WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Impact des normes IFRS ( International Financial Reporting Standards ) sur la gestion des résultats: cas des entreprises CAC40

( Télécharger le fichier original )
par Soufiene ASSIDI
Faculté des sciences économiques et de gestion de Tunis  - Master de recherche en sciences comptables 2010
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

2. Liste des entreprises CAC 40

Accor

Sanofi aventis

Air liquide

Suez environnement

Alcatel-lucent

Total

Alstrom

Vallorec

Arcelor mital

Veolia environnement

Bouygues

Vinci

Danone

Vivendi

Essilor

Gaz de France

France telecom

France telecom

GDZ suez

AXA

Air France KLM

DXIA

Carrefour

CAP GEMIMI

L'oreal

Lagardère

LVMH

Schneider electric

Lafarge

Stimcroelectronics

Michelin

Unibail -rodamco

PPR

Renault

Peugeot

sain gobain

3: Résultats des estimations

Etude empirique du modèle 1: Qualité d'information et normes IFRS

Variable | Obs Mean Std. Dev. Min Max

-------------+------------------------------------------------------------------

aq | 360 -.04606 .086451 -.88169 .61597

bn | 360 12.42039 2.172793 0 16.91371

Taille | 360 7.38632 .516200 6.173573 8.91791

Croissance | 360 .51401 6.795071 -1.01178 125.2609

Dette | 360 .60248 .3749126 .03415 3.288881

| aq bn ifrs taille croiss~e dette

-------------+-------------------------------------------------------------------

aq | 1.0000

bn | -0.0117 1.0000

ifrs | 0.1237 0.0487 1.0000

taille | -0.0961 0.3415 0.1020 1.0000

croince | 0.0325 0.0520 -0.0495 0.2120 1.0000

dette | 0.0082 0.1044 -0.0886 0.2231 0.0047 1.0000

Fixed-effects (within) regression Number of obs = 360

Group variable: id Number of groups = 36

R-sq: within = 0.4719 Obs per group: min = 1

between = 0.3721 avg = 9.3

overall = 0.3210 max = 10

F(5,292) = 10.73

corr(u_i, Xb) = 0.0343 Prob > F = 0.0000

-------------------------------------------------------------------------------------

aq | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------------

cronce | .05668 .006461 8.61 .000461 -.0005134 .002254

ifrs | -.036007 .016830 -2.13 .03330 .0067601 .046170

taille | .461891 .052808 8.74 .000012 .049839 -.004714

dette | -.017897 .602504 -0.52 .034323 .013905 .037544

bn | .036942 .020438 0.55 .072076 -.0037697 .005550

_cons | .006739 .005856 1.15 .250923 -.0275929 .279895

Random-effects GLS regression Number of obs = 360

Group variable: id Number of groups = 36

R-sq: within = 0.1505 Obs per group: min = 1

between = 0.2523 avg = 9.3

overall = 0.1731 max = 10

Random effects u_i ~ Gaussian Wald chi2(5) = 68.46

corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

--------------------------------------------------------------------------------------

aq | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+-----------------------------------------------------------------------

croice | .0057900 .000653 8.91 0.0052 -.0006836 .001877

ifrs | -.0242343 .009238 -2.62 0.009 .0061283 .042340

taille | .0112319 .010406 1.08 0.337 -.0421488 -.001355

dette | -.001770 .036266 -.49 0.11 .2000031 .342163

bn | .0009113 .002198 0.41 0.679 -.0033983 .005221

cons | .1019346 .071894 1.42 0.156 -.0389765 .242845

---- Coefficients ----

| (b) (B) (b-B) sqrt(diag(V_b-V_B))

| eq1 . Difference S.E.

-------------+----------------------------------------------------------------

croisce | .05668 .00579 .05089 .0256394

bn | .036942 -.0242343 .012713 .0012319

ifrs | -.024234 .0009113 .023323 .0026421

dette | -.017897 -.001770 -.01612 .0101931

------------------------------------------------------------------------------

b = consistent under Ho and Ha; obtained from xtreg

B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(5) = (b-B)'[(V_b-V_B)^(-1)](b-B)

= 9.84

Prob>chi2 = 0.0798

(V_b-V_B is not positive definite)

Breusch and Pagan Lagrangian multiplier test for random effects

aq[id,t] = Xb + u[id] + e[id,t]

Estimated results:

| Var sd = sqrt(Var)

