Submitted at Freising, September 30, 2021
Technical University of Munich
The Role of Financial Institutions in
Value Chain Finance in the Global
South
Scientific work to obtain the degree
M.Sc. Agrarmanagement
At the Chair Group Agricultural Production and Resource Economics
of the TUM School of
Life Sciences.
Supervisors M.Sc. Roberto Villalba Camacho
Chair Group Agricultural Production and Resource Economics
M.Sc.Terese Venus
Chair Group Agricultural Production and Resource Economics
Examiner Prof. Dr. agr. Johannes Sauer
Chair Group Agricultural Production and Resource Economics
Submitted by Moahmed Ali Trabelsi
Matrikelnummer: 03703889
Giggenhausser str. 2985354, Freising +4915221671931
Declaration of authorship
I, Mohamed Ali Trabelsi, born in Tunis, Tunisia, with
matriculation number 03703889; declare that this thesis and the work presented
in it are my own. It has been generated as the result of my own original
research on the subject «The Role of Financial Institutions in Value Chain
Finance in the Global South»
I confirm that:
ü This work was done wholly in candidature for MSc
degree thesis fulfillment at the Technical University of Munich.
ü Where I have consulted published work of others, that
was always clearly credited.
ü Where I have taken some ideas from other sources, I
have mentioned the sources and except these kinds of quotes, the entire work is
mine.
Date 30.09.2021 Signature:
i
Table of Contents
Table of Contents ii
List of Figures v
List of Tables vi
List of Abbreviations vii
Acknowledgment viii
Abstract ix
1. Introduction 1
1.1. Problem statement 1
1.2. Objectives 2
1.3. Research questions and hypothesis 2
1.4. Expected results from the research 3
1.5. Organization of the thesis 3
2. Literature Review and Theoretical Background 4
2.1. Agriculture finance 4
2.1.1. Agricultural credit 4
2.1.2. Financial institutions (FIs) in the Agriculture Sector
6
2.1.3. Microfinance 7
2.2. AVCF definition 9
2.3. AVCF Challenges 11
2.4. Competitiveness of agricultural finance 14
2.5. Determinants of agricultural credit 17
2.6. Literature on AVCF 19
2.6.1. Gap of the Literature on AVCF 19
2.6.2. Available literature on AVCF 20
3. Methodology and Data 22
3.1. Description of the study 22
3.2. Building the database 23
3.3. Statistical Analyses 25
3.3.1. Qualitative Analyses: 25
3.3.2. Quantitative Analyses 25
3.3.3. Cluster Analysis 26
3.3.4. Data Types and Variables 27
3.3.5. Other components of the database 30
3.4. Structure of survey 30
ii
3.5. Sample Design 31
3.5.1. Sampling frame 31
3.5.2. Sampling techniques 32
3.5.3. FIs Listing: 33
4. Survey Design and Conceptual Framework 34
4.1. Exploring other surveys 34
4.1.1. Survey with FIs 34
4.1.2. Survey with farmers (World Bank & CGAP) 35
4.1.3. Integrated Financing for Value Chains (WOCCU) 37
4.1.4. Survey on national development bank (World Bank Group)
37
4.2. Credit Scoring for Agricultural Loans 38
4.3. Financial instruments employed by FIs 40
4.4. Survey design for FIs officials 41
4.4.1. General Information 42
4.4.2. Economic information 42
4.4.3. Credit screening, scoring, and monitoring for
Agricultural loans 42
4.4.4. Agricultural finance within value chains 43
4.4.5. Financial product & Instrument employed 43
4.5. Overview of the online questionnaire 43
5. Analysis and Results 45
5.1. Descriptive Analysis: 45
5.1.1. Geographic distribution: 45
5.1.2. Distribution by institutional type: 45
5.1.3. Foundation Year: 46
5.1.4. Number of Branches 47
5.1.5. Agricultural loans 47
5.1.6. Gender Equality 48
5.1.7. Digital Solutions 49
5.2. Cluster Analysis 50
5.2.1. Confirm Data: 50
5.2.2. Scale the data 51
5.2.3. Select segmentation variables 51
5.2.4. Define similarity measure: 51
5.2.5. Number of clusters 51
5.2.6. K-means Clustering Method 52
5.2.7. Hierarchical Clustering Method 54
5.2.8. Selected method and number of clusters 55
iii
5.2.9. Extracting Results 57
6. Discussion 62
6.1. An information provider database 62
6.2. Analysis of the clustering analysis 63
6.3. Limitations and further research needs 64
7. Conclusion and Recommendations 67
7.1. Conclusion 67
7.2. Recommendations 68
References 70
Annex A I
Annex B: Database II
Annex C: Survey for FIs Officials IX
Annex D: R Script XVI
iv
v
List of Figures
Figure 1: Sources of agriculture credit 5
Figure 2: Components of direct and indirect agriculture credit
6
Figure 3: Development Process through Micro-finance 7
