WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Colloquium financial institutions in the global south


par Mohamed Ali Trabelsi
Technical University of Munich - Master of science Agricultural Management 2021
  

Disponible en mode multipage

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

The Role of Financial Institutions in Value Chain Finance in the Global South

Mohamed Ali Trabelsi

Plan

I.Introduction

II.Literature Review

III.Methodology and Data

IV.Analysis and Results

V.Limitations and further research needs

VI.Conclusion

2

VII.Recommendations

Smallhold

price and market risks

Result

3

Low profit...!

Financial institutions are less interested in financing the agricultural sector !

Result

Why...?!

Lack of collateral...!

4

5

Result

Farmers often face multiple challenges to access the finance they require

Financial Institutions (FIs) consider farmers as "non-bankable», or not creditworthy

Result

6

«There is little systematic data available on which to make global or regional generalizations. ... how well the industry is performing...»

7

! Research questions !

1) What are the key underlying characteristics of credit provision of different types of financial institutions in the Global South?

2) To what extent financial institutions promote gender issues and include digital solutions?

3) What kind similarities and differences can be observed between financial institutions?

8

*** Expected results from the research ***

Database of Financial institutions

Data-driven evaluation of financial institutions' services

Agenda for agricultural finance policy recommendation

9

Plan

I.Introduction

II.Literature Review

III.Methodology and Data

IV.Analysis and Results

V.Limitations and further research needs

VI.Conclusion

10

VII.Recommendations

 

*** Literature Review ***

 

Technische Universitet München

...gun t Chwelnxd ICC 171
·1:00

ADJnca RITan1 RR î211111F

Thk figure shows Mr paymonl, loan, and ricanollon and sevras TOWS bdwoon Iho Mandl!! Insdha ors antl Iha salle
·. Atldllonaly, the paymcni ore Inlormabon low boFrxen buyer and FI. Evonlualty
. inn lows of IMonrut Ni and saraocs and produal tetwoon tic butor and Inc sale.

C.amplcmonladty. a suet, by Coron cl al 426121 provides a n'agrr.t a donn don of AVCF:

h re oaae a aplo.SFJrc !he walxbranwar I'autic FLot Is net I miod Icy

!'pot prw:ram. pmthth n, precast-41 transport itosp, marlmtnp, a'd arpol.

Atldllonaly, ino Asian 6oucnpmen1 Bane CADE! IOC 121 'nabs Iha donnron orAVCF stook,

...oTlanbed I serapes aaMean Aaeps o1 prod ono rs. !radar; prteesso; a'd sin. lot mal des O ne ui hp a rm ... E mr e rt organ ml brio) tel i;tnamME lo alum. pindi7,7tyand lnr wlue
·atl7ed Nom tar r3ht11:1o.

hind Orr.. Zander on' U) o'asonlad that. Iouini thumb Cri

Vara crah nrarro ;utPl dc'.dc. a1 irur-drl amarperrr[ris wain a soatlfe value dan o taro: side lhe dvt% As Au corceel qatie chain Andrea 6'anuNbkbraadalfrolhlaclyd re terms' ociaiand'.FF no naua y rclar 10 a Vaal riga of diTe2nr Ins1J,lu'cs and nu=hmrra.

Fla I". a ratan! sludy 'Olean. Wants. d &auar !211 nun alns Agdclival Mawr Cnah FYanec tAVCF; as:

A nadotr of araduds artl appmavc lid allowdd,oi-ctos roma wlx arm.. Ie Ideralrc srcai aaella a'd adlaryr Ihc mndrp rock df the lkea.cti odas Cmpo'aing halting mud chaln rrdnoos rtra wad, on fodliare'he

caw slbrr af inrdoo han IFarcai I'af iulo
·s, and War lenders da lowsr earl

While na common doll,. don hos boon prapocad n Yac IlonaWm, ACS pal 21 ord Canal oL d.

;21112) have Iha caralllullryg alomoni'pro.Adon', 'processing". and'prtbicthlt" n £017511£11. Thoy snow Mal Ma drain

t lhrt' rcaoarches caplal'

Insimrrents used tt dim TINY a alwd..rine erlS-gbi.w lemma =saw.. Ya'.
·a
·
·
·
·b
·iwiw

L4

·

ü idaW

·

kaki P.O

n rdr

· Pne1

Venus, d &uuar, 2112'; Za Mamma Aliu(h

"Moro s agrtemoni bat» Jonas, 2C10: K T and RF

d AVCF ref vshlrh the soil A Jonas, 2Ci6 AFRACA

1110 authors agreed That It as wren an npet supplier rrd'loci Inlarmodlay. Ed
·r roal orahlps and median conlrad nirn a l'uslod auk

C11har aJl'iors donned AV sale andtw,or; snnadaa the method of aammunlm 20301. Tin ogreomani ao chain In Mrar diMrenl err

al En hl LUN a) Iwo

This hfNy1s N rolmreslmants, and lira dcrclopmart

2.1 AYCF Chellen

Abdul U. challenges al supplies race r landing h

. aro r-

P rnl

Pal
·

pou

Waver

RE Pn31

Irma


·

Prof

Tahlr4 M=111=r fir F3 b r4. Jl~ZL r, nagrti~

~on

Tool. and La.r'rts

ü ekltChain Frarta.a

F.Marrolnp l!rlouFture Value Iha ns In Carnplar

Cantrell a Ler rIaa Mom

a .glouttural11nanDs hx rrnellholdtrr RAW

termer

Contraot Forming for Ii:Iudl,to- Maa E'

Idaku and DFI.rtunIU 1:4' Fl Bank- Lasndcr Rau-pa
E'-1 Flranolnp

`r ri s uJ ta thl. Orcav to M a l s t Ita F;G ] r 1 IWA'

Eller and J011111 and I FR

arra Rankin

2010

2016

2013

HIV)

341P)

46

d

44

2131521316

W orld Goaroll or a e'dlt Unlanrr'

L

Eliza Phrnalairm

1

TcI or Fli In the Estatunt review-.