---------+-----------------------------

aq | .0079685 .0892667

e | .0066036 .0812624

u | 0 0

Test: Var(u) = 0

chi2(1) = 0.16

Prob > chi2 = 0.6927

Etude empirique du modèle 2: Normes IFRS et gestion du résultat

Variable | Obs Mean Std. Dev. Min Max

------------- +--------------------------------------------------------------------

accd_k | 360 -.034426 .122163 -.9808009 .7443

croissance | 360 .569841 6.788301 -.9756227 125.2609

profitabilit | 360 8.634400 20.075860 -.6310300 275.6764

taille | 360 .605896 .419378 .0341552 3.6609

levrage | 360 .602485 .374912 .0034150 3.2888

Cash | 360 11.01967 1.577148 8.212839 19.0123

profitabli~s | 360 4.918336 20.222060 -.631030 275.6764

ifcroiss | 360 .0641394 .448361 -.896317 7.5648

ifrlevrage | 360 .122189 .329340 0 2.7279

| accd_k ifrs croiss~e profit~t taille levrage cash

-------------+---------------------------------------------------------------------------

accd_k | 1.0000

ifrs | -0.0233 1.0000

croissance | 0.0411 -0.0493 1.0000

profitabilit | -0.0383 0.1491 -0.0115 1.0000

taille | 0.0020 -0.0540 0.0010 -0.1119 1.0000

levrage | 0.0132 -0.0773 0.0031 -0.1240 0.9142 1.0000

cash | 0.0588 0.0762 -0.0165 0.0858 -0.0468 -0.0493 1.0000

profitabli~s | -0.0383 0.2983 -0.0104 0.9621 -0.0962 -0.1098 0.0760

ifcroiss | 0.0148 0.1754 0.0554 0.08721 -0.0875 -0.0769 0.0423

levrage | -0.0102 0.0767 0.0231 0.3350 0.341 1.0000 -0.0643

| profit~s ifcroiss levrage

-------------+---------------------------

profitbli~s | 1.0000

ifcroiss | 0.1178 1.0000

levrage | -0.138 0.068 1.0000

Fixed-effects (within) regression Number of obs = 360

Group variable: ent Number of groups = 36

R-sq: within = 0.1780 Obs per group: min = 6

between = 0.1543 avg = 7.4

overall = 0.1413 max = 10

F(9,222) = 0.71

corr(u_i, Xb) = -0.4375 Prob > F = 0.6995

------------------------------------------------------------------------------------------

accd_k | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+---------------------------------------------------------------------------

ifrs | -.0246726 .0096084 -2.57 0.011 -.0057622 .043583

croisnce | .3140822 .161414 1.95 0.053 -.0040334 .6321977

profitbilit | .0005364 .0014138 0.38 0.704 -.0022346 .0033073

taille | .0144128 .0382839 0.38 0.707 -.0606223 .0894478

cash | -.0049507 .004155 -1.19 0.233 -.0130945 .003193

proabli~s | -.0003029 .0014492 -0.21 0.834 -.0031433 .0025375

ifcros | -.0061978 .0148235 -0.42 0.676 -.0352513 .0228557

levrge | -.0180318 .0429128 -0.42 0.674 -.1021393 .0660757

_cons | .0156289 .048055 0.33 0.745 -.0785573 .109815

Random-effects GLS regression Number of obs = 360

Group variable: ent Number of groups = 36

R-sq: within = 0.4901 Obs per group: min = 10

between = 0.6430 avg = 10.0

overall = 0.5703 max = 10

Random effects u_i ~ Gaussian Wald chi2(8) = 3.09

corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.9285

-------------------------------------------------------------------------------------------

accd_k | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+-----------------------------------------------------------------------------

ifrs | -.058871 .029733 -1.98 0.0941 -4.539062 4.690386

croissance | .000785 .000214 3.66 0.0003 -.0636778 .079189

prtabilit | .0210044 .10871 1.93 0.0532 1.010623 1.070186

taille | .014526 .023881 0.60 0.5434 5.353062 6.713565

levrage | -.017526 .030370 -0.56 0.5701 -7.103724 5.574715

cash | -.0004939 .002698 -1.83 0.0680 -.9585417 .430451

probli~s | -.000313 .000833 -0.37 0.7076 -.0130945 .003193

ifcroiss | -.006267 .009539 -0.65 0.5116 -.6830548 6.402178

ifrvrage | .006453 .032688 1.99 0.0048 .922653 2.863893

_cons | .0149093 .032047 0.46 0.6422 .94024 .718268

---- Coefficients ----

| (b) (B) (b-B) sqrt(diag(V_b-V_B))

| eq1 . Difference S.E.