Figure 4: Overview of value chain finance Triangle 10
Figure 5: Considered factors to reduce TC and risk management
in agricultural finance 15
Figure 6: Geographical location of the financial institutions
22
Figure 7: Geographical distribution of financial institutions
32
Figure 8: Listing criteria of financial institutions in the
final database 33
Figure 9: Financial institutions Questionnaire components
41
Figure 10: List of instruments enquired during the survey
43
Figure 11: Questionnaire Framework 44
Figure 12: Determination of the optimum number of clusters
52
Figure 13: Grouping Data scaled in different clusters 53
Figure 14: Clusters Visualization 53
Figure 15: Hierarchical Clustering 54
Figure 16: Validation of the number of clusters 57
vi
List of Tables
Table 1: Distribution of MFIs by institutional type 8
Table 2: The challenges of the agriculture finance according
to the literature review 12
Table 3: Determinants of credit Access 19
Table 4: Number of FIs mentioned in the literature review
21
Table 5: Composition of database 24
Table 6: Most popular Qualitative Analysis method 25
Table 7: Quantitative statistic types 26
Table 8: Data types 27
Table 9: Continent Attributes 27
Table 10: Institutional Type Attributes 27
Table 11: Agricultural loans Attributes 28
Table 12: Gender Attributes 28
Table 13: Digital Solutions Attributes 29
Table 14: financial Institutions General Information 34
Table 15: Specific loan features 35
Table 16: focal points of the World Bank Survey 36
Table 17: Lending decision variables 39
Table 18: Loan accreditation Characteristics 40
Table 19: AVCF Instrument 40
Table 20: Classification of financial institutions by
continent 45
Table 21: Classification of financial institutions by
institutional type 46
Table 22: classification of financial institutions by
foundation year 47
Table 23: Classification of financial institutions according
to the number of branches 47
Table 24: Percentage of credit offered by type of financial
institution 48
Table 25: Percentage of gender equality program offered by
type of financial institution 49
Table 26: Percentage of digital solutions offered by type of
financial institution 49
Table 27: Descriptive statistics of the dataset 50
Table 28: Cluster membership IDs using K means method 54
Table 29: Cluster membership IDs using Hierarchical method
55
Table 30: Nomination of the FIs groups 57
Table 31: Cluster's characteristics 60
List of Abbreviations
vii
ADB Asian Development Bank
AFD Agence française de développement
AfDB African development Bank
AFRACA African Rural and Agricultural Credit Association
AL1 Farmer credit
AL2 Agribusiness Credit
AOI Agriculture orientation index
AVCF Agricultural value chain finance
CB commercial banks
CGAP Consultative Group to Assist the Poor
DBs Development Banks
DS1 Online Banking
DS2 E-products Email and SMS Banking
DS3 Online loan application
FI Financial institution
G1 Credit facility for women
G2 Career development opportunities to female staff
G3 Gender Programmes
GS Global South
IDFC International Development Finance Club
IFAD International Fund for Agricultural Development
IFC International Finance Corporation
IFI International financial institutions
IIRR International Institute of Rural Reconstruction
INSE Institute of New Structural Economics at Peking
University
ISF advisory group
KIT Royal Tropical Institute
MBFI membership-based financial institutions
MFCs microfinance Companies
TC transaction costs
VC value chain
VCF value chain finance
WFDFI World Federation of Development Financing
Institutions
WBG World Bank Group
WOCCU World council of credit unions
Acknowledgment
VIII
The first thing I want to say is how grateful I am to God and
my father for the opportunity to study at the Technical University of Munich. I
would also like to extend my deepest gratitude to my sister Emna for her
support throughout the entire thesis process. Also, I want to thank my
girlfriend Myriam, as well as my friends Anas, Christian, Cyrine, Dali, Mourad,
Rached, Ramzi, Sabrina, Safa, Youssef, Wajih, Werner, and Zeineb for their
continued encouragement.
My thanks go out to Villalba Camacho Roberto and Venus Terese
for their helpful guidance and valuable comments and corrections during this
work. This work cannot be done without them. My strong gratitude to Susanne
Minges and Papaja-Hülsbergen Susanne for their continuous support during
my studies at TUM.