241

Hamlet eholuclon irnrera

rramradcn ady'mmeblos Tranoectcn oast -1111-. Not

t ralflYaent a1wsi

o ntrin

Ler rirach,rai
dktant larelkn
Ler C#Jcadan termoN

=FactJedrd Predcck

Leak collateral

ü nlfklerrt Merkat

Tho anal anges of

Flnanolel OKo1LK meLalon Tar Iha 1 iii loi access Ir (/CFI ara in
· h Irltarmedal en
dr bandnu scalarga d-r laud slmlank 2CU11: Fla'ahon !Mere-red In Ma cala ring broil!

· nfarrnaNur esp yin ch makes Mr smolha dens lam eue in the Jnlq,

11

Plan

I.Introduction

II.Literature Review

III.Methodology and Data

IV.Analysis and Results

V.Limitations and further research needs

VI.Conclusion

12

VII.Recommendations

*** Description of the study ***

Database of financial institutions

Global Map of financial institutions

13

*** Building the database ***

37

201

109

347

14

*** Statistical Analyses ***

Descriptive statistics

Cluster Analyses

15

*** Data Types and Variables ***

Continent Attribute

Africa 0

Asia 1

South America 2

Global 3

Institutional type

Attribute

Agricultural Bank

0

Commercial Bank

1

cooperative

2

Credit union

3

Development Bank

4

Insurance company

5

International FI

6

International Fund

7

Islamic Bank

8

MFI

9

NGO

10

state development

bank

11

16

Agricultural loans Attribute

Credit facility for

women

Career development to female staff

Gender Programmes G3

G2

G1

Online Banking DS1

E-Products: DS2

Online Loan Application

DS3

Checking the rubric «Products and Services» AL1, AL2 0-1

Gender Variables

Digital solution Variables

Farmer credit AL1

Agri-business credit AL2

Continent

Institutional Type

Foundation year

Number of Branches

Agricultural Loans

Gender

Digital solutions

Total assets

Total Equity

Gross Loan Portfolio

Variables Search Method Name/ Scale

checking the institute's website C 0-3

checking the rubric «about us» T 0-11

checking the rubric «our history» F Year

checking the rubric «locate us» B Number

Checking the rubric «our value» and «events» G1, G2, G3 0-1

Verifying if «online banking» or other e-products

DS1, DS2,

0-1

investigating the most recent «annual report» AS $

available

DS3

investigating the most recent «annual report» EQ $

investigating the most recent «annual report» LP $

*** financial institutions sample ***

Financial
institutions from
the literature
review

201

Africa

Sample FIs: 200

Global

Sample FIs: 16

Total of 347 financial institutions

144

17

Plan

I.Introduction

II.Literature Review

III.Methodology and Data

IV.Analysis and Results

V.Limitations and further research needs

VI.Conclusion

18

VII.Recommendations

*** Geographic distribution ***

Global

9%

America

24%

Africa

47%

Asia

20%

Continent

 

No of FIs

Share

Africa

 

67

47%

South America

 

35

24%

Asia

 

29

20%

Global

 

13

9 %

 

Total

 

144

Africa Asia America Global

19

 
 
 
 
 
 
 

*** Distribution by institutional type ***

 

60

50

48 47

5 3 3 2 2 2 1 1

0

40

30

20

10

21

9

Institutional type Commercial Bank

 

Number

48

%

33%

Cooperative

47

33%

MFI

21

15%

Development Bank

9

6%

Islamic Bank

5

3%

International FI

3

2%

International Fund

3

2%

Agricultural Bank

2

1%

Credit union

1

1%

Insurance company

1

1%

NGOs

2

1%

State development bank

2

1%

Total

 

144

20

 
 
 
 

*** Foundation Year ***

 
 

32

33

60

FREQUENCY

19

21

< 1950 1950 -1970 1970 -1990 > 1990

> 1000

100 - 1000

7

1

5

23

12

5

2

< 10

10 - 100

31

14

13

5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Africa America Asia Global

1

2

4

1

*** Number of Branches per FIs ***

Number of Branches per Region

Range

Africa

Number of Branches per Region

America Asia Global Total

%

< 10

23

12

5

2

42

29%

10 -

100

31

14

13

5

63

44%

100 -

1000

12

7

7

5

31

22%

> 1000

1

2

4

1

8

6%

Grand Total

67

35

29

13

144

100%

22

*** Agricultural loans***

160%

140%

120%

100%

80%

24%

0% 0%

50%

11%

20%

50%

0%

0% 0%

TYPE OF CREDIT OFFERED BY FINANCIAL

INSTITUTIONS

0%

44% 40%

Farmer credit Agribusiness Credit

60%

40%

79%

33%

0%

71%

67%

29%

0%

100%

100%

100%

33%

23

 
 
 
 

*** Gender Equality ***

 

GENDER PROGRAMMES OFFERED BY FIS

160%

 
 
 
 
 
 
 
 
 
 

140%

 
 
 
 
 
 
 
 
 
 

120%

 

50%

 
 
 
 
 
 
 
 

100%

 
 
 
 
 
 
 
 
 
 

80%

 
 

33%

 
 
 

50%

 
 
 
 

60%

 
 
 

67%

29%

 
 
 
 
 

0%

 

33%

 
 

40%

 
 
 
 

19%

 
 
 
 

0%

 
 

50%

50%

 
 
 

20%

 
 

33%

33%

29%

0%

 
 
 
 
 
 
 
 
 
 

0%

60%

50%

4%

13%

22%

9%

13%

33%

35%

21%

0%

0% 0% 0% 0%

 
 

Credits facility for women Career development opportunities to female staff Gender Programmes

24

*** Digital Solutions ***

Digital solutions offered by FIs Again

40%

20%

80%

 

23%

21%

 
 
 
 
 

77%

 
 
 
 

5%

19%

 

0%

50%

 
 
 

6%

9%

24%

 
 
 

21%

0% 0% 0% 0% 0% 0% 0%

11%

160%

Online Banking E-Products Online Loan Applications

25

140%

120%

100%

80%

60%

40%

20%

0%

Plz sum it up !

