The Role of Financial Institutions in Value Chain Finance
in the Global South
Mohamed Ali Trabelsi
Plan
I.Introduction
II.Literature Review
III.Methodology and Data
IV.Analysis and Results
V.Limitations and further research needs
VI.Conclusion
2
VII.Recommendations
Smallhold
price and market risks
Result
3
Low profit...!
Financial institutions are less interested in
financing the agricultural sector !
Result
Why...?!
Lack of collateral...!
4
5
Result
Farmers often face multiple challenges to access the
finance they require
Financial Institutions (FIs) consider farmers as
"non-bankable», or not creditworthy
Result
6
«There is little systematic data available on which
to make global or regional generalizations. ... how well the industry is
performing...»
7
! Research questions !
1) What are the key underlying characteristics of credit
provision of different types of financial institutions in the Global
South?
2) To what extent financial institutions promote
gender issues and include digital solutions?
3) What kind similarities and differences can be
observed between financial institutions?
8
*** Expected results from the research ***
Database of Financial institutions
Data-driven evaluation of financial institutions'
services
Agenda for agricultural finance policy
recommendation
9
Plan
I.Introduction
II.Literature Review
III.Methodology and Data
IV.Analysis and Results
V.Limitations and further research needs
VI.Conclusion
10
VII.Recommendations
|
*** Literature Review ***
|
|
Technische Universitet München
|
...gun t Chwelnxd ICC 171 ·1:00
ADJnca RITan1 RR î211111F
Thk figure shows Mr paymonl, loan, and ricanollon and
sevras TOWS bdwoon Iho Mandl!! Insdha ors antl Iha salle ·.
Atldllonaly, the paymcni ore Inlormabon low boFrxen buyer and FI.
Evonlualty. inn lows of IMonrut Ni and saraocs and produal
tetwoon tic butor and Inc sale.
C.amplcmonladty. a suet, by Coron cl al 426121 provides a
n'agrr.t a donn don of AVCF:
h re oaae a aplo.SFJrc !he walxbranwar I'autic FLot Is
net I miod Icy
!'pot prw:ram. pmthth n, precast-41
transport itosp, marlmtnp, a'd arpol.
Atldllonaly, ino Asian 6oucnpmen1 Bane CADE! IOC 121
'nabs Iha donnron orAVCF stook,
...oTlanbed I serapes aaMean Aaeps o1 prod
ono rs. !radar; prteesso; a'd sin. lot mal des O ne ui hp a
rm ... E mr e rt organ ml brio) tel i;tnamME lo alum. pindi7,7tyand
lnr wlue ·atl7ed Nom tar r3ht11:1o.
hind Orr.. Zander on' U) o'asonlad that. Iouini thumb
Cri
Vara crah nrarro ;utPl dc'.dc. a1 irur-drl
amarperrr[ris wain a soatlfe value dan o taro: side lhe dvt% As Au corceel
qatie chain Andrea 6'anuNbkbraadalfrolhlaclyd re terms'
ociaiand'.FF no naua y rclar 10 a Vaal riga of diTe2nr
Ins1J,lu'cs and nu=hmrra.
Fla I". a ratan! sludy 'Olean. Wants. d &auar !211
nun alns Agdclival Mawr Cnah FYanec tAVCF; as:
A nadotr of araduds artl appmavc lid
allowdd,oi-ctos roma wlx arm.. Ie Ideralrc srcai aaella a'd adlaryr
Ihc mndrp rock df the lkea.cti odas Cmpo'aing halting mud
chaln rrdnoos rtra wad, on fodliare'he
caw slbrr af inrdoo han IFarcai I'af iulo ·s, and
War lenders da lowsr earl
While na common doll,. don hos boon prapocad n
Yac IlonaWm, ACS pal 21 ord Canal oL d.
;21112) have Iha caralllullryg alomoni'pro.Adon',
'processing". and'prtbicthlt" n £017511£11. Thoy snow Mal Ma
drain
t lhrt' rcaoarches caplal'
Insimrrents used tt dim TINY a alwd..rine erlS-gbi.w
lemma =saw..
Ya'. ·a · · · ·b ·iwiw
L4
·
ü idaW
·
kaki P.O
n rdr
· Pne1
Venus, d &uuar, 2112'; Za Mamma
Aliu(h
"Moro s agrtemoni bat» Jonas, 2C10: K T and
RF
d AVCF ref vshlrh the soil A Jonas, 2Ci6
AFRACA
1110 authors agreed That It as wren an npet supplier
rrd'loci Inlarmodlay. Ed ·r roal orahlps and median conlrad nirn a
l'uslod auk
C11har aJl'iors donned AV sale andtw,or;
snnadaa the method of aammunlm 20301. Tin ogreomani
ao chain In Mrar diMrenl err
al En hl LUN a)
Iwo
This hfNy1s N rolmreslmants, and lira
dcrclopmart
2.1 AYCF Chellen
Abdul U. challenges al supplies race r landing
h
. aro r-
P rnl
Pal ·
pou
Waver
RE Pn31
Irma
·
Prof
Tahlr4 M=111=r fir F3 b r4. Jl~ZL r,
nagrti~
~on
Tool. and La.r'rts
ü ekltChain Frarta.a
F.Marrolnp l!rlouFture Value Iha ns In
Carnplar
Cantrell a Ler rIaa Mom
a .glouttural11nanDs hx rrnellholdtrr
RAW
termer
Contraot Forming for Ii:Iudl,to- Maa E'
Idaku and DFI.rtunIU 1:4' Fl Bank- Lasndcr
Rau-pa E'-1 Flranolnp
`r ri s uJ ta thl. Orcav to M a l s t Ita F;G ] r
1 IWA'
Eller and J011111 and I FR
arra Rankin
2010
2016
2013
HIV)
341P)
46
d
44
2131521316
W orld Goaroll or a e'dlt Unlanrr'
L
Eliza Phrnalairm
1
TcI or Fli In the Estatunt
review-.
241
Hamlet eholuclon irnrera
rramradcn ady'mmeblos Tranoectcn oast -1111-.
Not
t ralflYaent a1wsi
o ntrin
Ler rirach,rai dktant larelkn Ler
C#Jcadan termoN
=FactJedrd Predcck
Leak collateral
ü nlfklerrt Merkat
Tho anal anges of
Flnanolel OKo1LK meLalon Tar Iha 1 iii
loi access Ir (/CFI ara in · h Irltarmedal en dr
bandnu scalarga d-r laud slmlank 2CU11:
Fla'ahon !Mere-red In Ma cala ring broil!
