Conclusion générale et
recommandations
dans le micro-canal, plus il s'échauffe, donc la
différence entre sa température et celle des parois du
micro-canal diminue.
Plusieurs travaux futurs, concernant la simulation
numérique des écoulements tridimensionnels dans des micro-canaux,
sont à envisager en perspectives de ce mémoire.
Comme perspective immédiate, Il est à envisager de
poursuivre la simulation en faisant une étude qui prend en
considération les autres phénomènes intervenant comme le
changement de phase à l'intérieur des micro-canaux.
Bibliographie
Page 46
Références
Références:
[1] S. Kakaç, H. Yurucu, and K.A. Hijikata, Cooling of
Electronic Systems, Kluwer Academic Publishers, Massachusetts, 1994.
[2] M.M. Mohammed, Air cooling characteristics of uniform
square modules array for electronic device heat sink, J. App. Thermal
Engineering, 26, pages: 486-493, 2006.
[3] A.A. Berlin, K.J. Gabriel, Distributed MEMS: New
Challenges for Computations, IEEE Computationnal Sciences & Engineering,
pages :12-16, 1997.
[4] G. Poulin, E. Sarraute, F. Costa, Generation of
electrical energy for portable devices: Comparative study of an electromagnetic
and a piezoelectric system, Sensors and Actuators A: Physical, Volume 116, 3,
29, pages 461-471, 2004.
[5] L. Cao, S. Mantell, D. Polla, Design and simulation of an
implantable medical drug delivery system using microelectromechanical
systems technology, Sensors and
Actuators A: Physical, Volume 94, 1-2, pages: 117-125, 31,
2001.
[6] Distributed Micro-Electro-Mechanical Systems Processing
Environment,
http://www.darpa.mil/mto/mems/summaries/Projects/The_13.html.
[7] J. Hill, R. Szewczyk, et al, System Architecture
Directions for Networked Sensors, ACM 9th Int. Conf on Architectural Support
for Programming Language, ACM
Sigplan Notices, vol 35, pages : 93-105, 2000.
[8] M. Rebay, S. Kakaç , R. Ben Maad , J. Padet,
Experimental Evaluation of the Heat Transfer Coefficient in Electronic
Air-Cooling, Int. Journal of Transport
Phenomena, Vol. 11, pages :185-196, 2009.
[9] J. Donald et M. Martonosi. Temperature-aware design
issues for SMT and CPM architectures.
[10] M. K.Subha, R. M. John, Optimization of Elliptical Fin
Heat sink Design in Forced Convection: Single and Multiple Heat Sink,
Interpack, pages : 350-369, 2003.
[11] T. Icoz and Y. Jaluria, Numerical simulation of boundary
conditions and the onset of instability in natural convection due to protruding
thermal sources in an open rectangular channel, Numerical Heat Transfer, Part A
48, pages: 831-847, 2005.
[12] W. Aung, Heat transfer in a electronic systems with
emphasis on asymmetric heating, Bell Syst. Tech. J. 52, pages: 907-925,
1973.
[13] J.R. Bodoia, J.F. Osterle, The development of free
convection between heated vertical plates, J. Heat Transfer 84, pages: 40-44,
1962.
[14] H.H. Chu, W.S.Churchill, The development and testing of
a numerical method for computation of laminar natural convection in enclosures,
Comuters and Chimical Eng., Vol.1, pages: 101-102, 1977.
Page 47
Références
[15] G. Desrayaud, A. Fichera and G. Lauriat, Natural convection
air-cooling of a substrate-mounted protruding heat source in a stack of
parallel boards, Int. J. Heat and Fluid Flow, Vol.28., pages: 469-482, 2007.
[16] T. Icoz and Y. Jaluria, Design of cooling system for
electronic equipment using both experimental and numerical inputs, Journal of
Electronic Packaging 126, pages: 465-470, 2004.
[17] D. B. Tuckerman and R. F. W. Pease, High-performance heat
sinking for VLSI, IEEE Electron Device Letters, vol. EDL- 2, pages: 126-129,
1981.