26

 
 
 
 

*** Summary***

 

Seven key characteristics of financial institutions

1. Geographic distribution

2. institutional type

3. Foundation Year

4. Branches

5. Agricultural credit

6. Gender Equality

7. Digital solutions

1. Geographic distribution

47%

from Africa

24%

from America

4. Branches

29%

<10 branches

44%

10-100 branches

2. institutional type

33%

commercial bank

33%

cooperative

5. Agricultural credit

58%

Farmer credit

19%

Agribusiness credit

3. Foundation Year

42%

> 1990

6. Gender Equality

15% credit

facility for women

10% Career

development

7. Digital solutions

58% Online

27

banking

Okay descriptive Statistics ...

What about

cluster Analysis ?

28

*** Cluster Analysis ***

Descriptive statistics of the dataset

Mean Median Standard

Range Mi

Sample

Variance

Deviation

C 0.96

T 3.44

F 1976

B 215.

AL1 0.58

AL2 0.19

G1 0.15

G2 0.10

G3 0.30

DS1 0.42

DS2 0.13

DS3 0.13

Wrong !

29

*** k-means Clustering ***

Scale Data

s

30

*** k-means VS hierarchical Clustering ***

31

*** k-means Clustering ***

Cluster no.

1

Observations Number

3 18 35 36 42 48 49 50 62 63 76 84 111 125

Total

14

2

2 7 17 20 26 37 67 75 82 88 114 120 134 135

15

 

137

 

3

10 41 43 47 57 59 64 72 73 74 78 90 92 94 101

29

 

102 103 104 117 124 126 127 132 133 139 140

 
 

142 143 145

 

4

4 12 21 22 23 30 32 34 39 40 52 53 54 56 60 69

19

 

70 80 81

 

5

1 5 6 8 9 11 13 14 15 16 19 24 25 27 28 29 31

67

 

33 38 44 45 46 51 55 58 61 65 66 68 71 77 79

 
 

83 85 86 87 89 91 93 95 96 97 98 99 100 105

 
 

106 107 108 109 110 112 113 115 116 118 119

 
 

121 122 123 128 129 130 131 136 138 141

 

betweenss_totss (1? 10) Silhouette plot

32

*** k-means Clustering ***

How good is 0.14?

Average silhouette width:


·

Si > 0 indicates that the observations are well clustered.

· Si < 0 indicates that the observation was placed in the wrong cluster.

· Si = 0 indicates that the observation is in between two clusters

33

 
 
 
 
 
 
 

*** Extracting Results ***

 

34

Cluster Number

 

Average Cluster Name

Foundation

Average number of Branches

1

1948 Value chain oriented FIs

517

2

1967 Gender Staff FIs

433

3

1975 Farmer credit provider FIs

215

4

1990 Innovative digital newcomers

95

5

1982 Traditional Banking approaches

137

*** Extracting Results ***

Geographic distribution

Value chain oriented FIs Gender Staff FIs

Farmer credit provider FIs Innovative digital newcomers

Traditional Banking approaches

Africa

Institutional type

Value chain oriented FIs Gender Staff FIs

Farmer credit provider FIs Innovative digital newcomers

Traditional Banking approaches

Agricultural Bank

35

South America

International FI

80%

60%

40%

20%

0%

Asia

Global

state development

bank

100%

Commercial Bank

80%

NGO

60%

40%

20%

MFI

0%

Islamic Bank

cooperative

Credit union

Development Bank

International Fund

Insurance company

 
 
 
 

*** Extracting Results ***

 

Services

Value chain oriented FIs Gender Staff FIs

Farmer credit provider FIs Innovative digital newcomers

Traditional Banking approaches

Farmer credit

80%

Online Loan Applications

60%

40%

20%

E-Products

Online Banking

0%

agri-business credit

Credits facility for women

opportunities to female

staff

100%

36

Gender Programmes

 

*** Extracting Results***

 

Technische Universitet München

Table 30 Cluster's characteristics

Cluster Name

Group 1
Value
chain Fls

Group 2
Gender
Staff Fls

Group 3
Farmer credit
provider Fls

Group 4

Innovative digital newcomers

Group 5

Traditional Banking approaches

Region

 
 
 
 
 

Africa

71%

47%

24%

79%

42%

Asia

14%

13%

24%

21%

19%

South America

14%

20%

28%

 

34%

Global

 

20%

24%

 

4%

Institutional Type

 
 
 
 
 

Agricultural Bank

 
 
 
 

3%

Commercial Bank

86%

13%

21%

68%

22%

cooperative

7%

40%

31%

16%

42%

Credit union

 
 
 
 

1%

Development Bank

7%

 

10%

 

7%

Insurance company

 
 
 
 

1%

International Fl

 

7%

3%

 
 

International Fund

 
 

7%

 

1%

Islamic Bank

 
 

10%

5%

1%

MFI

 

27%

14%

11%

16%

NGD

 

7%

3%

 

1%

Average Foundation

1940

1967

1975

1990

1982

Average Branches

517

433

215

95

137

Agricultural Credit

 
 
 
 
 

Farmer credit

57%

67%

72%

37%

57%

agri-business credit

86%

20%

0%

26%

12%

Gender Programmes

 
 
 
 
 

Credits facility for

women

opportunities to female staff

7%

0%

47%

100%

7%

0%

16%

0%

13%

0%

Gender Programmes

71%

13%

100%

11%

0%

Digital Solutions

 
 
 
 
 

Online Banking

71%

47%

55%

84%

16%

E-P rod ucts

0%

20%

0%

84%

0%

Online Loan

50%

7%

7%

37%

1%

Applications

 
 
 
 
 

Total Fls

14

15

29

19

67

Plan

I.Introduction

II.Literature Review

III.Methodology and Data

IV.Analysis and Results

V.Limitations and further research needs

VI.Conclusion

38

VII.Recommendations

 
 
 
 

*** Limitations ***

 
 

U This database was created based on an English literature review, so many financial institutions from North Africa, South America, and Asia were not considered.