-------------+----------------------------------------------------------------

ifrs | -.058871 -.0246726 .0588495 .0385626

croince | .000785 .3140822 -.0000806 .0004119

profiilit | .0210044 .0005364 .0008235 .0020131

taille | .014526 .0144128 .0299021 .0813487

levrage | -.017526 -.0180318 -.0681129 .0851662

cash | -.0004939 -.0049507 -.0085122 .0269796

prabli~s | -.000313 -.0003029 -.0012538 .0017414

ifcroiss | -.006267 -.0061978 .0231808 .0395474

------------------------------------------------------------------------------

b = consistent under Ho and Ha; obtained from xtreg

B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(8) = (b-B)'[(V_b-V_B)^(-1)](b-B)

= 9.43

Prob>chi2 = 0.3070

Breusch and Pagan Lagrangian multiplier test for random effects

accd_k[ent,t] = Xb + u[ent] + e[ent,t]

Estimated results:

| Var sd = sqrt(Var)

---------+-------------------------------

accd_k | .014924 .1221636

e | .0154479 .1242897

u | 0 0

Test: Var(u) = 0

chi2(1) = 11.88

Prob > chi2 = 0.000

Etude empirique du modèle 3: Détermination de nombre analystes par firme

Variable | Obs Mean Std. Dev. Min Max

-----------+----------------------------------------------------------------------

rcov | 360 5.613889 2.418205 1 9

taille | 360 .6058965 .419378 .03415 3.6609

roa | 360 4.378594 1.927911 .40764 9.2317

croissce | 360 .5698414 6.788301 -.97562 125.2609

cash | 360 11.01967 1.577148 8.2128 19.0123

| taille cash croissce roa rcov

--------+---------------------------------------------------------

taille | 1.0000

cash | -0.460 1.0000

croince | 0.0015 -0.165 1.0000

roa | -0.246 0.0960 -0.3822 1.0000

rcov | -0.054 0.3479 0.3514 -0.1121 1.0000

Fixed-effects (within) regression Number of obs = 360

Group variable: ent Number of groups = 36

R-sq: within = 0.3485 Obs per group: min = 1

between = 0.2994 avg = 8.2

overall = 0.2001 max = 10

F(4,32) = 9.72

corr(u_i, Xb) = -0.5571 Prob > F = 0.0000

-----------------------------------------------------------------------------------------

rcov | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+-------------------------------------------------------------------------

taille | -.098447 .5209622 -0.19 0.851 -1.159612 .9627184

cash | 1.053572 .2001723 5.26 0.000 .6458343 1.46131

croince | .0189151 .2915541 0.06 0.949 -.5749612 .6127914

roa | -.084959 .1014965 -0.84 0.409 -.2917006 .1217826

_cons | -7.841406 2.450555 -3.20 0.003 -12.83302 -2.849788

Random-effects GLS regression Number of obs = 360

Group variable: ent Number of groups = 36

R-sq: within = 0.6950 Obs per group: min = 1

between = 0.7592 avg = 8.2

overall = 0.5941 max = 10

Random effects u_i ~ Gaussian Wald chi2(4) = 41.27

corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

------------------------------------------------------------------------------------------

rcov | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------------------

cash | .6390153 .1580866 4.04 0.000 .3291714 .9488593

taille | -2.475195 1.075196 -2.30 0.021 -4.58254 -.3678497

croince | -.6266269 .5946893 -1.05 0.292 -1.792196 .5389427

roa | .3182828 .127994 2.49 0.013 .0674191 .5691464

cons | -2.810399 1.690312 -1.66 0.096 -6.12335 .5025514

---- Coefficients ----

| (b) (B) (b-B) sqrt(diag(V_b-V_B))

| eq1 . Difference S.E.

