Bibliographie
[1] ARTHANARY T.S., R. K. An extension of
two machine sequencing problem. Journal of the Operational Research Society
of India (1971), 10-22.
[2] ASMA, K. Contribution a l'ordonnancement
d'ateliers agroalimen-taires utilisant des méthodes d'optimisation
hybrides, Thèse de Doctorat, Ecole Centrale de Lille et l'Ecole
Nationale d'Ingénieurs de Tunis, 2011.
[3] BAKER K.R., S. Z.-S. Sequencing with
due-dates and early start times to minimize maximum tardiness. Naval
Research Logistics Quarterly 21 (1974), 171-176.
[4] BILLAUT, J.-C. Recherche
opérationnelle et aide à la décision pour les
problèmes d'ordonnancement., Habilitation à diriger des
recherche, UniversitéFrançois Rabelais, Tours, France, 1999.
[5] BLAÿZEWICZ, ECKER J., K. H.
Scheduling computer and manufacturing processes.
Springer-Verlag New York, Inc., New York, NY, USA, 1996.
[6] BOLAT A., AL-HARKAN I., A.-H. B.
Flow-shop scheduling for three serial stations with the last two
duplicate. Computers & Operations Research (2005), 647-667.
[7] CAMPBELL H. G., DUDEK R., S. M. A
heuristic algorithm for the n job, m machine sequencing
problem. Management Science 16, 10 (1970), B630-B637.
[8] CARLIER, J. The one-machine sequencing
problem. European Journal of Operational Research 11, 1 (1982), 42 -
47.
[9] CARLIER J., C. P. Problèmes
d'ordonnancement: modélisation, complexité, algorithmes.
Masson, Paris, 1988.
[10] CARLIER J., R. I. Two branch and bound
algorithms for the permutation flow shop problem. European Journal of
Operational Research 90, 2 (1996), 238 - 251.
[11]
BIBLIOGRAPHIE 70
BIBLIOGRAPHIE 71
BIBLIOGRAPHIE 72
BIBLIOGRAPHIE 73
CAVORY, G. Une approche génétique pour
la résolution d'ordonnance-ments cycliques, thèse de doctorat,
Thèse de Doctorat, Universitéd'Ar-tois, 2000.
[12] CERNY, V. Thermodynamical approach to the traveling
salesman problem : an efficient simulation algorithm. Journal of
optimization theory and applications 45, 1 (1985), 41-51. eng.
[13] CHEN L., BOSTEL N., D. P. C. J. X. L. A tabu search
algorithm for the integrated scheduling problem of container handling systems
in a maritime terminal. European Journal of Operational Research 181,
1 (2007), 40 - 58.
[14] CONWAY R.W., MAXWELL W.L., M. L. Theory of
Scheduling. Addison-Wesley Publishing Company, 1967.
[15] DRIDI N., HADDA H., H.-G. S. Méthode heuristique
pour le problème de flow shop hybride avec machines
dédiées. RAIRO - Operations Research 43, 4 (2009),
421-436.
[16] DRÉO J., PETROWSKI A., T. . S. P.
Métaheuristiques pour l'optimi-sation difficile. 2003.
[17] EL MAGHRABY S.E, K. R. The Planning and Scheduling
of Production Systems. Chapman & Hall, UK, 1997, ch. 6, Production
control in hybrid flowshops : an example from textile manufacturing.
[18] ERSCHLER J., FONTAN G., R. F. Ordonnancement en ateliers
spécialisés. In Encyclopédie du management, P.
Vuibert, Ed., vol. 2. Helfer et Orsoni, 1992, pp. 208-229.
[19] ESQuIROL P., L. P. L'ordonnancement. Economica,
Paris, 1999.
[20] FRAMINAN JM., GuPTA JND., L. R. A review and
classification of heuristics for permutation flow-shop scheduling with makespan
objective. Journal of the Operational Research Society (2004).
[21] GAREY M. R., J. D. S. Computer and Intractability :
a Guide to the Theory of NP- Completeness. W. H. Freeman and Company, San
Francisco, USA, 1979.
[22] GLOVER, F. Future paths for integer programming and
links to artificial intelligence. Computers & Operations Research
13, 5 (1986), 533 - 549. Applications of Integer Programming.
[23] GLOVER, F. Tabu search - part I. ORSA Journal on
Computing 1, 3 (1989), 190-206.
[24] GLOVER, F. Tabu search - part II. ORSA Journal on
Computing 2, 1 (1990), 4-32.