· nfarrnaNur esp yin ch makes Mr smolha
dens lam eue in the Jnlq,
11
Plan
I.Introduction
II.Literature Review
III.Methodology and Data
IV.Analysis and Results
V.Limitations and further research needs
VI.Conclusion
12
VII.Recommendations
*** Description of the study ***
Database of financial institutions
Global Map of financial institutions
13
*** Building the database ***
37
201
109
347
14
*** Statistical Analyses ***
Descriptive statistics
Cluster Analyses
15
*** Data Types and Variables ***
Continent Attribute
Africa 0
Asia 1
South America 2
Global 3
Institutional type
|
Attribute
|
Agricultural Bank
|
0
|
Commercial Bank
|
1
|
cooperative
|
2
|
Credit union
|
3
|
Development Bank
|
4
|
Insurance company
|
5
|
International FI
|
6
|
International Fund
|
7
|
Islamic Bank
|
8
|
MFI
|
9
|
NGO
|
10
|
state development
bank
|
11
|
16
Agricultural loans Attribute
Credit facility for
women
Career development to female staff
Gender Programmes G3
G2
G1
Online Banking DS1
E-Products: DS2
Online Loan Application
DS3
Checking the rubric «Products and Services» AL1,
AL2 0-1
Gender Variables
Digital solution Variables
Farmer credit AL1
Agri-business credit AL2
Continent
Institutional Type
Foundation year
Number of Branches
Agricultural Loans
Gender
Digital solutions
Total assets
Total Equity
Gross Loan Portfolio
Variables Search Method Name/
Scale
checking the institute's website C 0-3
checking the rubric «about us» T 0-11
checking the rubric «our history» F Year
checking the rubric «locate us» B Number
Checking the rubric «our value» and
«events» G1, G2, G3 0-1
Verifying if «online banking» or other
e-products
DS1, DS2,
0-1
investigating the most recent «annual report»
AS $
available
DS3
investigating the most recent «annual report»
EQ $
investigating the most recent «annual report»
LP $
*** financial institutions sample ***
Financial institutions from the
literature review
201
Africa
Sample FIs: 200
Global
Sample FIs: 16
Total of 347 financial institutions
144
17
Plan
I.Introduction
II.Literature Review
III.Methodology and Data
IV.Analysis and Results
V.Limitations and further research needs
VI.Conclusion
18
VII.Recommendations
*** Geographic distribution ***
Global
9%
America
24%
Africa
47%
Asia
20%
Continent
|
|
No of FIs
|
Share
|
Africa
|
|
67
|
47%
|
South America
|
|
35
|
24%
|
Asia
|
|
29
|
20%
|
Global
|
|
13
|
9 %
|
|
Total
|
|
144
|
Africa Asia America Global
19
|
|
|
|
|
|
|
*** Distribution by institutional type ***
|
|
60
50
48 47
5 3 3 2 2 2 1 1
0
40
30
20
10
21
9
Institutional type Commercial Bank
|
Number
48
|
%
33%
|
Cooperative
|
47
|
33%
|
MFI
|
21
|
15%
|
Development Bank
|
9
|
6%
|
Islamic Bank
|
5
|
3%
|
International FI
|
3
|
2%
|
International Fund
|
3
|
2%
|
Agricultural Bank
|
2
|
1%
|
Credit union
|
1
|
1%
|
Insurance company
|
1
|
1%
|
NGOs
|
2
|
1%
|
State development bank
|
2
|
1%
|
Total
|
|
144
|
20
32
33
60
FREQUENCY
19
21
< 1950 1950 -1970 1970 -1990 > 1990
> 1000
100 - 1000
7
1
5
23
12
5
2
< 10
10 - 100
31
14
13
5
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Africa America Asia Global
1
2
4
1
*** Number of Branches per FIs ***
Number of Branches per Region
Range
|
Africa
|
Number of Branches per Region
America Asia Global Total
|
%
|
< 10
|
23
|
12
|
5
|
2
|
42
|
29%
|
10 -
100
|
31
|
14
|
13
|
5
|
63
|
44%
|
100 -
1000
|
12
|
7
|
7
|
5
|
31
|
22%
|
> 1000
|
1
|
2
|
4
|
1
|
8
|
6%
|
Grand Total
|
67
|
35
|
29
|
13
|
144
|
100%
|
22
*** Agricultural loans***
160%
140%
120%
100%
80%
24%
0% 0%
50%
11%
20%
50%
0%
0% 0%
TYPE OF CREDIT OFFERED BY FINANCIAL
INSTITUTIONS
0%
44% 40%
Farmer credit Agribusiness Credit
60%
40%
79%
33%
0%
71%
67%
29%
0%
100%
100%
100%
33%
23
GENDER PROGRAMMES OFFERED BY FIS
160%
|
|
|
|
|
|
|
|
|
|
|
140%
|
|
|
|
|
|
|
|
|
|
|
120%
|
|
50%
|
|
|
|
|
|
|
|
|
100%
|
|
|
|
|
|
|
|
|
|
|
80%
|
|
|
33%
|
|
|
|
50%
|
|
|
|
|
60%
|
|
|
|
67%
|
29%
|
|
|
|
|
|
0%
|
|
33%
|
|
|
40%
|
|
|
|
|
19%
|
|
|
|
|
0%
|
|
|
50%
|
50%
|
|
|
|
20%
|
|
|
33%
|
33%
|
29%
|
0%
|
|
|
|
|
|
|
|
|
|
|
0%
60%
50%
4%
13%
22%
9%
13%
33%
35%
21%
0%
0% 0% 0% 0%
|
|
Credits facility for women Career development opportunities to
female staff Gender Programmes
|
24
|
*** Digital Solutions ***
Digital solutions offered by FIs Again
40%
20%
80%
|
|
23%
21%
|
|
|
|
|
|
77%
|
|
|
|
|
5%
19%
|
|
0%
50%
|
|
|
|
6%
9%
|
24%
|
|
|
|
21%
|
0% 0% 0% 0% 0% 0% 0%
11%
160%
Online Banking E-Products Online Loan Applications
25
140%
120%
100%
80%
60%
40%
20%
0%
Plz sum it up !
26
Seven key characteristics of financial
institutions
1. Geographic distribution
2. institutional type
3. Foundation Year
4. Branches
5. Agricultural credit
6. Gender Equality
7. Digital solutions
1. Geographic distribution
47%
from Africa
24%
from America
4. Branches
29%
<10 branches
44%
10-100 branches
2. institutional type
33%
commercial bank
33%
cooperative
5. Agricultural credit
58%
Farmer credit
19%
Agribusiness credit
3. Foundation Year
42%
> 1990
6. Gender Equality
15% credit
facility for women
10% Career
development
7. Digital solutions
58% Online
27
banking
Okay descriptive Statistics ...
