WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Simulation numérique du transfert thermique conjugué dans des micro-canaux

( Télécharger le fichier original )
par Ilyes HAMLA
Université Menteuri Constantine. Faculté des sciences de l'ingénieur. Département de génie mécanique - Master en génie mécanique 2012
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Conclusion générale et recommandations

dans le micro-canal, plus il s'échauffe, donc la différence entre sa température et celle des parois du micro-canal diminue.

Plusieurs travaux futurs, concernant la simulation numérique des écoulements tridimensionnels dans des micro-canaux, sont à envisager en perspectives de ce mémoire.

Comme perspective immédiate, Il est à envisager de poursuivre la simulation en faisant une étude qui prend en considération les autres phénomènes intervenant comme le changement de phase à l'intérieur des micro-canaux.

Bibliographie

Page 46

Références

Références:

[1] S. Kakaç, H. Yurucu, and K.A. Hijikata, Cooling of Electronic Systems, Kluwer Academic Publishers, Massachusetts, 1994.

[2] M.M. Mohammed, Air cooling characteristics of uniform square modules array for electronic device heat sink, J. App. Thermal Engineering, 26, pages: 486-493, 2006.

[3] A.A. Berlin, K.J. Gabriel, Distributed MEMS: New Challenges for Computations, IEEE Computationnal Sciences & Engineering, pages :12-16, 1997.

[4] G. Poulin, E. Sarraute, F. Costa, Generation of electrical energy for portable devices: Comparative study of an electromagnetic and a piezoelectric system, Sensors and Actuators A: Physical, Volume 116, 3, 29, pages 461-471, 2004.

[5] L. Cao, S. Mantell, D. Polla, Design and simulation of an implantable medical drug
delivery system using microelectromechanical systems technology, Sensors and

Actuators A: Physical, Volume 94, 1-2, pages: 117-125, 31, 2001.

[6] Distributed Micro-Electro-Mechanical Systems Processing Environment, http://www.darpa.mil/mto/mems/summaries/Projects/The_13.html.

[7] J. Hill, R. Szewczyk, et al, System Architecture Directions for Networked Sensors, ACM 9th Int. Conf on Architectural Support for Programming Language, ACM

Sigplan Notices, vol 35, pages : 93-105, 2000.

[8] M. Rebay, S. Kakaç , R. Ben Maad , J. Padet, Experimental Evaluation of the Heat Transfer Coefficient in Electronic Air-Cooling, Int. Journal of Transport

Phenomena, Vol. 11, pages :185-196, 2009.

[9] J. Donald et M. Martonosi. Temperature-aware design issues for SMT and CPM architectures.

[10] M. K.Subha, R. M. John, Optimization of Elliptical Fin Heat sink Design in Forced Convection: Single and Multiple Heat Sink, Interpack, pages : 350-369, 2003.

[11] T. Icoz and Y. Jaluria, Numerical simulation of boundary conditions and the onset of instability in natural convection due to protruding thermal sources in an open rectangular channel, Numerical Heat Transfer, Part A 48, pages: 831-847, 2005.

[12] W. Aung, Heat transfer in a electronic systems with emphasis on asymmetric heating, Bell Syst. Tech. J. 52, pages: 907-925, 1973.

[13] J.R. Bodoia, J.F. Osterle, The development of free convection between heated vertical plates, J. Heat Transfer 84, pages: 40-44, 1962.

[14] H.H. Chu, W.S.Churchill, The development and testing of a numerical method for computation of laminar natural convection in enclosures, Comuters and Chimical Eng., Vol.1, pages: 101-102, 1977.

Page 47

Références

[15] G. Desrayaud, A. Fichera and G. Lauriat, Natural convection air-cooling of a substrate-mounted protruding heat source in a stack of parallel boards, Int. J. Heat and Fluid Flow, Vol.28., pages: 469-482, 2007.

[16] T. Icoz and Y. Jaluria, Design of cooling system for electronic equipment using both experimental and numerical inputs, Journal of Electronic Packaging 126, pages: 465-470, 2004.

[17] D. B. Tuckerman and R. F. W. Pease, High-performance heat sinking for VLSI, IEEE Electron Device Letters, vol. EDL- 2, pages: 126-129, 1981.

