WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Financial development and economic growth: evidence from Niger

( Télécharger le fichier original )
par Oumarou Seydou
Xiamen University - Master of Economics Applied Finance 2012
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

3.3.3. Cointegration results

The number of cointegrating vectors was tested based on the assumption that the series have linear deterministic trend and that there is an intercept. The null hypothesis that there is no cointegrating vector concerning the trace statistics could not be rejected since its value was greater than the 5% critical value. Since we failed to reject the null hypothesis with no Cointegrating equation this indicates that any cointegrating equation has not been found concerning the trace statistic. However, the maximum eigenvalue statistics test indicates one (1) cointegrating equation among the variables. Thus, there was one Cointegrating equation indicating long-run equilibrium relationship among the variables (Table 3.6).

3.3.4. Vector Error Correction Model (VECM)

The use of the vector error correction model was necessitated by the fact that the time series were nonstationary in their levels except in their differences, coupled with the fact that the variables were cointegrated. In case there was no Cointegration, VECM was not required. The VECM was applied in order to evaluate the short run properties of the cointegrated series and to find the real link between the variables. It enables the integration of the short-run fluctuations. The coefficient of the error correction term must be negative to report a force towards the long-run equilibrium. The regression equation of the VECM is express as:

(2)

(3)

(4)

Where Ä is the first difference operator, is the error correction term lagged one

period, are the short-run coefficients are constant terms,

are coefficient of the vectors and are

the white noise terms.

Table 3.7 Vector error correction estimates

Cointegrating Eq:

CointEq1

 

GDP(-1)

1.000000

 

CP(-1)

0.765
(0.144)
[ 5.279]

 

FD(-1)

-1.311
(0.206)
[-6.355]

 

C

-25.714

 

Error Correction:

D(GDP)

D(CP)

D(FD)

CointEq1

-0.061
(0.031)
[-1.935]

0.183
(0.089)
[ 2.059]

0.283
(0.058)
[ 4.805]

C

0.018
(0.009)
[ 1.858]

0.021
(0.027)
[ 0.766]

0.035
(0.018)
[ 1.922]

R-squared

0.089

0.100

0.377

Adj. R-squared

0.065

0.076

0.361

Sum sq. resids

0.145

1.141

0.496

S.E. equation

0.062

0.173

0.114

F-statistic

3.744

4.243

23.090

Log likelihood

55.560

14.374

31.019

Akaike AIC

-2.678

-0.619

-1.451

Schwarz SC

-2.593

-0.534

-1.366

Mean dependent

0.018

0.021

0.035

S.D. dependent

0.064

0.180

0.143

Determinant resid covariance (dof adj.) Determinant resid covariance

Log likelihood

Akaike information criterion

Schwarz criterion

1.40E-06

 

1.20E-06

 

102.433

 

-4.671

 

-4.291

 

NB: Standard errors in ( ) & t-statistics in [ ]

Short run dynamic

variable coefficient Standard error t-statistic

D(GDP) -0.061* 0.032 -1.935

(*), indicates significant at 10% level

The coefficient should be negative and significant to show that the long run relationship exists among the variables and that deviation from equilibrium in the previous year is adjusted back to equilibrium in the current year. In other words, this indicates a long-run error correction among the variables. In particular, given that the

coefficient of is -0.061, this means that 6.1% of the disequilibrium in the previous

year were adjusted back to equilibrium in the current year.

Long run dynamic

 
 
 

Variables

Coefficient

Standard error

t-statistics

GDP(-1)
CP(-1)
FD(-1)
C

1.000000 0.765*** -1.311*** -25.714

0.145
0.206

5.279

-6.355

(*), (**) (***) indicates 10% 5% and 1% significance level, respectively.

Based on the long run dynamic analysis the relationship between GDP, CP and FD can be expressed in terms of the coefficients as

(5)

We interpreted the coefficients in terms of elasticity. The GDP increased by 1.311 percent with an increase of one percent of FD. It had significant influence on the economic growth of Niger. However, an increase of one percentage of CP led to a decrease in GDP by 0.765 percent, which confirms the ambiguity of the sign of CP. With effective allocation of resources, it will be correlated positively with economic growth; otherwise not, especially in countries where the financial systems are not well developed. Generally, CP is expected to have positive effect on investment leading to economic growth; Demetriades and Hussein, (1996). Contrary, we found negative and significant impact of CP on economic growth in Niger. This result could be explained by the huge non performing loans on the private sector between 1970 and 1980. Higher CP means wider financial sector and higher

financial intermediation. Yet for Niger's case, the CP was lower; indicating restraint of the financial sector and lower financial intermediation. Additionally, the attitude of bankers to finance less risky projects lead to low capital intensity. This does little to improve investment and may create distortions in the economy. Furthermore, investment in Niger is weak and unstable leading to unexpected negative returns from projects with attendant negative impact on economic growth; De Gregorio and Guidotti (1995).

Chapter 4 Conclusions and Policy Implications

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Je ne pense pas qu'un écrivain puisse avoir de profondes assises s'il n'a pas ressenti avec amertume les injustices de la société ou il vit"   Thomas Lanier dit Tennessie Williams