What about
cluster Analysis ?
28
*** Cluster Analysis ***
Descriptive statistics of the dataset
Mean Median Standard
Range Mi
Sample
Variance
Deviation
C 0.96
T 3.44
F 1976
B 215.
AL1 0.58
AL2 0.19
G1 0.15
G2 0.10
G3 0.30
DS1 0.42
DS2 0.13
DS3 0.13
Wrong !
29
*** k-means Clustering ***
Scale Data
s
30
*** k-means VS hierarchical Clustering ***
31
*** k-means Clustering ***
Cluster no.
1
|
Observations Number
3 18 35 36 42 48 49 50 62 63 76 84 111 125
|
Total
14
|
2
|
2 7 17 20 26 37 67 75 82 88 114 120 134 135
|
15
|
|
137
|
|
3
|
10 41 43 47 57 59 64 72 73 74 78 90 92 94 101
|
29
|
|
102 103 104 117 124 126 127 132 133 139 140
|
|
|
142 143 145
|
|
4
|
4 12 21 22 23 30 32 34 39 40 52 53 54 56 60 69
|
19
|
|
70 80 81
|
|
5
|
1 5 6 8 9 11 13 14 15 16 19 24 25 27 28 29 31
|
67
|
|
33 38 44 45 46 51 55 58 61 65 66 68 71 77 79
|
|
|
83 85 86 87 89 91 93 95 96 97 98 99 100 105
|
|
|
106 107 108 109 110 112 113 115 116 118 119
|
|
|
121 122 123 128 129 130 131 136 138 141
|
|
betweenss_totss (1? 10) Silhouette
plot
32
*** k-means Clustering ***
How good is 0.14?
Average silhouette width:
·
Si > 0 indicates that the observations are well
clustered.
· Si < 0 indicates that the observation was placed in
the wrong cluster.
· Si = 0 indicates that the observation is in between
two clusters
33
|
|
|
|
|
|
|
*** Extracting Results ***
|
|
34
Cluster Number
|
Average Cluster Name
Foundation
|
Average number of Branches
|
1
|
1948 Value chain oriented FIs
|
517
|
2
|
1967 Gender Staff FIs
|
433
|
3
|
1975 Farmer credit provider FIs
|
215
|
4
|
1990 Innovative digital newcomers
|
95
|
5
|
1982 Traditional Banking approaches
|
137
|
*** Extracting Results ***
Geographic distribution
Value chain oriented FIs Gender Staff FIs
Farmer credit provider FIs Innovative digital newcomers
Traditional Banking approaches
Africa
Institutional type
Value chain oriented FIs Gender Staff FIs
Farmer credit provider FIs Innovative digital newcomers
Traditional Banking approaches
Agricultural Bank
35
South America
International FI
80%
60%
40%
20%
0%
Asia
Global
state development
bank
100%
Commercial Bank
80%
NGO
60%
40%
20%
MFI
0%
Islamic Bank
cooperative
Credit union
Development Bank
International Fund
Insurance company
|
|
|
|
*** Extracting Results ***
|
|
Services
Value chain oriented FIs Gender Staff FIs
Farmer credit provider FIs Innovative digital newcomers
Traditional Banking approaches
Farmer credit
80%
Online Loan Applications
60%
40%
20%
E-Products
Online Banking
0%
agri-business credit
Credits facility for women
opportunities to female
staff
100%
36
Gender Programmes
|
*** Extracting Results***
|
|
Technische Universitet München
|
Table 30 Cluster's characteristics
Cluster Name
|
Group 1 Value chain Fls
|
Group 2 Gender Staff Fls
|
Group 3 Farmer credit provider Fls
|
Group 4
Innovative digital newcomers
|
Group 5
Traditional Banking approaches
|
Region
|
|
|
|
|
|
Africa
|
71%
|
47%
|
24%
|
79%
|
42%
|
Asia
|
14%
|
13%
|
24%
|
21%
|
19%
|
South America
|
14%
|
20%
|
28%
|
|
34%
|
Global
|
|
20%
|
24%
|
|
4%
|
Institutional Type
|
|
|
|
|
|
Agricultural Bank
|
|
|
|
|
3%
|
Commercial Bank
|
86%
|
13%
|
21%
|
68%
|
22%
|
cooperative
|
7%
|
40%
|
31%
|
16%
|
42%
|
Credit union
|
|
|
|
|
1%
|
Development Bank
|
7%
|
|
10%
|
|
7%
|
Insurance company
|
|
|
|
|
1%
|
International Fl
|
|
7%
|
3%
|
|
|
International Fund
|
|
|
7%
|
|
1%
|
Islamic Bank
|
|
|
10%
|
5%
|
1%
|
MFI
|
|
27%
|
14%
|
11%
|
16%
|
NGD
|
|
7%
|
3%
|
|
1%
|
Average Foundation
|
1940
|
1967
|
1975
|
1990
|
1982
|
Average Branches
|
517
|
433
|
215
|
95
|
137
|
Agricultural Credit
|
|
|
|
|
|
Farmer credit
|
57%
|
67%
|
72%
|
37%
|
57%
|
agri-business credit
|
86%
|
20%
|
0%
|
26%
|
12%
|
Gender Programmes
|
|
|
|
|
|
Credits facility for
women
opportunities to female staff
|
7%
0%
|
47%
100%
|
7%
0%
|
16%
0%
|
13%
0%
|
Gender Programmes
|
71%
|
13%
|
100%
|
11%
|
0%
|
Digital Solutions
|
|
|
|
|
|
Online Banking
|
71%
|
47%
|
55%
|
84%
|
16%
|
E-P rod ucts
|
0%
|
20%
|
0%
|
84%
|
0%
|
Online Loan
|
50%
|
7%
|
7%
|
37%
|
1%
|
Applications
|
|
|
|
|
|
Total Fls
|
14
|
15
|
29
|
19
|
67
|
Plan
I.Introduction
II.Literature Review
III.Methodology and Data
IV.Analysis and Results
V.Limitations and further research needs
VI.Conclusion
38
VII.Recommendations
U This database was created based on an English
literature review, so many financial institutions from North Africa, South
America, and Asia were not considered.
U The structure of the database causes some
information to be lost due to specific categories of data. Consequently, some
of the information cannot be considered.
U Several categories of variables, such as Total
assets, Total equity, Gross loan portfolio, and number of clients can not be
considered since several websites did not have information on these variables,
so we did not take them into account.