U The structure of the database causes some information to be lost due to specific categories of data. Consequently, some of the information cannot be considered.

U Several categories of variables, such as Total assets, Total equity, Gross loan portfolio, and number of clients can not be considered since several websites did not have information on these variables, so we did not take them into account.

39

U Lack of credible or official websites of many financial institutions, which reduced the sample by 50 FIs.

 
 
 
 

*** Further research needs ***

 
 

U Deeper analysis must be conducted of an expanded and more diverse set of financial institutions taking into account farmer information services providers, financial institutions from the Spanish and French literature review, etc....

U Research on gender equality programs and their relationship to agricultural finance needs to be done and if promoting credit facilities for women could reduce lending risk and increase farm profitability.

U Evaluation how digital tools can increase farmers' awareness of credit offers by financial institutions is a high priority

40

U Online survey should be conducted with FIs representatives to gather the maximum amount of information necessary for analysis. In this regard, this could analyze the way in which FIs currently fund the agriculture sector, including the approach AVCF.

Plan

I.Introduction

II.Literature Review

III.Methodology and Data

IV.Analysis and Results

V.Limitations and further research needs

VI.Conclusion

41

VII.Recommendations

 
 
 
 
 
 

*** most important questions ***

 
 

1) What are the key underlying characteristics of credit provision of different types of financial institutions in the Global South?

2) To what extent financial institutions promote gender issues and include digital solutions?

42

3) What kind similarities and differences can be observed between financial institutions?

Based on 144 financial institutions

67from Africa

35 from South America

29 from Asia

13 International FI

Agricultural credit

58%

Farmer credit

19%

Agribusiness credit

6. Gender Equality

31% program to empower women

7. Digital solutions

42% digital

solutions

Plan

I.Introduction

II.Literature Review

III.Methodology and Data

IV.Analysis and Results

V.Limitations and further research needs

VI.Conclusion

43

VII.Recommendations

q More SMS o

manag

q Mo

ion of

44

 
 
 
 

Source of images

 
 

Global South IFS pathways Database

Financial institutions Finance gap Evaluation

Value Chain finance Farmer finance Global Map

Database LFS pub. Finance in common

Farmer problems IFAD pub. Literature review

Climatic factors World Bank pub. Search Engine

Price and market risks CGAP pub. Descriptive statistics

Farm loan Meyer article Cluster analyses

Low profit Key underlaying Excel

collateral Gender Equality R

Bank Digital solutions IFAD pub.

45

Farmer Similarities FIs Angry farmer

Technische Universitet München

***Appendix***

Share P Comments

File Home Insert Page Layout Formulas Data Review View Help

Y

Germany

AutoSave Co of)

A17

I

P- ~kllrv

Synopsis

Af7

Africa

Asia

America

R_€Tata

Fls Literature

D E

F

2

Colour

Signification Africa

 
 
 

4

 

Asia

 

limMEMEM

 
 

America

 

Africa

200

 
 
 

Global

 

Asia

52

 
 
 

Fls from the literature review

 

America

63

 
 
 

Notice

 

Oceania

16

 

9

 

Sources

 

Global

16

 

10

 

incomplete information

 

Total

347

 

11

 

Synopsis

 
 
 

12

 
 

FI: Financial

Institution

13

 
 
 
 

14

 

List of Fls-countries

 

No. of countries

 

15

Belgium

Afghanistan

Global South

98

 

16

France

Algeria

developed cous

8

 

17

rGermany

Bangladesh

 
 

18

Italy

Barbados

 

19

Lutembou

Belize

 

20

Netherland

Benin

 

Attribt

 

21

UK

Bermuda

 

N~A 0

 

22

USA

Bhutan

 

Credit facility for 1

 

23

 

Bolivia

 

career developm 2

 

24

 

Brazil

 

Gender Program 3

 

25

 

Burkina Faso

 
 
 

28

 

Burundi

 

27

 

Cambodia

 
 
 
 

28

 

Cameroon

 

Agricultural Bank

0

 

29

 

Cayman Islands

 

Commercial Ban4

1

 

30

 

Central African Republic

 

cooperative

2

 

31

 

Chad

 

Credit union

3

 

32

 

Colombia

 

Development Bai

4

 

33

 

Congo

 

Insurance comp<

5

 

34

 

Cook Island

 

International FI

6

 

35

 

Costa Rica

 

International Fun

7

 

36

 

Côte d'ivoire

 

Islamic Bank

8

 

37

 

Curacao

 

MFI

9

 

38

 

Djibouti

 

NGO

10

 

39

 

Dominica

 

state developmei

11

 

J

H I

K

L

Q

R

,nt

Attribute

0

Africa

1

2

Asia

America

3

Global

nn N o I P

Ca

Institutional typtaM-Number Agricultural Bank

46

13%

Commercial Bank

68

20%

cooperative

76

22%

Credit unions

12

3%

Development Agency

7

2%

Development Bank

52

15%

Development Fund

1

0%

Insurance company

5

1%

International H

6

2%

International Fund

5

1%

MFI

55

16%

NGO

5

1%

state development bank

4

1%

Islamic Bank

5

1%

Total:

