ens-cachan/ressources_pedagogiques/la-tomographie-en-sciences-et-mecanique-des-materiaux

73

MASTER II-LABORATOIRE SCIENCES DES MATÉRIAUX

KOND NGUE PIERRE GÉRARD DAREL (c)2021

RÉFÉRENCES

[56] Introduction of SLM process. (n.d.). Retrieved from

http://www.birmingham.ac.uk/Documents/college -eps/irc/amp-lab/SLM.pdf

[57] G. Dongdong, «Laser Additive Manufacturing of High -Performance Materials», Springer-Verlag Berlin Heidelberg 2015.

[58] N.T. Aboulkhair, N.M. Everitt, I. Ashcroft & C. Tuck, "Reducing porosity in AlSi10Mg parts processed by selective laser melting». Additive Manufacturing, 1-4, 77-86, 2014.

[59] T. Kurzynowski, E. Chlebus, B. Ku·nicka & J. Reiner, «Parameters in selective laser melting for processing metallic powders». High Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications 8239, 317-322, 2012.

[60] L.V. Belle, "Analyse, modélisation et simulation de l'apparition de contraintes en fusion laser métallique", Mechanics of the solides, INSA de Lyon, France, 2013.

[61] https://accsimia-software.com/fabrication-additive

[62] Modélisation des procédés de fabrication additive, https://www.ec2-modelisation.fr

[63] S. Jedid, «La simulation numérique au service de la fabrication additive SLM», ressource Metalblog, https://metalblog.ctif.com/2018/06/25/la-simulation-de-la-fabrication-additve-slm/, 2018

[64] A.V. Gusarov, I. Smurov, «Two-dimensional numerical modelling of radiation transfer in powder beds at selective laser melting», Applied Surface Science 255, 5595-5599, 2009.

[65] A.V. Gusarov, I. Smurov, «Modelling the interaction of laser radiation with powder bed at selective laser melting», Physics Procedia, pp. 381-394, 2010.

[66] A.V. Gusarov, I. Yadroitsev, Ph. Bertrand, I. Smurov, «Model of Radiation and Heat Transfer in Laser-Powder Interaction Zone at Selective Laser Melting», Journal of Heat Transfer, Vol. 131, no 7, 2009.

[67] F. Verhaeghe, T. Craeghs, J. Heulens, L. Pandelaers, «A pragmatic model for selective laser melting with evaporation», Acta Materialia, Vol. 57, no 20 6006 6012,2009.

[68] D. Dai, D. Gu, «Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: Simulation and experiments», Materials & Design, pp. 482-491, Vol. 55, 2014.

[69] S.A. Khairallah, A. Anderson, «Mesoscopic simulation model of selective laser melting of stainless steel powder», Journal of Materials Processing Technology, Vol. 214, no11, 2627 36. 2014.

74

MASTER II-LABORATOIRE SCIENCES DES MATÉRIAUX

KOND NGUE PIERRE GÉRARD DAREL (c)2021

KOND NGUE PIERRE GÉRARD DAREL (c)2021

RÉFÉRENCES

[70] K. Antony, N. Arivazhagan, K. Senthilkumaran, «Numerical and experimental investigations on laser melting of stainless steel 316L metal powders», Journal of Manufacturing Processes 16,no 3,345 55, 2014.

[71] B. Zhang, H. Liao, C. Coddet, «Microstructure evolution and density behavior of CP Ti parts elaborated by Self-developed vacuum selective laser melting system», Applied Surface Science 279,310-316, 2013.

[72] C. Tix, G. Simon, «A transport theoretical model of the keyhole plasma in penetration laser welding» J. Phys. D: Appl. Phys. 26, 2066-2074, 1993.

[73] R.B. Bird, W.E. Stewart, E.N. Lightfoot, «Transport phenomena», New York: John Wiley & Sons. p 780, 1960.

[74] R. Ansorge, T. Sonar, «Mathematical models of fluid dynamics: modeling, theory, basic numerical fact-an introduction», John Wiley & Sons, 2009

[75] P.W. Fuerschbach, J.T. Norris, X. He, T. DebRoy, «Understanding metal vaporization from laser welding», Sandia National Laboratories Report No.: SAND2003-3490, 2003.

[76] D. Bäuerle, «Laser processing and chemistry», Springer Verlag, 2011.

[77] J. Trapp, A.M. Rubenchik, G. Guss, et al., «In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing», Appl. Mater.Today 9, 341-349, 2017.

[78] C. Tang, J.L. Tan, C.H. Wong, «A numerical investigation on the physical mechanisms of single-track defects in selective laser melting», Int. J. Heat Mass Transf.126 ,957-968, 2018.

[79] P.A. Hooper, «Melt pool temperature and cooling rates in laser powder bed fusion». Additive Manufacturing, 22, 548-559, 2018.

[80] S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King,» Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones», Acta Mater., 108, 36-45, 2016.

[81] M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond, W.E. King, "Denudation of metal powder layers in laser powder bed fusion processes» Acta Mater., 114 (Supplement C), 33-42, 2016.

[82] K.H. Leitz, P. Singer, A. Plankensteiner, B. Tabernig, H. Kestler, L.S. Sigl, «Thermo-Fluiddynamical Modelling of Laser Beam-Matter Interaction in Selective Laser Melting». Proceedings of the 2016 COMSOL Conference in Munich.

[83] T. Moscicki, J. Hoffman, Z. Szymanski, «Modelling of plasma formation during nanosecond laser ablation». Arch. Mech., 63 (2), 99-116, 2011.

75

MASTER II-LABORATOIRE SCIENCES DES MATÉRIAUX

RÉFÉRENCES

[84] S. Schiller, U. Heisig and S. Panzer, «Electron Beam Technology» John Wiley & Sons, 1982.

[85] E.A. Brandes. «Keyhole modeling during laser welding». Journal of applied physics and Brook G B (ed) 1992 Smithells Metals Reference Book 7th edn (Boston, MA: Butterworth- Heinemann)

[86] E.T. Turkdogan «Physical Chemistry of High Temperature Technology» New York: Academic, 1980.

[87] C.Y. Ho, P.E. Liley and R.W. Power, «Thermal Conductivity of Selected Materials Part 2» National Bureau of Standards National Standard Reference Data Series: No 16, 1968.

[88] D.R Lide «CRC Book of Chemistry and Physics» 81st edn (Boca Raton, FL: CRC Press) 2000.

[89] X. He, J.W. Elmer, T. DebRoy, «Heat transfer and fluid flow in additive manufacturing». J. Appl. Phys. 97 (2005) 84909

[90] C.L. Yaws," Handbook of Thermal Conductivity». Houston, TX: Gulf (1997)

[91] U.S. Bertoli, A.J. Wolfer, M.J. Matthews, et al, «On the limitations of volumetric energy density as a design parameter for selective laser melting»,Mater.Des. 113, 331-340, 2017.

[92] X. He, J. Elmer, T. DebRoy, «Heat transfer and fluid flow in additive manufacturing». J. Appl. Phys. 97, 84909, 2005.

76

MASTER II-LABORATOIRE SCIENCES DES MATÉRIAUX

précédent sommaire






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Piètre disciple, qui ne surpasse pas son maitre !"   Léonard de Vinci