39
U Lack of credible or official websites of many
financial institutions, which reduced the sample by 50 FIs.
|
|
|
|
*** Further research needs ***
|
|
|
U Deeper analysis must be conducted of an
expanded and more diverse set of financial institutions taking into account
farmer information services providers, financial institutions from the Spanish
and French literature review, etc....
U Research on gender equality programs and
their relationship to agricultural finance needs to be done and if promoting
credit facilities for women could reduce lending risk and increase farm
profitability.
U Evaluation how digital tools can increase
farmers' awareness of credit offers by financial institutions is a high
priority
40
U Online survey should be conducted with FIs
representatives to gather the maximum amount of information necessary for
analysis. In this regard, this could analyze the way in which FIs currently
fund the agriculture sector, including the approach AVCF.
Plan
I.Introduction
II.Literature Review
III.Methodology and Data
IV.Analysis and Results
V.Limitations and further research needs
VI.Conclusion
41
VII.Recommendations
|
|
|
|
|
|
*** most important questions ***
|
|
|
1) What are the key underlying characteristics of credit
provision of different types of financial institutions in the Global
South?
|
2) To what extent financial institutions promote gender
issues and include digital solutions?
|
42
3) What kind similarities and differences can be observed
between financial institutions?
Based on 144 financial institutions
67from Africa
35 from South America
29 from Asia
13 International FI
Agricultural credit
58%
Farmer credit
19%
Agribusiness credit
6. Gender Equality
31% program to empower women
7. Digital solutions
42% digital
solutions
Plan
I.Introduction
II.Literature Review
III.Methodology and Data
IV.Analysis and Results
V.Limitations and further research needs
VI.Conclusion
43
VII.Recommendations
q More SMS o
manag
q Mo
ion of
44
Global South IFS pathways Database
Financial institutions Finance gap Evaluation
Value Chain finance Farmer finance Global Map
Database LFS pub. Finance in common
Farmer problems IFAD pub. Literature review
Climatic factors World Bank pub. Search Engine
Price and market risks CGAP pub. Descriptive
statistics
Farm loan Meyer article Cluster analyses
Low profit Key underlaying Excel
collateral Gender Equality R
Bank Digital solutions IFAD pub.
45
Farmer Similarities FIs Angry farmer
Technische Universitet München
***Appendix***
Share P Comments
File Home Insert Page Layout Formulas Data
Review View Help
Y
Germany
AutoSave Co of)
A17
I
P- ~kllrv
Synopsis
Af7
Africa
Asia
America
R_€Tata
Fls Literature
D E
|
F
|
2
|
Colour
|
Signification Africa
|
|
|
|
4
|
|
Asia
|
|
limMEMEM
|
|
|
America
|
|
Africa
|
200
|
|
|
|
Global
|
|
Asia
|
52
|
|
|
|
Fls from the literature review
|
|
America
|
63
|
|
|
|
Notice
|
|
Oceania
|
16
|
|
9
|
|
Sources
|
|
Global
|
16
|
|
10
|
|
incomplete information
|
|
Total
|
347
|
|
11
|
|
Synopsis
|
|
|
|
12
|
|
|
FI: Financial
|
Institution
|
13
|
|
|
|
|
14
|
|
List of Fls-countries
|
|
No. of countries
|
|
15
|
Belgium
|
Afghanistan
|
Global South
|
98
|
|
16
|
France
|
Algeria
|
developed cous
|
8
|
|
17
|
rGermany
|
Bangladesh
|
|
|
18
|
Italy
|
Barbados
|
|
19
|
Lutembou
|
Belize
|
|
20
|
Netherland
|
Benin
|
|
Attribt
|
|
21
|
UK
|
Bermuda
|
|
N~A 0
|
|
22
|
USA
|
Bhutan
|
|
Credit facility for 1
|
|
23
|
|
Bolivia
|
|
career developm 2
|
|
24
|
|
Brazil
|
|
Gender Program 3
|
|
25
|
|
Burkina Faso
|
|
|
|
28
|
|
Burundi
|
|
27
|
|
Cambodia
|
|
|
|
|
28
|
|
Cameroon
|
|
Agricultural Bank
|
0
|
|
29
|
|
Cayman Islands
|
|
Commercial Ban4
|
1
|
|
30
|
|
Central African Republic
|
|
cooperative
|
2
|
|
31
|
|
Chad
|
|
Credit union
|
3
|
|
32
|
|
Colombia
|
|
Development Bai
|
4
|
|
33
|
|
Congo
|
|
Insurance comp<
|
5
|
|
34
|
|
Cook Island
|
|
International FI
|
6
|
|
35
|
|
Costa Rica
|
|
International Fun
|
7
|
|
36
|
|
Côte d'ivoire
|
|
Islamic Bank
|
8
|
|
37
|
|
Curacao
|
|
MFI
|
9
|
|
38
|
|
Djibouti
|
|
NGO
|
10
|
|
39
|
|
Dominica
|
|
state developmei
|
11
|
|
J
H I
K
L
Q
R
,nt
Attribute
0
Africa
1
2
Asia
America
3
Global
nn N o I P
Ca
Institutional typtaM-Number
Agricultural Bank
|
46
|
13%
|
Commercial Bank
|
68
|
20%
|
cooperative
|
76
|
22%
|
Credit unions
|
12
|
3%
|
Development Agency
|
7
|
2%
|
Development Bank
|
52
|
15%
|
Development Fund
|
1
|
0%
|
Insurance company
|
5
|
1%
|
International H
|
6
|
2%
|
International Fund
|
5
|
1%
|
MFI
|
55
|
16%
|
NGO
|
5
|
1%
|
state development bank
|
4
|
1%
|
Islamic Bank
|
5
|
1%
|
Total:
|
347
|
100%
|
Digital solution
|
Attribut
|
NA
|
0
|
Online Banking
|
1
|
[-Products: (SMS Bank
|
2
|
Online Loan Application
|
3
|
Digital foot prints Partner
|
4
|
347
Total
45
8
17
2s
8
3
Finance in commo
44
37
109
48
46
0
Technische Universitet München
***Appendix***
8 Share P Comments
File Home Insert Page Layout Formulas Data Review View Help
AutoSave (* Off) ® /
47
fx Agricultural Bank
A
|
A
|
B
Country
|
C
|
D .ronym
|
E F G
Type
|
H
Website
|
I
Notice
|
J I