347

100%

Digital solution

Attribut

NA

0

Online Banking

1

[-Products: (SMS Bank

2

Online Loan Application

3

Digital foot prints Partner

4

347

Total

45

8

17

2s

8

3

Finance in commo

44

37

109

48

46

0

Technische Universitet München

***Appendix***

8 Share P Comments

File Home Insert Page Layout Formulas Data Review View Help

AutoSave (* Off) ® /

47

fx Agricultural Bank

A

A

B

Country

C

D .ronym

E F G

Type

H

Website

I

Notice

J I

1

id

Bank

 
 

2

1

Algeria

La Banque de 'agr cu turc et du

BA DR

Agricultural Bank

Mchand Bcura

ccntactghadr-hank dc

https:ffHadrLanque.dzf

 

3

2

Algeria

Caisse Nationale de MutuaJitéA

CNMA

Insurance company

Cherif Benhabiflès

cnma[afcnma-dz

https;//www-cnma-dz/

 

4

3

Algeria

Crédit Agricole CIB Algérie Spa

CIB

Agricultural Bank

Xavier thom as

https://www.ca-cih.com/contact-us

https//www.ca-cib.c am/

 
 
 

5

4

Benin

institution mutualiste ou coopér

UNACREP

cooperative

TOLOME LAURENT

contact@unacrep-bj

https;//unacrep-bj/

 
 
 

6

5

Benin

REseau NAtional des Caissesvill

RENACA

MFI

Léon GDUKPANIAN

renaca@yahoo.fr

https;//www.renac abenin.org/

Entreprises

(BC-PA

7

6

Benin

Credit Agric ole Group

CAG

Agricultural Bank

Jean-Guy LARRIVIÈRE

https://international,graupecreditagricale.camffrfcont

https://international,graupecreditagricale.camffrfaccampagneme

8

7

Burkina Faso

Systèmes Financiers DécentralisSFD

 

MFI

na

info@cci.hf

https//www-femme-entrepreneur-bf/structures-de-micro-finances/

9

S

Burkina Faso

Ada microfinance

 

MFI

Soulemane Djobo

s.djobo@ada-microfinanceiu

https://www.ada-microfinancf

several countries

10

9

Burkina Faso

SOCIAL MICROFINANCE IN BURKI

YIRKI

MFI

Elarik Philouze

elarik_philouzeentrepreneursdumonde_org

https;//www.entrepreneursdumande.arg/en/program/yikri-sodal-

11

10

Burkina Faso

African development Bank

AfDB

Development Bank

Mr Pascal Yembiline

P-YEMBILINEcAFDBARG

https;//www-afdb-org/en/documents/document/burkina-faso-sup

12

11

Burkina Faso

Banque Agricole du Faso

BADF

Agricultural Bank

W AimeZoungrana CLinkedln

contact@badf.bf

https://www.badf.bf/

 

13

12

Burundi

Banque Communautaire etAgriE

BCAB

Agricultural Bank

Thierry Willy NIKUZE

info@bcab.bi

https;//bcab.bi/

 

14

13

Burundi

confédération des associations

CAPAD

cooperative

Annick Sezibera

capad shirukubute@yahoak

https;//www-capad-info/spip-php?rubrique25&langer

15

14

Cameroon

Credit Agric ale Group

CAG

Agricultural Bank

Jean-Guy LARRIVIÈRE

https://international,groupecreditagricale.cam/fr/tont

https://international,groupecreditagricale.cam/fr/accampagneme

16

15

Cameroon

Banque Camerounaise des Petits

BC-PME

MFI

AMADOU HAMAN& ON

contact@bc-pme.cm

Banque Camerounaise des Petites et Moyennes

17

16

Cameroon

Ecobank in Cameroon

ECM

MFI

FALL MOUSTAPHA

ecobankenquiries?ecobankcom

https;//ecobank-com/cm/personal-banking/products-services/mi

18

17

Central Africa

Banque de Crédit Agricole et del

BCAD

Development Bank

na

na

https://www goafricaonline.com/en/cf/314491-bcad-banque-de-c

19

18

Central Africa

Credit Agricole Group

CAG

Agricultural Bank

na

https;//international,groupecreditagricole.cam/en/can

https;//international,groupecreditagricole.cam/en/internationak

20

19

Chad

Banque Agricole et commerciale

BAC

Agricultural Bank

na

bac_bank@hactchad-cam

https//bactchad-com/indexapropos-html

21

20

Chad

International Fund for Agri cultu

IFAD

Development Bank

ValantineAchancho

v-achancho@ifad-org

https;//www-ifad-org/fr/web/operations/w/pays/chad

 

22

21

Chad

Agence FrancaisededevelappenAFD

 

Development Agency

na

afdndjamena@afd.fr

https://www.afdir/fr/page-region-pays/tchad

 

23

22

Congo

Equity Bank Congo SA

na

Commercial Bank

James MWANGI

mailiequitybank.cd

https;{/equitybank.cd/index.php

 
 

24

23

Congo

African development Bank

AfDB

Development Bank

Alexis Adélé

a-adelecafdb-org

https;//www-afdb-org/fr/news-and-events/press-releases/congo-1

 

25

24

Côte d'ivoire

Credit Agricole Group

CAG

Agricultural Bank

Jean-Guy LARRIVIÈRE

https;//international,groupecreditagricole-com/fr/tont

https;//international,groupecreditagricole-com/fr/accompagneme

26

25

Côte d'ivoire

Banque Agricole et Investisseme

BAICI

Agricultural Bank

na

info@ hanqueagricoleinv-cam

https;//www-banq ueagricoleinv-cam/index-html

27

26

Côte d'ivoire

Banque Nationale d'Investisseur

BN I

Development Bank

Sauleymane CISSÉ

info ibni.ci

https-// www.bni.ci/groupe-bni/bni-bref

 
 