-------------+----------------------------------------------------------------

taille | -.098447 -2.475195 2.376748 .154578

cash | 1.053572 .6390153 .4145566 .1227909

crance | .0189151 -.6266269 .645542 .004578

roa | -.084959 .3182828 -.4032418 .201548

------------------------------------------------------------------------------

b = consistent under Ho and Ha; obtained from xtreg

B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(4) = (b-B)'[(V_b-V_B)^(-1)](b-B)

= -95.73 chi2<0 ==> model fitted on these

data fails to meet the asymptotic

assumptions of the Hausman test;

see suest for a generalized test Estimated results:

| Var sd = sqrt(Var)

---------+-----------------------------

rcov | 3.754878 1.937751

e | .3682473 .6068338

u | 0 0

Test: Var(u) = 0

chi2(1) = 25.90

Prob > chi2 = 0.0000

Etude empirique du modèle 4: Présence des analystes et gestion du résultat

Variable | Obs Mean Std. Dev. Min Max

-------------+-------------------------------------------------------------

accd_k | 360 .0823296 .0965164 .0000897 .9808

taill | 360 -.0344268 .1221636 -.9808009 .7443

croissace | 360 .5698414 6.788301 -.9756227 125.2609

casvolatile | 360 10.02006 1.590379 7.204885 18.5226

taille | 360 .6058965 .419378 .0341552 3.6609

| accd_k taille croissce cash roa

-----------+--------------------------------------------------------

accd_k | 1.0000

taille | -0.0975 1.0000

croissce | -0.0272 0.0010 1.0000

cash | 0.0252 -0.0468 -0.0165 1.0000

roa | 0.0213 -0.2471 -0.0390 0.1161 1.0000

Fixed-effects (within) regression Number of obs = 360

Group variable: ent Number of groups = 36

R-sq: within = 0.350 Obs per group: min = 10

between = 0.277 avg = 10.0

overall = 0.290 max = 10

F(4,320) = 0.28

corr(u_i, Xb) = -0.0589 Prob > F = 0.8904

-----------------------------------------------------------------------------------------

accd_k | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+|--------------------------------------------------------------------------

resid| -.000180 .00339 -4.14 0.0000 -.0563903 .0763608

roa| -.0000856 .0014517 -0.27 0.0090 -.0032416 .0024704

croisse | -.0003361 .0007685 -0.44 0.6621 -.001848 .0011758

cash | .0049878 .0108671 0.46 0.6472 -.0163923 .0263678

taille | -.0147646 .0187175 -0.79 0.0443 -.0515895 .0220603

_cons | .0386739 .1209548 0.32 0.7495 -.1992931 .2766409

Random-effects GLS regression Number of obs = 360

Group variable: ent Number of groups = 36

R-sq: within = 0.531 Obs per group: min = 10

Between = 0.618 avg = 10.0

Overall = 0.571 max = 10

Random effects u_i ~ Gaussian Wald chi2(4) = 2.84

corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.5848

---------------------------------------------------------------------------------------

accd_k | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+------------------------------------------------------------------------

resid| -.00018 .00339 -4.14 0.0001 -.0563903 .0763608

roa | -.000014 .00214 -3.09 0.0009 -.0029102 .0019695

croissce | -.000371 .000754 -0.49 0.6234 -.0018230 .0010878

cash | .062101 .030756 2.01 0.0442 -.0062750 .0094527

taille | -.020837 .012547 -1.66 0.0977 -.0485797 .0057565

_cons | .0386739 .12095 0.32 0.3495 -.1992931 .2766409

---- Coefficients ----

| (b) (B) (b-B) sqrt(diag(V_b-V_B))

| eq1 . Difference S.E.

-----------+-------------------------------------------------------------------------

roa | -.0003856 -.0004703 .0000848 .0007468

croisce | -.0003361 -.0003676 .0000315 .000198

cash | .0049878 .0015889 .0033989 .0100993

taille | -.0147646 -.0214116 .006647 .0125778

b = consistent under Ho and Ha; obtained from xtreg

B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(4) = (b-B)'[(V_b-V_B)^(-1)](b-B)

= 0.55

Prob>chi2 = 0.9688

Breusch and Pagan Lagrangian multiplier test for random effects

accd_k[ent,t] = Xb + u[ent] + e[ent,t]

Estimated results:

| Var sd = sqrt(Var)

---------+-----------------------------

accd_k | .0093154 .0965164

e | .00883 .0939682

u | .0006461 .0254188

Test: Var(u) = 0

chi2(1) = 3.97

Prob > chi2 = 0.046

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"En amour, en art, en politique, il faut nous arranger pour que notre légèreté pèse lourd dans la balance."   Sacha Guitry