|
1
|
id
|
Bank
|
|
|
2
|
1
|
Algeria
|
La Banque de 'agr cu turc et du
|
BA DR
|
Agricultural Bank
|
Mchand Bcura
|
ccntactghadr-hank dc
|
https:ffHadrLanque.dzf
|
|
3
|
2
|
Algeria
|
Caisse Nationale de MutuaJitéA
|
CNMA
|
Insurance company
|
Cherif Benhabiflès
|
cnma[afcnma-dz
|
https;//www-cnma-dz/
|
|
4
|
3
|
Algeria
|
Crédit Agricole CIB Algérie Spa
|
CIB
|
Agricultural Bank
|
Xavier thom as
|
https://www.ca-cih.com/contact-us
|
https//www.ca-cib.c am/
|
|
|
|
5
|
4
|
Benin
|
institution mutualiste ou coopér
|
UNACREP
|
cooperative
|
TOLOME LAURENT
|
contact@unacrep-bj
|
https;//unacrep-bj/
|
|
|
|
6
|
5
|
Benin
|
REseau NAtional des Caissesvill
|
RENACA
|
MFI
|
Léon GDUKPANIAN
|
renaca@yahoo.fr
|
https;//www.renac abenin.org/
|
Entreprises
|
(BC-PA
|
7
|
6
|
Benin
|
Credit Agric ole Group
|
CAG
|
Agricultural Bank
|
Jean-Guy LARRIVIÈRE
|
https://international,graupecreditagricale.camffrfcont
|
https://international,graupecreditagricale.camffrfaccampagneme
|
8
|
7
|
Burkina Faso
|
Systèmes Financiers DécentralisSFD
|
|
MFI
|
na
|
info@cci.hf
|
https//www-femme-entrepreneur-bf/structures-de-micro-finances/
|
9
|
S
|
Burkina Faso
|
Ada microfinance
|
|
MFI
|
Soulemane Djobo
|
s.djobo@ada-microfinanceiu
|
https://www.ada-microfinancf
|
several countries
|
10
|
9
|
Burkina Faso
|
SOCIAL MICROFINANCE IN BURKI
|
YIRKI
|
MFI
|
Elarik Philouze
|
elarik_philouzeentrepreneursdumonde_org
|
https;//www.entrepreneursdumande.arg/en/program/yikri-sodal-
|
11
|
10
|
Burkina Faso
|
African development Bank
|
AfDB
|
Development Bank
|
Mr Pascal Yembiline
|
P-YEMBILINEcAFDBARG
|
https;//www-afdb-org/en/documents/document/burkina-faso-sup
|
12
|
11
|
Burkina Faso
|
Banque Agricole du Faso
|
BADF
|
Agricultural Bank
|
W AimeZoungrana CLinkedln
|
contact@badf.bf
|
https://www.badf.bf/
|
|
13
|
12
|
Burundi
|
Banque Communautaire etAgriE
|
BCAB
|
Agricultural Bank
|
Thierry Willy NIKUZE
|
info@bcab.bi
|
https;//bcab.bi/
|
|
14
|
13
|
Burundi
|
confédération des associations
|
CAPAD
|
cooperative
|
Annick Sezibera
|
capad shirukubute@yahoak
|
https;//www-capad-info/spip-php?rubrique25&langer
|
15
|
14
|
Cameroon
|
Credit Agric ale Group
|
CAG
|
Agricultural Bank
|
Jean-Guy LARRIVIÈRE
|
https://international,groupecreditagricale.cam/fr/tont
|
https://international,groupecreditagricale.cam/fr/accampagneme
|
16
|
15
|
Cameroon
|
Banque Camerounaise des Petits
|
BC-PME
|
MFI
|
AMADOU HAMAN& ON
|
contact@bc-pme.cm
|
Banque Camerounaise des Petites et Moyennes
|
17
|
16
|
Cameroon
|
Ecobank in Cameroon
|
ECM
|
MFI
|
FALL MOUSTAPHA
|
ecobankenquiries?ecobankcom
|
https;//ecobank-com/cm/personal-banking/products-services/mi
|
18
|
17
|
Central Africa
|
Banque de Crédit Agricole et del
|
BCAD
|
Development Bank
|
na
|
na
|
https://www
goafricaonline.com/en/cf/314491-bcad-banque-de-c
|
19
|
18
|
Central Africa
|
Credit Agricole Group
|
CAG
|
Agricultural Bank
|
na
|
https;//international,groupecreditagricole.cam/en/can
|
https;//international,groupecreditagricole.cam/en/internationak
|
20
|
19
|
Chad
|
Banque Agricole et commerciale
|
BAC
|
Agricultural Bank
|
na
|
bac_bank@hactchad-cam
|
https//bactchad-com/indexapropos-html
|
21
|
20
|
Chad
|
International Fund for Agri cultu
|
IFAD
|
Development Bank
|
ValantineAchancho
|
v-achancho@ifad-org
|
https;//www-ifad-org/fr/web/operations/w/pays/chad
|
|
22
|
21
|
Chad
|
Agence FrancaisededevelappenAFD
|
|
Development Agency
|
na
|
afdndjamena@afd.fr
|
https://www.afdir/fr/page-region-pays/tchad
|
|
23
|
22
|
Congo
|
Equity Bank Congo SA
|
na
|
Commercial Bank
|
James MWANGI
|
mailiequitybank.cd
|
https;{/equitybank.cd/index.php
|
|
|
24
|
23
|
Congo
|
African development Bank
|
AfDB
|
Development Bank
|
Alexis Adélé
|
a-adelecafdb-org
|
https;//www-afdb-org/fr/news-and-events/press-releases/congo-1
|
|
25
|
24
|
Côte d'ivoire
|
Credit Agricole Group
|
CAG
|
Agricultural Bank
|
Jean-Guy LARRIVIÈRE
|
https;//international,groupecreditagricole-com/fr/tont
|
https;//international,groupecreditagricole-com/fr/accompagneme
|
26
|
25
|
Côte d'ivoire
|
Banque Agricole et Investisseme
|
BAICI
|
Agricultural Bank
|
na
|
info@ hanqueagricoleinv-cam
|
https;//www-banq ueagricoleinv-cam/index-html
|
27
|
26
|
Côte d'ivoire
|
Banque Nationale d'Investisseur
|
BN I
|
Development Bank
|
Sauleymane CISSÉ
|
info ibni.ci
|
https-//
www.bni.ci/groupe-bni/bni-bref
|
|
|
|
|
|
|
|
|
|
4 I Synopsis
|
Africa Asia I America
|
I Oceall Fls Literature I I R_data
|
|
|
Cli ... 0 14 I
|
E7
Technische Universitet München
***Appendix***
is Share P Comments
File Home Insert Page Layout Formulas Data Review View Help
1148
fr
I =su 2:I14S)/144
48
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
1
|
J
|
K
|
L
|
M
|
N S1
|
O DSO
|
P OS3
|
Q
Total Ass =
|
R
Total E · uit
|
S
Gross loan p ·
|
T
|
U
|
V
|
W
|
X
|
Y
page
|
Z Aut
|
AA
|
y
--
|
1
|
r - r -
|
- r - r - - r - - · r
|
r y v
|
· y
|
y · -
|
r --L
|
|
2
|
Africa
|
Cameroon Cooperative i
|
CamCCUL
|
Cameroon
|
cooperative
|
1968
|
12
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
$ 306,000,000.00
|
na
|
$ 188,000,000.00
|
Fombon l