[25] GRABowSKI, J. On two-machine scheduling with release and
due dates to minimize maximum lateness. Opsearch, Journal of the Operations
Research Society of India 17 (1980), 133-154.
[26] GRABowSKI J., E. A. Algorithms for job scheduling
problems with application to discrete production processes control. Reports
of the Institute of Engineering Cybernetics, Technical University of
Wroclaw, 8 (1983).
[27] GRABowSKI J., P. J. Sequencing of jobs in some
production system. European Journal of Operational Research 125, 3
(2000), 535 - 550.
[28] GRABowSKI J., SKUBALSKA E., S. C. On flow shop
scheduling with release and due dates to minimize maximum lateness. The
Journal of the Operational Research Society 34, 7 (1983), 615-620.
[29] GRABowSKI J., W. M. A very fast tabu search algorithm
for the permutation flow shop problem with makespan criterion. Computers
& Operations Research 31, 11 (2004), 1891 - 1909.
[30] GRABowSKI J., NowIcKI E., Z. S. A block approach for
single-machine scheduling with release dates and due dates. European
Journal of Operational Research 26, 2 (1986), 278 - 285.
[31] GRAHAM R.L, LAwLER E.L., L. J. R. K. Optimization and
approximation in deterministic sequencing and scheduling : a survey. Annals
of Discrete Mathematics 5 (1979), 287-326.
[32] GUPTA JND, HARIRI A., P. C. Scheduling a two-stage
hybrid flow shop with parallel machines at the first stage. Annals of
Operations Research (1997), 171-191.
[33] GUPTA JND, S. E. Flowshop scheduling research
after five decades. European Journal Of Opereration Research 169, 3
(2006), 699-711.
[34] HADDA, H. Contribution à l'étude et
à la résolution des problèmes d'ordonnancement de flow
shops d'assemblage et de flow shops hybrides à machines
dédiées, Thèse de Doctorat, Ecole National
d'ingénieurs de Tunis, 2009.
[35] HALL L.A., S. D. Jackson's rule for single-machine
scheduling: Making a good heuristic better. Mathematics of Operations
Research 17, 1 (1992), 22-35.
[36] HAoUARI M., M. R. Heuristic algorithms for the two-stage
hybrid flowshop problem. Operations Research Letters 21, 1 (1997), 43
- 53.
[37] HARRATH, Y. Contribution a l'ordonnancement conjoint de
la production et de la maintenance :application au cas d'un job shop,
Thèse de
Doctorat, UFR des Sciences et Techniques de
l'Universitéde Franche-Comté, 2003.
[38] JIN Z., YANG Z., I. T. Metaheuristic algorithms for the
multistage hybrid flowshop scheduling problem. International Journal of
Production Economics 100, 2 (2006), 322 - 334.
[39] JIN Z.H., OHNO K., I. T. E. S. Scheduling hybrid
flowshops in printed circuit board assembly lines. Production &
Operations Management (2002), 216-230.
[40] JOHNSON, S. M. Optimal two- and three-stage production
schedules with setup times included. Naval Research Logistics Quarterly
1, 1 (Mar. 1954), 61-68.
[41] JuNGWATTANAKIT J., REODECHA M., C. P. W. F. A comparison
of scheduling algorithms for flexible flow shop problems with unrelated
parallel machines, setup times, and dual criteria. Computers &
Operations Research 36, 2 (2009), 358 - 378.
[42] KACEM, I. Ordonnancement multicritère des
job-shops flexibles : formulation, bornes inférieures et approche
évolutionniste coopérative, Thèse de Doctorat, Ecole
Centrale de Lille, Universitéde Lille 1, 2003.
[43] KALCzYNSKI J., K. J. An improved neh heuristic to
minimize ma-kespan in permutation flow shops. Computers & Operations
Research 35, 9 (2008), 3001 - 3008. Part Special Issue : Bio-inspired
Methods in Combinatorial Optimization.
[44] KIRKPATRICK S., GELATT JR., V. M. Optimization by
simulated annealing. Science 220, 4598 (1983), 671-680.
[45] KISE H., IBARAKI T., M. H. Performance analysis of six
approximation algorithms for the one-machine maximum lateness scheduling
problem with ready times. Journal of Opereration Research Society Of Japan
22 (1979), 205-224.
[46] KuRz M.E., A. R. Scheduling flexible flow lines with
sequence-dependent setup times. European Journal of Operational Research
159, 1 (2004), 66-82.