The internship opportunity with Agribusiness Facility for
Africa (ABF) and Green Innovation Centres for the Agriculture and Food Sector
(GIC) at the GIZ was a big milestone in my career development. It was a great
chance for learning and applying my knowledge and fresh skills in a real
working setting. I will strive to use everything I learned in the best possible
way. Through this internship, I met wonderful people and professionals who
helped me develop my experience. I would like to express my deepest thanks to
Dr. Annemarie Mathess, Carsten Schüttel, Wahid Marouani, and Melanie
Hinderer for their guidance and allowing me to participate in their projects
which helped me expand our knowledge on various topics.
ix
Abstract
Small-scale farmers and agribusinesses in the Global South
still face many barriers to access credit, despite the efforts of development
agencies, facilitator, and even financial institutions. An agricultural gap
persists that limits sector potential. The current master's thesis examines the
ways in which financial institutions make credit easier to obtain for
smallholder farmers and value chain players. The study uses a unique database
of 347 financial institutions in 106 countries from Africa, Asia, South
America, and Oceania as well as international institutions. It primarily
contains cooperatives, commercial banks, NGOs, microfinance institutions, and
agricultural banks. The database is constructed through a snowball effect
process using literature sources, online search, and open-source bank
platforms. This database contains several details about these institutions
including their institutional type, agricultural loans, gender equality, and
digital solutions.
The number of financial institutions was reduced to 144 for
the statistical analysis due to the lack of available data for several
financial institutions. Then an analysis of clusters was conducted to answer
the research question and determine patterns, similarities, and differences
among the selected financial institutions. Five clusters were identified. It
emerges from the study that financial institutions deliver customized and
enhanced rural financial services in high demand and in line with gender
issues, as proved in clusters 1, 2, and 3. Moreover, the youngest group of
institutions is cluster 4, which has the most digital solutions to offer.
Cluster five, which contains individuals primarily using traditional banking
methods, has the lowest level of financial services. This study has addressed
the research question in terms of credit provision, gender promotion, and
digital solutions, as well as identified the kind of similarities and
differences between financial institutions. Several recommendations are made in
this study, including the need to encourage women and provide digital solutions
to ease the lending process for small-scale farmers and value chain actors.
Keywords: Agricultural Value Chain Finance, financial
institutions, cluster analysis, financial products, Global South
x
Zusammenfassung
Kleinbauern und Agrarunternehmen im globalen Süden sehen
sich trotz der Bemühungen von Entwicklungsorganisationen, Vermittlern,
Maklern und sogar Finanzinstituten immer noch vielen Hindernissen beim Zugang
zu Krediten gegenüber. Es besteht weiterhin eine Lücke in der
Landwirtschaft, die das Potenzial des Sektors einschränkt. In der
vorliegenden Masterarbeit wird untersucht, wie Finanzinstitute Kleinbauern und
Akteuren der Wertschöpfungskette den Zugang zu Krediten erleichtern
können. Die Studie stützt sich auf eine einzigartige Datenbank von
Finanzinstituten in 106 Ländern Afrikas, Asiens, Südamerikas und
Ozeaniens sowie von internationalen Institutionen. Sie enthält vor allem
Verbände, Geschäftsbanken, NGOs, Mikrofinanzinstitute und
Landwirtschaftsbanken. Die Datenbank wurde in einem Schneeballeffekt-Verfahren
unter Verwendung von Literaturquellen, Internetrecherchen und
Open-Source-Bankenplattformen erstellt. Die Datenbank enthält verschiedene
Details über diese Institutionen, darunter ihre institutionelle
Einrichtung, Agrarkreditangebote, Frauenförderung und digitale
Lösungen.
Die Zahl der Finanzinstitute wurde für die statistische
Analyse auf 144 reduziert, da für mehrere Finanzinstitute keine Daten
vorlagen. Anschließend wurde eine Clusteranalyse durchgeführt, um
die Forschungsfrage zu beantworten und Muster, Ähnlichkeiten und
Unterschiede zwischen den ausgewählten Finanzinstituten zu ermitteln. Es
wurden fünf Cluster identifiziert. Aus der Studie geht hervor, dass die
Finanzinstitute maßgeschneiderte und verbesserte Finanzdienstleistungen
für den ländlichen Raum anbieten, welche auf geschlechtsspezifische
Aspekte Wert legen, wie in den Clustern 1, 2 und 3 nachgewiesen wurde.
Darüber hinaus ist die jüngste Gruppe von Instituten in Cluster 4 zu
finden, die die meisten digitalen Lösungen zu bieten hat. In Cluster 5, in
dem sich Finanzinstitute befinden, die hauptsächlich traditionelle
Bankmethoden nutzen, ist das Angebot an Dienstleistungen am geringsten. In
dieser Studie wurde die Forschungsfrage in Bezug auf die Kreditvergabe, die
Förderung der Geschlechtergleichstellung und digitale Lösungen
beantwortet und die Gemeinsamkeiten und Unterschiede zwischen den
Finanzinstituten ermittelt. In dieser Masterarbeit werden mehrere Empfehlungen
ausgesprochen, darunter die Notwendigkeit, Frauen zu fördern und digitale
Lösungen anzubieten, um die Kreditvergabe für Kleinbauern und Akteure
der Wertschöpfungskette zu erleichtern.
Schlüsselwörter: Finanzierung der
landwirtschaftlichen Wertschöpfungskette, Finanzinstitute, Clusteranalyse,
Finanzprodukte, Globaler Süden.
xi
|