|
https:llwr
|
https:lloa
|
https:#ca
|
World Co
|
1
|
World Co
|
mail® woc
|
3
|
Africa
|
Société Générale Côte r
|
SGBCI
|
Côte divoir
|
Commercial Bank
|
1962
|
28
|
0
|
0
|
0
|
1
|
0
|
1
|
0
|
0
|
na
|
$ 27,844,490.00
|
$ 268,500,450.00
|
Aymeric 1
|
https:llwr
|
cotedivoi
|
https:#sc
|
Enquête
|
90
|
CGAP
|
°gap@ w c
|
4
|
Africa
|
Banque Nationale Dinar
|
BNI
|
Côte divoir
|
Commercial Bank
|
1959
|
22
|
0
|
1
|
0
|
0
|
1
|
1
|
0
|
0
|
na
|
na
|
na
|
M. Yousc
|
https:llwti
|
info@bni
|
https:llwt
|
Enquête
|
81
|
CGAP
|
°gap@wc
|
5
|
Africa
|
Ecobank
|
ECO
|
Côte divoir
|
Commercial Bank
|
1989
|
47
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
na
|
$ 195,967,000.00
|
$ 1,555,378.00
|
Mr. Paul-
|
https:llwti
|
ecobank
|
https:llwt
|
Enquête
|
90
|
CGAP
|
cgap@wc
|
6
|
Africa
|
Société Ivoirienne de Ba
|
SIB
|
Côte divoir
|
Commercial Bank
|
1962
|
66
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
na
|
$ 17,900,030.00
|
na
|
Daouda I
|
https:llwti
|
http:llww
|
http:live
|
Enquête
|
90
|
CGAP
|
cgap@ w c
|
|
7
|
Africa
|
Nouvelle Société Interaf
|
NSIA
|
Côte divoir
|
Insurance ocmpar
|
1906
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
na
|
$ 265,475,344.00
|
na
|
BJanine
|
|
https:llwtiinfo@grohttps:#wt
|
|
Enquête
|
90
|
CGAP
|
cgap@wc
|
8
|
Africa
|
Advans Côte d'Ivoire
|
ADVANS
|
Côted'ivoir
|
MFI
|
2005
|
9
|
1
|
0
|
1
|
1
|
1
|
0
|
1
|
0
|
na
|
$ 12,530,021.00
|
$ 82,340,138.00
|
Mariamf
|
https:llwti
|
https:ller
|
https:llwt
|
Enquête
|
95
|
CGAP
|
cgap@wc
|
9
|
Africa
|
MicroCred Côte d'Ivoire
|
EIB
|
Côte divoir
|
MFI
|
2010
|
23
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
na
|
$ 5,728,009.00
|
na
|
Missa Hil<
|
https:llw%
|
https:ller
|
https:llwr
|
Enquête
|
95
|
CGAP
|
cgap@ w c
|
10
|
Africa
|
MUCREFAB - Microfinar
|
MUCREFAI
|
Côted'ivoir
|
MFI
|
1994
|
9
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
na
|
na
|
na
|
na
|
remuci@
|
info@mu
|
https:llwt
|
Enquête
|
95
|
CGAP
|
cgap@wc
|
11
|
Africa
|
Fonds International pouiFIORA
|
|
Côte divoir
|
MEl
|
2011
|
8
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
|
Dna
|
na
|
na
|
|
|
Franck Ahttps:llw%info@fidrhttps:llwtEnquête
|
|
|
85
|
CGAP
|
cgap@wc
|
12
|
Africa
|
Union Nationale des Car
|
UNACOOF
|
Côte divoir
|
MFI
|
1976
|
4
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
na
|
na
|
na
|
SAVANE
|
https:llci.
|
info@un:
|
https:llwr
|
Enquête
|
85
|
CGAP
|
cgap@ w c
|
13
|
Africa
|
Eswatini Association of`.SA000s
|
|
Eswatini
|
cooperative
|
1964
|
40
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
na
|
na
|
na
|
na
|
na
|
|
info@sasshttp:llww
|
World Co
|
1
|
World Co
|
mail@woc
|
14
|
Africa
|
Nib International Bank
|
NIB
|
Ethiopia
|
Commercial Bank
|
1999
|
189
|
1
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
$ 682,278,953.00
|
$ 605,495,148.00
|
$ 550,649,573.00
|
Haimano
|
https: lier
|
nibconta
|
https:lier
|
AVCF To
|
38
|
Calvin Mil
|
copyright
|
15
|
Africa
|
Harbu Microfinance
|
HARBU
|
Ethiopia
|
MFI
|
2005
|
13
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
$ 1,300,000.00
|
na
|
na
|
Alazar Ta
|
https:llwr
|
harbumfi
|
https:llbt
|
Value Ch
|
246
|
KIT and II
|
publicatio
|
16
|
Africa
|
Commercial Bank of Eth
|
CBE
|
Ethiopia
|
Islamic Bank
|
1942
|
1714
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
###############
|
na
|
na
|
Abreham
|
https:llwr
|
cbe@col
|
https:llcc
|
Risks anc
|
29
|
Rauno 2
|
die@die-
|
17
|
Africa
|
National Association of f
|
NACCUG
|
Gambia
|
cooperative
|
1992
|
6
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
$ 40,108,030.00
|
|
$ 24,483,575.00
|
Pa Mend
|
https:llwr
|
infonacc
|
https:ller
|
World Co
|
1
|
World Co
|
mail® woc
|
18
|
Africa
|
Ghana Co-operative CrE
|
CUAgh
|
Ghana
|
cooperative
|
1955
|
11
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
$ 27,754,675.00
|
$ 93,766,590.00
|
$ 48,067,968.00
|
Emmanu,
|
https:ller
|
brongah,
|
https:llwr
|
World Co
|
1
|
World Co
|
mail® woc
|
19
|
Africa
|
Equity Bank
|
Equitykeny
|
Kenya
|
Commercial Bank
|
1984
|
10
|
1
|
1
|
0
|
0
|
1
|
1
|
0
|
0
|
$3,000,000,000.00
|
na
|
na
|
Elizabeth
|
https:ller
|
info@eqt
|
https:llec
|
AVCF To
|
8
|
Calvin Mil
|
copyright
|
20
|
Africa
|
Agricultural Finance Cor
|
AFC
|
Kenya
|
Agricultural Bank
|
1963
|
8
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
$6,600,000,000.00
|
na
|
na
|
JACKSO
|
https:ller
|
info@agr
|
https:llwt
|
AVCF To
|
12
|
Calvin Mil
|
copyright
|
21
|
Africa
|
Faulu Kenya
|
FAULU
|
Kenya
|
MFI
|
1991
|
67
|
1
|
1
|
0
|
1
|
0
|
0
|
0
|
1
|
$ 270,615,033.00
|
na
|
na
|
|
Apollo Nihttps:llerinfo@f
|
|
auhttps:llwtAVCFTo
|
|
50
|
Calvin Mil
|
copyright
|
22
|
Africa
|
Family Bank
|
FAMILY
|
Kenya
|
Commercial Bank
|
1984
|
92
|
1
|
1
|
0
|
0
|
0
|
1
|
1
|
1
|
$ 696,000,000.00
|
$ 114,785,459.00
|
$ 660,471,889.00
|
Rebecca
|
https:ller
|
info@fan
|
https:llfa
|
AVCF To
|
50
|
Calvin Mil
|
copyright
|
23
|
Africa
|
Cooperative Bank
|
co-opbanl
|
Kenya
|
Commercial Bank
|
1931
|
100
|
0
|
1
|
1
|
0
|
0
|
1
|
1
|
0
|
$3,900,000,000.00
|
na
|
na
|
William N.