[18] M. Richter, R. Linnemann and P. Wolas, Robust design of gas and liquid micropumps, Sensors and Actuators A, vol. 68, pages: 480-486, 1998.

[19] T. Fujiwara, O. Kitoh et T. Tsuda, Original Effect of applied parallel Electric Field on Electroosmotic Flow in donut channel, Chromatography, Vol.23, pages: 25-31, 2002.

[20] M. Stehr, S. Messner, H. Sandmaier and R. Zengerlle, The VAMP - a new device for handling liquid or gases, Sensors and Actuators A, vol. 57, pages: 153-157, 1996.

[21] G. M. Mala and D. Li, Flow characteristics of water in micro-tubes, International Journal of Heat and Fluid Flow, vol. 20, pages: 142-148, 1999.

[22] Q. Weilin, G. M. Mala and L. Dongqing, Pressure-driven water flows in trapezoidal silicon micro-channels, International Journal of Heat and Mass Transfer, vol. 43, pages: 353364, 2000.

[23] H. Y. Wu et P. Cheng, Friction factors in smooth trapezoidal silicon micro-channels with different aspect ratios, Int. J. Heat and Mass Transfer 46, pages: 2519- 2525, 2003.

[24] Morini G.L., Laminar liquid flow through silicon microchannels, Journal of fluids engineering, Vol. 126, pages 485-489, 2004.

[25] Tunc, G. and Bayazitoglu, Y., Heat transfer in microtubes with viscous dissipation, International Journal of Heat and Mass Transfer, Vol. 4, pp 2395- 2403, 2001.

[26] Jeong, H.-E., Jeong, J.-T., Extended Graetz problem including streamwise conduction and viscous dissipation in microchannel, International Journal of Heat and Mass Transfer, Vol. 49, pp 2151-2157, 2006.

[27] W. Qu, I. Mudawar, Analysis of three-dimensional heat transfer in micro-channel heat sinks, International Journal of Heat and Mass Transfer, Vol. 45, pages 3973-3985, 2002.

[28] I. Md. Didarul, O. Kenyu, Y. Minoru, S. Izuru, Study on heat transfer and fluid flow

characteristics with short rectangular plate fin of different pattern, Experimental Thermal
and Fluid Science, Volume 31, pages 367-379 , 2007.

[29] Fluent User's Guide, Release 6.1. Fluent Inc, 2003.

Page 48

Références

[30] Gambit 2.2.30 User's Guide (2006).

[31] Bessaih, R., Effet thermique d'un craque mécanique dans un micro processeur, Thèse de Magister Université Mentouri Constantine Algérie, 1994.

[32] Kabar, Y., Kadja, M., Rebay, M., Padet, C., Numerical Resolution of

Conjugate Heat Transfer Problem in a Parallel-Plate Micro-Channel, Heat Transfer Research, Vol. 41, No. 3, pp 247-263, 2010.

[33] Li, J., Peterson, G. P., Cheng, P., Three-dimensional analysis of heat transfer in a micro-heat sink with single phase flow, International Journal of Heat and Mass Transfer, Vol. 47, pp 4215-4231, 2004.

[34] Morini G.L., Scaling effects for liquid flows in microchannels, Heat Transfer Eng, Vol. 27, No. 4, pp 64-73, 2006.

[35] Gad-el-Hak, M., MEMS introduction and fundamentals, Taylor & Francis Group, 2002.

[36] Koo, J. and Kleinstreuer, C., Viscous dissipation effects in microtubes and
microchannels, International Journal of Heat and Mass Transfer, Vol. 47, pp 31593169, 2004.

[37] Chen C.-H., Slip-flow heat transfer in a microchannel with viscous dissipation, Heat Mass Transfer , Vol. 42 , pp 853-860, 2006.

[38] Maranzana, G., Perry, I., Maillet, D., Mini- and micro-channels: influence of axial conduction in the walls, International Journal of Heat and Mass Transfer, Vol. 47, pp 39934004, 2004.

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Et il n'est rien de plus beau que l'instant qui précède le voyage, l'instant ou l'horizon de demain vient nous rendre visite et nous dire ses promesses"   Milan Kundera