 
 
 
 
 
 
 

4 I Synopsis

Africa Asia I America

I Oceall Fls Literature I I R_data

 
 

Cli ... 0 14 I

E7

Technische Universitet München

***Appendix***

is Share P Comments

File Home Insert Page Layout Formulas Data Review View Help

1148

fr

I =su 2:I14S)/144

48

 

B

C

D

E

F

G

H

1

J

K

L

M

N S1

O DSO

P
OS3

Q

Total Ass =

R

Total E
· uit

S

Gross loan p
·

T

U

V

W

X

Y

page

Z Aut

AA

y

--

1

r - r -

- r - r - - r - -
· r

r y v

· y

y
· -

r --L

 

2

Africa

Cameroon Cooperative i

CamCCUL

Cameroon

cooperative

1968

12

1

0

0

0

0

0

0

0

$ 306,000,000.00

na

$ 188,000,000.00

Fombon l

https:llwr

https:lloa

https:#ca

World Co

1

World Co

mail® woc

3

Africa

Société Générale Côte r

SGBCI

Côte divoir

Commercial Bank

1962

28

0

0

0

1

0

1

0

0

na

$ 27,844,490.00

$ 268,500,450.00

Aymeric 1

https:llwr

cotedivoi

https:#sc

Enquête

90

CGAP

°gap@ w c

4

Africa

Banque Nationale Dinar

BNI

Côte divoir

Commercial Bank

1959

22

0

1

0

0

1

1

0

0

na

na

na

M. Yousc

https:llwti

info@bni

https:llwt

Enquête

81

CGAP

°gap@wc

5

Africa

Ecobank

ECO

Côte divoir

Commercial Bank

1989

47

0

0

0

0

0

0

1

0

na

$ 195,967,000.00

$ 1,555,378.00

Mr. Paul-

https:llwti

ecobank

https:llwt

Enquête

90

CGAP

cgap@wc

6

Africa

Société Ivoirienne de Ba

SIB

Côte divoir

Commercial Bank

1962

66

0

0

0

0

0

0

0

0

na

$ 17,900,030.00

na

Daouda I

https:llwti

http:llww

http:live

Enquête

90

CGAP

cgap@ w c

 

7

Africa

Nouvelle Société Interaf

NSIA

Côte divoir

Insurance ocmpar

1906

0

0

0

0

0

0

0

0

0

na

$ 265,475,344.00

na

BJanine

 

https:llwtiinfo@grohttps:#wt

 

Enquête

90

CGAP

cgap@wc

8

Africa

Advans Côte d'Ivoire

ADVANS

Côted'ivoir

MFI

2005

9

1

0

1

1

1

0

1

0

na

$ 12,530,021.00

$ 82,340,138.00

Mariamf

https:llwti

https:ller

https:llwt

Enquête

95

CGAP

cgap@wc

9

Africa

MicroCred Côte d'Ivoire

EIB

Côte divoir

MFI

2010

23

0

0

0

0

0

0

0

0

na

$ 5,728,009.00

na

Missa Hil<

https:llw%

https:ller

https:llwr

Enquête

95

CGAP

cgap@ w c

10

Africa

MUCREFAB - Microfinar

MUCREFAI

Côted'ivoir

MFI

1994

9

0

0

1

0

0

0

0

0

na

na

na

na

remuci@

info@mu

https:llwt

Enquête

95

CGAP

cgap@wc

11

Africa

Fonds International pouiFIORA

 

Côte divoir

MEl

2011

8

0

0

0

0

1

0

0

 

Dna

na

na

 
 

Franck Ahttps:llw%info@fidrhttps:llwtEnquête

 
 

85

CGAP

cgap@wc

12

Africa

Union Nationale des Car

UNACOOF

Côte divoir

MFI

1976

4

0

0

1

0

0

0

0

0

na

na

na

SAVANE

https:llci.

info@un:

https:llwr

Enquête

85

CGAP

cgap@ w c

13

Africa

Eswatini Association of`.SA000s

 

Eswatini

cooperative

1964

40

0

0

0

0

0

1

1

1

na

na

na

na

na

 

info@sasshttp:llww

World Co

1

World Co

mail@woc

14

Africa

Nib International Bank

NIB

Ethiopia

Commercial Bank

1999

189

1

0

0

0

0

1

0

0

$ 682,278,953.00

$ 605,495,148.00

$ 550,649,573.00

Haimano

https: lier

nibconta

https:lier

AVCF To

38

Calvin Mil

copyright

15

Africa

Harbu Microfinance

HARBU

Ethiopia

MFI

2005

13

0

1

0

0

0

0

0

0

$ 1,300,000.00

na

na

Alazar Ta

https:llwr

harbumfi

https:llbt

Value Ch

246

KIT and II

publicatio

16

Africa

Commercial Bank of Eth

CBE

Ethiopia

Islamic Bank

1942

1714

0

0

0

0

0

1

0

0

###############

na

na

Abreham

https:llwr

cbe@col

https:llcc

Risks anc

29

Rauno 2

die@die-

17

Africa

National Association of f

NACCUG

Gambia

cooperative

1992

6

0

0

0

0

0

0

0

0

$ 40,108,030.00

 