|
https:ller
|
customer
|
https:llwt
|
AVCF To
|
50
|
Calvin Mil
|
copyright
|
24
|
Africa
|
Unity Finance
|
k-Unity
|
Kenya
|
cooperative
|
1974
|
15
|
1
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
$2,900,000,000.00
|
na
|
na
|
stella war
|
https:ller
|
INFO @K
|
|
https:llwtAVCFTo
|
50
|
Calvin Mil
|
copyright
|
25
|
Africa
|
Eclof Kneya
|
ECLOF
|
Kenya
|
MFI
|
1994
|
43
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
na
|
na
|
na
|
Mary Mur
|
https:ller
|
info@ecl
|
https:llwt
|
AVCF To
|
50
|
Calvin Mil
|
copyright
|
26
|
Africa
|
JuhudiKilimo
|
JUHUDI
|
Kenya
|
MFI
|
2004
|
39
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
na
|
na
|
na
|
Bernardi
|
https:ller
|
info@juh
|
https:lllul
|
Agriculta
|
143
|
DanielaF
|
bidem@iE
|
27
|
Africa
|
Malawi Union of Savings
|
MUSCCO
|
Malawi
|
cooperative
|
1962
|
47
|
1
|
0
|
1
|
1
|
0
|
0
|
0
|
0
|
na
|
na
|
na
|
Banda
|
ww.linke
|
muscccti
|
https lier
|
World Cc
|
1
|
World Co
|
mail@woc
|
28
|
Africa
|
Millenniumbim - Particul
|
BIM
|
Mozambiq
|
Commercial Bank
|
1995
|
138
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
1
|
na
|
na
|
na
|
Miguel
|
ww.linke
|
cac@mill
|
https:llmi
|
UserGuir
|
10
|
CGAP
|
cgap@wc
|
29
|
Africa
|
socremo banco de micrt
|
SOREMCC
|
Mozambiq
|
Commercial Bank
|
1998
|
13
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
na
|
na
|
na
|
Manjate
|
ww.linke
|
secretari.
|
http:llww
|
User Guit
|
21
|
CGAP
|
cgap@ w c
|
30
|
Africa
|
African Banking Corpora
|
BancABC
|
Mozambiq
|
Commercial Bank
|
1999
|
10
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
$1,810,000,000.00
|
na
|
na
|
Silva
|
wwlinke
|
|
mz-callc,https:llwr
|
User Guit
|
77
|
CGAP
|
cgap@wc
|
31
|
Africa
|
Banco Mais
|
BANCOMP
|
Mozambiq
|
Commercial Bank
|
1999
|
7
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
1
|
na
|
na
|
na
|
Jivane
|
ww.linke
|
|
info@bahttps:llwt
|
User Gus
|
77
|
CGAP
|
cgap@wc
|
32
|
Africa
|
Banco Unico
|
BANCOUN
|
Mozambiq
|
Commercial Bank
|
2010
|
2
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
na
|
na
|
na
|
Carlos
|
we linke
|
|
https:llwr
|
User Guit
|
77
|
CGAP
|
cgap@ w c
|
33
|
Africa
|
Barclays Bank
|
ABSA
|
Mozambiq
|
Commercial Bank
|
1991
|
3
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
1
|
$9,100,000,000.00
|
na
|
na
|
Namarro
|
ww.linke
|
|
linhaclierhttps:llwr
|
User Guit
|
77
|
CGAP
|
cgap@wc
|
34
|
Africa
|
Central Bank of West Afr
|
BCEAO
|
Niger
|
International FI
|
1962
|
3
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
na
|
na
|
na
|
na
|
|
https:ller
|
https:llwt
|
AVCF To
|
104
|
Calvin Mil
|
copyright
|
35
|
Africa
|
SunTrust Bank
|
Suntrust
|
Nigeria
|
Commercial Bank
|
2009
|
8
|
0
|
1
|
1
|
0
|
0
|
1
|
1
|
0
|
$ 128,477,119.00
|
$ 28,770,351.00
|
$ 62,438,759.00
|
Ayodeji E
|
https:ller
|
helpdesk
|
https:lls.