[18] M. Richter, R. Linnemann and P. Wolas, Robust design of gas
and liquid micropumps, Sensors and Actuators A, vol. 68, pages: 480-486,
1998.
[19] T. Fujiwara, O. Kitoh et T. Tsuda, Original Effect of
applied parallel Electric Field on Electroosmotic Flow in donut channel,
Chromatography, Vol.23, pages: 25-31, 2002.
[20] M. Stehr, S. Messner, H. Sandmaier and R. Zengerlle, The
VAMP - a new device for handling liquid or gases, Sensors and Actuators A, vol.
57, pages: 153-157, 1996.
[21] G. M. Mala and D. Li, Flow characteristics of water in
micro-tubes, International Journal of Heat and Fluid Flow, vol. 20, pages:
142-148, 1999.
[22] Q. Weilin, G. M. Mala and L. Dongqing, Pressure-driven
water flows in trapezoidal silicon micro-channels, International Journal of
Heat and Mass Transfer, vol. 43, pages: 353364, 2000.
[23] H. Y. Wu et P. Cheng, Friction factors in smooth
trapezoidal silicon micro-channels with different aspect ratios, Int. J. Heat
and Mass Transfer 46, pages: 2519- 2525, 2003.
[24] Morini G.L., Laminar liquid flow through silicon
microchannels, Journal of fluids engineering, Vol. 126, pages 485-489, 2004.
[25] Tunc, G. and Bayazitoglu, Y., Heat transfer in microtubes
with viscous dissipation, International Journal of Heat and Mass Transfer,
Vol. 4, pp 2395- 2403, 2001.
[26] Jeong, H.-E., Jeong, J.-T., Extended Graetz problem
including streamwise conduction and viscous dissipation in microchannel,
International Journal of Heat and Mass Transfer, Vol. 49, pp
2151-2157, 2006.
[27] W. Qu, I. Mudawar, Analysis of three-dimensional heat
transfer in micro-channel heat sinks, International Journal of Heat and Mass
Transfer, Vol. 45, pages 3973-3985, 2002.
[28] I. Md. Didarul, O. Kenyu, Y. Minoru, S. Izuru, Study on
heat transfer and fluid flow
characteristics with short rectangular plate fin of different
pattern, Experimental Thermal and Fluid Science, Volume 31, pages 367-379 ,
2007.
[29] Fluent User's Guide, Release 6.1. Fluent Inc, 2003.
Page 48
Références
[30] Gambit 2.2.30 User's Guide (2006).
[31] Bessaih, R., Effet thermique d'un craque
mécanique dans un micro processeur, Thèse de Magister
Université Mentouri Constantine Algérie, 1994.
[32] Kabar, Y., Kadja, M., Rebay, M., Padet, C., Numerical
Resolution of
Conjugate Heat Transfer Problem in a Parallel-Plate
Micro-Channel, Heat Transfer Research, Vol. 41, No. 3, pp 247-263,
2010.
[33] Li, J., Peterson, G. P., Cheng, P., Three-dimensional
analysis of heat transfer in a micro-heat sink with single phase flow,
International Journal of Heat and Mass Transfer, Vol. 47, pp
4215-4231, 2004.
[34] Morini G.L., Scaling effects for liquid flows in
microchannels, Heat Transfer Eng, Vol. 27, No. 4, pp 64-73, 2006.
[35] Gad-el-Hak, M., MEMS introduction and
fundamentals, Taylor & Francis Group, 2002.
[36] Koo, J. and Kleinstreuer, C., Viscous
dissipation effects in microtubes and microchannels, International
Journal of Heat and Mass Transfer, Vol. 47, pp
31593169, 2004.
[37] Chen C.-H., Slip-flow heat transfer in a microchannel
with viscous dissipation, Heat Mass Transfer , Vol. 42 , pp 853-860,
2006.
[38] Maranzana, G., Perry, I., Maillet, D.,
Mini- and micro-channels: influence of axial conduction in the walls,
International Journal of Heat and Mass Transfer, Vol. 47,
pp 39934004, 2004.
|
|