$ 24,483,575.00

Pa Mend

https:llwr

infonacc

https:ller

World Co

1

World Co

mail® woc

18

Africa

Ghana Co-operative CrE

CUAgh

Ghana

cooperative

1955

11

0

0

0

1

0

0

0

0

$ 27,754,675.00

$ 93,766,590.00

$ 48,067,968.00

Emmanu,

https:ller

brongah,

https:llwr

World Co

1

World Co

mail® woc

19

Africa

Equity Bank

Equitykeny

Kenya

Commercial Bank

1984

10

1

1

0

0

1

1

0

0

$3,000,000,000.00

na

na

Elizabeth

https:ller

info@eqt

https:llec

AVCF To

8

Calvin Mil

copyright

20

Africa

Agricultural Finance Cor

AFC

Kenya

Agricultural Bank

1963

8

1

1

1

0

0

0

0

0

$6,600,000,000.00

na

na

JACKSO

https:ller

info@agr

https:llwt

AVCF To

12

Calvin Mil

copyright

21

Africa

Faulu Kenya

FAULU

Kenya

MFI

1991

67

1

1

0

1

0

0

0

1

$ 270,615,033.00

na

na

 

Apollo Nihttps:llerinfo@f

 

auhttps:llwtAVCFTo

 

50

Calvin Mil

copyright

22

Africa

Family Bank

FAMILY

Kenya

Commercial Bank

1984

92

1

1

0

0

0

1

1

1

$ 696,000,000.00

$ 114,785,459.00

$ 660,471,889.00

Rebecca

https:ller

info@fan

https:llfa

AVCF To

50

Calvin Mil

copyright

23

Africa

Cooperative Bank

co-opbanl

Kenya

Commercial Bank

1931

100

0

1

1

0

0

1

1

0

$3,900,000,000.00

na

na

William N.

https:ller

customer

https:llwt

AVCF To

50

Calvin Mil

copyright

24

Africa

Unity Finance

k-Unity

Kenya

cooperative

1974

15

1

0

0

0

0

1

1

1

$2,900,000,000.00

na

na

stella war

https:ller

INFO @K

 

https:llwtAVCFTo

50

Calvin Mil

copyright

25

Africa

Eclof Kneya

ECLOF

Kenya

MFI

1994

43

1

1

0

0

0

0

0

0

na

na

na

Mary Mur

https:ller

info@ecl

https:llwt

AVCF To

50

Calvin Mil

copyright

26

Africa

JuhudiKilimo

JUHUDI

Kenya

MFI

2004

39

1

0

1

0

0

0

0

0

na

na

na

Bernardi

https:ller

info@juh

https:lllul

Agriculta

143

DanielaF

bidem@iE

27

Africa

Malawi Union of Savings

MUSCCO

Malawi

cooperative

1962

47

1

0

1

1

0

0

0

0

na

na

na

Banda

ww.linke

muscccti

https lier

World Cc

1

World Co

mail@woc

28

Africa

Millenniumbim - Particul

BIM

Mozambiq

Commercial Bank

1995

138

0

0

1

0

0

0

0

1

na

na

na

Miguel

ww.linke

cac@mill

https:llmi

UserGuir

10

CGAP

cgap@wc

29

Africa

socremo banco de micrt

SOREMCC

Mozambiq

Commercial Bank

1998

13

0

0

0

0

0

0

0

0

na

na

na

Manjate

ww.linke

secretari.

http:llww

User Guit

21

CGAP

cgap@ w c

30

Africa

African Banking Corpora

BancABC

Mozambiq

Commercial Bank

1999

10

0

0

0

0

0

0

0

0

$1,810,000,000.00

na

na

Silva

wwlinke

 

mz-callc,https:llwr

User Guit

77

CGAP

cgap@wc

31

Africa

Banco Mais

BANCOMP

Mozambiq

Commercial Bank

1999

7

0

0

0

0

0

1

0

1

na

na

na

Jivane

ww.linke

 

info@bahttps:llwt

User Gus

77

CGAP

cgap@wc

32

Africa

Banco Unico

BANCOUN

Mozambiq

Commercial Bank

2010

2

0

0

0

0

0

0

0

0

na

na

na

Carlos

we linke

 

https:llwr

User Guit

77

CGAP

cgap@ w c

33

Africa

Barclays Bank

ABSA

Mozambiq

Commercial Bank

1991

3

0

0

0

0

0

1

0

1

$9,100,000,000.00

na

na

Namarro

ww.linke

 

linhaclierhttps:llwr

User Guit

77

CGAP

cgap@wc

34

Africa

Central Bank of West Afr

BCEAO

Niger

International FI

1962

3

0

0

0

0

0

0

0

0

na

na

na

na

 

https:ller

https:llwt

AVCF To

104

Calvin Mil

copyright

35

Africa

SunTrust Bank

Suntrust

Nigeria

Commercial Bank

2009

8

0

1

1

0

0

1

1

0

$ 128,477,119.00

$ 28,770,351.00

$ 62,438,759.00

Ayodeji E

https:ller

helpdesk

https:lls.

CGAP Sr

92

CGAP

cgap@ w c

36

Africa

Keystonebank

KEWSTON

Nigeria

Commercial Bank

1981

154

0

1

0

0

1

1

0

0

$ 1,916,000,000.00

$ 213,300,000.00

na

Olaniran

https:ller

contactc

https:llwt

CGAP Sr

92

CGAP

cgap@wc

37

Africa

Union Bank of Nigeria

UBN

Nigeria

Commercial Bank

1917

320

1

1

0

0

1

1

0

1

$ 4,100,000,000.00

na

na

David Ad

https:ller

customei

https:llwt

CGAP Sr

92

CGAP

cgap@ w c

38

Africa

UBAGroupCorporate

UBAG

Nigeria

Commercial Bank

1948

67

0

0

0

1

1

1

0

0

###############

na

na

Kennedy

 

https:llwtiinfo@hbrhttps:llwt

 

CGAP Sr

92

CGAP

cgap@wc

 

i Irsynopsis ' Africa

I Asia I

America 1

Fls Literature

1 Final_Database

R_data E ...