[47] LA, H. T. Utilisation d'ordres partiels pour la
caractérisation de solutions robustes en ordonnancement, Thèse de
Doctorat, Laboratoire d'Analyse et d'Architecture des Systèmes du CNRS,
2005.
[48] LEE G.-C., K. Y.-D. A branch-and-bound algorithm for a
two-stage hybrid flowshop scheduling problem minimizing total tardiness.
International Journal of Production Research (2004), 4731-4743.
[49] LENSTRA, J. Sequencing by enumerative methods.
Mathematical Centre Tracts 69, Amesterdam, 1977.
[50] LENSTRA J.K., KAN RiNNooY A.H.G., B. P. Complexity of
machine scheduling problems. , 1977.
[51] LoPEz P., R. F. Ordonnancement de la
production. Hermes Science Publications, 2000.
[52] McMAHoN G., F. M. On scheduling with ready times and due
dates to minimize maximum lateness. Journal of operation research. 23
(1975), 475-482.
[53] METRoPoLiS, RoSENBLuTH N., R. A. W. Equation of state
calculations by fast computing machines. Journal of Medical Physics
21, 6 (1953), 1087-1092.
[54] MiTTAL B.S., B. P. Two machine sequencing problem with
parallel machines. Journal of the Operational Research Society of India
(1973), 50-61.
[55] NAwAz M., ENScoRE JR., H. I. A heuristic algorithm for
the m-machine, n-job flow-shop sequencing problem. 91-95.
[56] NowicKi E., S. C. An approximation algorithm for a
single-machine scheduling problem with release times and delivery times.
Discrete Applied Mathematics 48, 1 (1991), 69 - 79.
[57] NowicKi E., S. C. The flow shop with parallel machines :
A tabu search approach. European Journal Of Opereration Research 106,
2-3 (1998), 226-253.
[58] Ocentsguz C., ZiNDER Y., D. V. J. A. L. M. Hybrid
flow-shop scheduling problems with multiprocessor task systems. European
Journal of Operational Research 152, 1 (2004), 115 - 131.
[59] PALMER, D. S. Sequencing jobs through a multi-stage
process in the minimum total time - a quick method of obtaining near optimum.
Operational Research Quarterly 16, 1 (1965), 101-107.
[60] PoTTS, C. Analysis of heuristics for two-machine
flow-shop sequencing subject to release dates. Mathematics of Operations
Research 10 (1985), 576-584.
[61] RAo, T. Sequencing in the order a, b, with multiplicity
of machines for a single operation. Journal of the Operational Research
Society of India (1970), 135-144.
[62] Ruiz R., M. C. A genetic algorithm for hybrid flowshops
with sequence dependent setup times and machine eligibility. European
Journal of Operational Research 169, 3 (2006), 781 - 800.
[63]
BIBLIOGRAPHIE 74
Ruiz R., V. R. The hybrid flow shop scheduling problem.
European Journal Of Opereration Research 205, 1 (2010), 1-18.
[64] SCHARGE, L. Obtaining optimal solution of resource
constrained network scheduling problem. Unpublished manuscript
(1971).
[65] TADEi R., GuPTA JND, D. F. C. M. Minimising makespan in
the two-machine flow-shop with release times. Journal of the Operational
Research Society 49, 1 (1998), 77-85.
[66] TAiLLARD, E. Some efficient heuristic methods for the
flow shop sequencing problem. European Journal Of Operational Research
47, 1 (1990), 65-74.
[67] WARDoNo B., F. Y. A tabu search algorithm for the
multi-stage parallel machine problem with limited buffer capacities.
European Journal of Operational Research 155, 2 (2004), 380 - 401.
[68] WiDMER M., HERTS A., C. D. Les
m'etaheuristiques. Hermes edition, 2001, ch. 3, pp. 55-93.
[69] Xi S., KAzuKo M., H. N. Powerful heuristics to
minimize makespan in fixed, 3-machine, assembly-type flowshop scheduling.
European Jounal Of Operation research 146, 3 (2003), 498-516.
[70] XiAo W., HAo P., Z. S. X. X. Hybrid flow shop scheduling
using genetic algorithms. In Intelligent Control and Automation, 2000.
Proceedings of the 3rd World Congress on (2000), vol. 1, pp. 537 -541
vol.1.
[71] ZDRzA LKA, S. Scheduling jobs on a single machine with
release dates, delivery times and controllable processing times : Worst-case
analysis. Operations Research Letters 10, 9 (1991), 519-523.
|