|
CGAP Sr
|
92
|
CGAP
|
cgap@ w c
|
36
|
Africa
|
Keystonebank
|
KEWSTON
|
Nigeria
|
Commercial Bank
|
1981
|
154
|
0
|
1
|
0
|
0
|
1
|
1
|
0
|
0
|
$ 1,916,000,000.00
|
$ 213,300,000.00
|
na
|
Olaniran
|
https:ller
|
contactc
|
https:llwt
|
CGAP Sr
|
92
|
CGAP
|
cgap@wc
|
37
|
Africa
|
Union Bank of Nigeria
|
UBN
|
Nigeria
|
Commercial Bank
|
1917
|
320
|
1
|
1
|
0
|
0
|
1
|
1
|
0
|
1
|
$ 4,100,000,000.00
|
na
|
na
|
David Ad
|
https:ller
|
customei
|
https:llwt
|
CGAP Sr
|
92
|
CGAP
|
cgap@ w c
|
38
|
Africa
|
UBAGroupCorporate
|
UBAG
|
Nigeria
|
Commercial Bank
|
1948
|
67
|
0
|
0
|
0
|
1
|
1
|
1
|
0
|
0
|
###############
|
na
|
na
|
Kennedy
|
|
https:llwtiinfo@hbrhttps:llwt
|
|
CGAP Sr
|
92
|
CGAP
|
cgap@wc
|
|
i Irsynopsis ' Africa
|
I Asia I
|
America 1
|
Fls Literature
|
1 Final_Database
|
R_data E ...
|
|
|
0i I I
|
I
|
|
***Appendix***
|
|
Technische Universitet München
|
R5tudio
File Edit Code View Plots Session Build Debug Profile Tools
Help
o ° - 61 lid+ 4
(o to FiIe/fundior Addirs Project: (None) -
R scriptR* X X20210922_database_Fls_144T PJ Clustering 1.R 9J
Clustering 2.R tJ ??
I8 D Source on save I Q - I I. - Run Source
Packages clusterSim, dplyr, and 3 others required but are not
installed, Install Don't Show Again
1 # Descriptive Analysis #
2 datai e- na.omit(x20210922_database_FIs__MAT)
3 data- data1[-1]
4 plot(data)
5 data
6 summary(data)
7 #Scale Data #
8- Data_scaled = apply(data, 2, function(r) f
9 if (sd(r) != 0)
10 res = (r - mean(r))/sd(r) else res D * r
11- res I)
12 summary(Data_5 caled)
13 # install packages#
14 # install.packages("dplyr")
15 # install. packages("ggplot2")
16 # install.packages("ygfortify")
17 # install.packages("factoextra")
18 # install.packages("stats")
19 # install. packages("clustersim")
20 # load required libraries #
21 library(stats)
22 library(dplyr)
23 library(ggplot2)
24 library(ggfortify)
25 library(factoextra)
26 # wss plot function #
27- wssplot r- function(Data_scaled, nc=15, seed=1234){
28 wss r-
(nrow(Data_sealed)-1)*sum(apply(Data_5caled,2,var))
29- for (i in 2:nc){
30 set.seed(seed)
31- wss[ï] e- sum(kmeans(Data_scaled,
centers=i)$withinss)]
32 plat(i:nc, wss, type="b", xlab="Number of clusters",
33- ylab="within groups sum of squares")}
34 # wss Plot to choose maximum number of clusters #
35 wssplot(Data_scaled)
11:9 8 <Function}() RScript
Environment History Connections Tutorial
LJIPIPIPIPIDILIDIP
a I ® Import Dateset - 122 Mie, -
R - I ; Global Environment -
Data
p Cl List of 10
()data 143 obs. of 12 variables
Data_scaled num [1:143, 1:12] -0.93 -0.93 -0.93
-0.93 -0.93
O datai 143 obs. of 13 variables
O- final List of 9
O- fith List of 7
O- gap_stat List of 6
Q
- KM List of 9
Q- x20210922_database__FI... 161 obs. of 13 variables
- 'dist' num [1.10153] 4.35 4.4 3.65 2.06 3.03 ...
chr [1:300] "-0.3€32" "-0.586" "0.1408' .0.098"
"0.6075' "-0._. int [1:143] 5 4 3 2 2 2 4 2 2 2 ...
'silhouette' num [1:143, 1:3] 5 4 3 2 2 2 4 2 2 2
...
values
d
- desc KM. cl usters
- sil Functions
wssplot function (Data_scaled, ne = 15, seed = 1234)
Console 51 Fie, Plots Packages Help
Viewer 51
49
|
***Appendix***
|
|
|
Technische Universitet München
RStudio
File Edit Code View Plots Session Build debug Profile Tools
Help
ak ^r - H _ · 4 Go to Pilejfundior
Addins -
|
R Project: {None) -
|
K.max = 10, B = 50)
# Print the result
#print(gap_stat, method = "firstmax")
#fviz_gap_stat(gap_stat)
# K-Means cluster #
Ki= kmeans(Data_scaled,5)#I
# Evaluating Cluster Analysis#
# Cluster plot 2#
autoplot(KM,Data_5caled,frame=TRUE)
# segmentation & visualization # KN1.clusters C-
KM$cluster
rownames(Data_scaled) <- data1Sid
fviz_cluster(list(data=Data_scaled,cluster=KM.clusters))
# cluster Membership #
KM$cluster
table(Ktn.clusters, datal$id) table(datai$id, la+l.clusters)
# clusters center # KM$centers
# descriptive statistics at the cluster level
library(clustersim) desc r- cluster.Description(Data_scaled,KM$cluster)
print(desc)
summary(desc)
library(factoextra)
sil cents- silhouette(KM$cluster, dist(Data_scaled))
fviz_si1houette(sil)
# Hierarchical clustering .... d <- dist(Data_scaled) fith
<- hclust(d, "ward.o2") piot(fith)
j RscriptR" --.X20210422_database_Frs_ht4T x P]
Clustering 1.R lq] Clustering 2.R o Environment History Connections
Tutorial
W J 18 D Source on Save q 4 ·
- I I - Run I a Source = = 8 I 0
Import Dataset - _ 122 MiB - j
Packages elusterSim, dplyr, and 3 others required but are not
installed. Install Don't Show Again % R - I ; Global
Environment
§ Data
cl List of 10
O data 143 obs. of 12 variables
Data_scaled num [1:143, 1:12] -0.93 -0.93 -0.93 -0.93 -0,93
O datai 143 obs. of 13 variables
Ofinal List of 9
Ofith List of 7
ü gap_stat List of 6
Q K List of 9
Q x20210922_database_FI... 161 obs. of 13 variables
values
d
desc
KM.clusters
sil
Functions
wssplot function (Data_scaled, ne = 15, seed = 1234)
RScript
5 Fies Plots Packages Help Viewer
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
55:27 [fop Level)
i
Console
5171
'dist' num [1:10153] 4.35 4.4 3.65 2.06 3.03 ...
chr [1:300] "-0.3€32" "-0.586" "0.1408" '0.098' "0.6075"
"-0._. int [1:143] 5 4 3 2 2 2 4 2 2 2 ...
'silhouette' num [1:143, 1:3] 5 4 3 2 2 2 4 2 2 2
...
ust-I(6'-
Q
11 D DIDIP
50
|