 
 

0i I I

I

 

***Appendix***

 

Technische Universitet München

R5tudio

File Edit Code View Plots Session Build Debug Profile Tools Help

o ° - 61 lid+ 4 (o to FiIe/fundior Addirs Project: (None) -

R scriptR* X X20210922_database_Fls_144T PJ Clustering 1.R 9J Clustering 2.R tJ ??

I8 D Source on save I Q - I I. - Run Source

Packages clusterSim, dplyr, and 3 others required but are not installed, Install Don't Show Again

1 # Descriptive Analysis #

2 datai e- na.omit(x20210922_database_FIs__MAT)

3 data- data1[-1]

4 plot(data)

5 data

6 summary(data)

7 #Scale Data #

8- Data_scaled = apply(data, 2, function(r) f

9 if (sd(r) != 0)

10 res = (r - mean(r))/sd(r) else res D * r

11- res I)

12 summary(Data_5 caled)

13 # install packages#

14 # install.packages("dplyr")

15 # install. packages("ggplot2")

16 # install.packages("ygfortify")

17 # install.packages("factoextra")

18 # install.packages("stats")

19 # install. packages("clustersim")

20 # load required libraries #

21 library(stats)

22 library(dplyr)

23 library(ggplot2)

24 library(ggfortify)

25 library(factoextra)

26 # wss plot function #

27- wssplot r- function(Data_scaled, nc=15, seed=1234){

28 wss r- (nrow(Data_sealed)-1)*sum(apply(Data_5caled,2,var))

29- for (i in 2:nc){

30 set.seed(seed)

31- wss[ï] e- sum(kmeans(Data_scaled, centers=i)$withinss)]

32 plat(i:nc, wss, type="b", xlab="Number of clusters",

33- ylab="within groups sum of squares")}

34 # wss Plot to choose maximum number of clusters #

35 wssplot(Data_scaled)

11:9 8 <Function}() RScript

Environment History Connections Tutorial

LJIPIPIPIPIDILIDIP

a I ® Import Dateset - 122 Mie, -

R - I ; Global Environment -

Data

p Cl List of 10

()data 143 obs. of 12 variables

Data_scaled num [1:143, 1:12] -0.93 -0.93 -0.93 -0.93 -0.93

O datai 143 obs. of 13 variables

O- final List of 9

O- fith List of 7

O- gap_stat List of 6

Q

- KM List of 9

Q- x20210922_database__FI... 161 obs. of 13 variables

- 'dist' num [1.10153] 4.35 4.4 3.65 2.06 3.03 ...

chr [1:300] "-0.3€32" "-0.586" "0.1408' .0.098" "0.6075' "-0._. int [1:143] 5 4 3 2 2 2 4 2 2 2 ...

'silhouette' num [1:143, 1:3] 5 4 3 2 2 2 4 2 2 2 ...

values

d

- desc KM. cl usters

- sil Functions

wssplot function (Data_scaled, ne = 15, seed = 1234)

Console 51 Fie, Plots Packages Help Viewer 51

49

 

***Appendix***

 
 

Technische Universitet München

RStudio

File Edit Code View Plots Session Build debug Profile Tools Help

ak ^r - H _
· 4
Go to Pilejfundior Addins -

R Project: {None) -

K.max = 10, B = 50)

# Print the result

#print(gap_stat, method = "firstmax") #fviz_gap_stat(gap_stat)

# K-Means cluster #

Ki= kmeans(Data_scaled,5)#I

# Evaluating Cluster Analysis#

# Cluster plot 2#

autoplot(KM,Data_5caled,frame=TRUE)

# segmentation & visualization # KN1.clusters C- KM$cluster

rownames(Data_scaled) <- data1Sid

fviz_cluster(list(data=Data_scaled,cluster=KM.clusters))

# cluster Membership #

KM$cluster

table(Ktn.clusters, datal$id) table(datai$id, la+l.clusters)

# clusters center # KM$centers

# descriptive statistics at the cluster level library(clustersim) desc r- cluster.Description(Data_scaled,KM$cluster) print(desc)

summary(desc)

library(factoextra)

sil cents- silhouette(KM$cluster, dist(Data_scaled)) fviz_si1houette(sil)

# Hierarchical clustering .... d <- dist(Data_scaled) fith <- hclust(d, "ward.o2") piot(fith)

j RscriptR" --.X20210422_database_Frs_ht4T x P] Clustering 1.R lq] Clustering 2.R o Environment History Connections Tutorial

W J 18 D Source on Save q 4
· - I I - Run I a Source = = 8 I 0 Import Dataset - _ 122 MiB - j

Packages elusterSim, dplyr, and 3 others required but are not installed. Install Don't Show Again % R - I ; Global Environment

§ Data

cl List of 10

O data 143 obs. of 12 variables

Data_scaled num [1:143, 1:12] -0.93 -0.93 -0.93 -0.93 -0,93

O datai 143 obs. of 13 variables

Ofinal List of 9

Ofith List of 7

ü gap_stat List of 6

Q K List of 9

Q x20210922_database_FI... 161 obs. of 13 variables

values

d

desc

KM.clusters

sil

Functions

wssplot function (Data_scaled, ne = 15, seed = 1234)

RScript

5 Fies Plots Packages Help Viewer

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

55:27 [fop Level)

i

Console

5171

'dist' num [1:10153] 4.35 4.4 3.65 2.06 3.03 ...

chr [1:300] "-0.3€32" "-0.586" "0.1408" '0.098' "0.6075" "-0._. int [1:143] 5 4 3 2 2 2 4 2 2 2 ...

'silhouette' num [1:143, 1:3] 5 4 3 2 2 2 4 2 2 2 ...

ust-I(6'-

Q

11 D DIDIP

50






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Il y a des temps ou l'on doit dispenser son mépris qu'avec économie à cause du grand nombre de nécessiteux"   Chateaubriand