Références Bibliographiques
1. Aardal K. I., Hipolito A., Van Hoesel S., Jansen B.,
(1995). A Branch-and-Cut Algorithm for the Frequency Assignment Problem,
Technical Report Annex T-2.2.1 A, CALMA project, T.U. Eindhoven and T.U.
Delft.
2. Akcayol M. A., Cetin A., Elmas C., (2002). An Educational
Tool for Fuzzy Logic-Controlled BDCM, IEEE Transactions On Education, Vol. 45,
No. 1, pp. 33-42.
3. Alami J., Benameur L., El Imrani A., (2007). Fuzzy
clustering based parallel cultural algorithm. International Journal of Soft
Computing Vol.2(4), 562-571.
4. Alami J., Benameur L., El Imrani A. (2009) A Fuzzy
Clustering based Particle Swarms for Multimodal Function Optimization.
International Journal of Computational Intelligence Research, ISSN 0974-1259.
Vol.5, No.2 (2009), pp. 96-107.
5. Alami J., El Imrani A., Bouroumi A., (2007). A
multipopulation cultural algorithm using fuzzy clustering. In journal of
Applied Soft Computing Vol.7 (2), 506-519.
6. Alami J., El Imrani A., (2006). A Hybrid Ants Colony
Optimization for Fixed-Spectrum Frequency Assignment Problem, Colloque
International sur l'Informatique et ses Applications IA 2006, 231-235, Oujda,
Maroc.
7. Alami J., El Imrani A., (2007). Using Cultural Algorithm
for the Fixed-Spectrum Frequency Assignment Problem. in the Journal of Mobile
Communications.
8. Allenson R., (1992). Cenetic Algorithm with Gender for
Multi-Function Optimisation, TR. EPCC-SS92-01, Edinburgh Parallel Computing
Center, Edinburgh, Scotland.
9. Alvarez-Benitez J. E., Everson R.M., Fieldsend J. E.
(2005). A MOPSO algorithm based exclusively on pareto dominance concepts. In
Third International
Conference on Evolutionary Multi-Criterion Optimization, EMO2005,
pp 459- 473, Guanajuato, México, LNCS3410, Springer-Verlag.
10. Amat J.L., Yahyaoui G.,(1996). Techniques avancées
pour le traitement de l'information. Cépadués Editions.
11. Arias M. A. V, Pulido G. T. , C. A. C. Coello (2005). A
proposal to use stripes to maintain diversity in a multi-objective particle
swarm optimizer. In Proceedings of the 2005 IEEE Swarm Intelligence Symposium,
pp 22-29, Pasadena,California, USA, June.
12. Bäck T., Hammel U., Schweffel F-P., (1997).
Evolutionary Computation : Comments on the history and current state. IEEE
transactions on Evolutionary Computation, 1(1), 3-17.
13. Bartz T.B., Limbourg P., Parsopoulos K. E., Vrahatis M.
N., Mehnen J., Schmitt K., (2003). Particle swarm optimizers for pareto
optimization with enhanced archiving techniques. In Congress on Evolutionary
Computation (CEC'2003), volume 3, pages 1780-1787,
Canberra,Australia,December.
14. Baumgartner U., Magele Ch., Renhart W., (2004). Pareto
optimality and particle swarm optimization. IEEE Transactions on Magnetics,
40(2) :1172-1175, March.
15. Beasley D., Bull D.R., Martin R.R., (1993 ). A sequential
niche technique for multimodal function optimization. Evolutionary Computation
1(2), 101-125.
16. Beckers R., Deneubourg. J.L. Goss. S., (1992). Trails and
U-turns in the selection of the shortest path by the ant Lasius Niger. Journal
of Theoretical Biology, vol. 159, pp. 397-415.
17. Benameur L., Alami J., Loukdache A., El Imrani A.,
(2007). Particle Swarm Based PI Controller for Permanent Magnet Synchronous
Machine. Journal of Engineering and Applied Sciences 2 (9) : 1387-1393.
18. Benameur L., Alami J., El Imrani A. (2009a). Frequency
Assignment Problem Using Discrete Particle Swarm model. International
Conference on Multimedia Computing and Systems ICMCS/IEEE 09. Avril 02-04
Ouarzazate.
19. Benameur L., Alami J., El Imrani A. (2009b). A New
Discrete Particle Swarm model for the Frequency Assignment Problem. In proced.
of IEEE/AICCSA 2009, pp. 139-144. Rabat, Morocco, May 10-13.
20. Benameur L., Alami J., El Imrani A., (2009c). A New
Hybrid Particle Swarm Optimization Algorithm for Handling Multiobjective
Problem Using Fuzzy
Clustering Technique. In proced. of the International Conference
on Computational Intelligence, Modelling and Simulation, Brno,czech republic :
48-53.
21. Benameur L., Alami J., El Imrani A., (2009d). Using fuzzy
clustering Techniques to improve the performance of a multiobjective particle
swarm optimizer.International Journal of Computational Science 3(4) : 436-455.
.
22. Benameur L., Alami J., El Imrani A., (2010). A hybrid
discrete particle swarm algorithm for solving the fixed-spectrum frequency
assignment problem. International Journal of Computational Science and
Engineering. 5(1) :68-73.
23. Bezdek J. C., (1981). Pattern recognition with fuzzy
objective function algorithms. (Plenum Press, New York).
24. Bezdek J. C., (1992). On the relationship between neural
networks, pattern recognition and intelligence. International journal of
approximate reasoning, (6), 85-107.
25. Bezdek K., (1994). On affine subspaces that illuminate a
convex set, Contributions to Alg. and Geom. 35/1, 131-139.
26. Bouroumi A., Limouri M., Essaid A., (2000). Unsupervised
fuzzy learning and cluster seeking. Intelligent Data Analysis journal 4 (3-4),
241-253.
27. Brits R., Engelbrecht A., Van den Bergh F., (2002a).
Solving systems of unconstrained equations using particle swarm optimization.
Proceedings of the IEEE Conf. on Systems, Man, and Cybernetics, Tunisa, Vol.3,
no.pp.6.
28. Brits R., Engelbrecht A., Van den Bergh F., (2002b). A
niching particle swarm optimizer. Wang, L., Tan, K.C., Furuhashi, T., Kim,
J.H., Yao, X., eds., Proceedings of the 4th Asia-Pacific
Conf. on Simulated Evolution and Learning, Vol. 2, (Singapore) 692-696.
29. Brits R., Engelbrecht A., van den Bergh F.,(2007).
Locating multiple optima using particle swarm optimization, Applied Mathematics
and Computation, 189, pp 1859-1883.
30. Charnes A., Cooper W., (1961). Management Models and
Industrial Applications of Linear Programming, vol 1, John Wiley, New-york.
31. Cheng R-H., Yu C. W., Wu T-K., (2005). A Novel Approach
to the Fixed Channel Assignment Problem. Journal of Information Science and
Engineering 21, 39-58.
32. Chow C.k. , Tsui H.t., (2004). Autonomous agent Response
learning by a multi-species particle swarm optimization. In Congress on
Evolutionary Computation (CEC'2004), volume 1, pp 778-785, Portland,
Oregon,USA, June. IEEE Service Center.
33. Chung. C. J., (1997). Knowledge Based Approaches to Self
Adaptation in Cultural Algorithms. PhD thesis, Wayne State University, Detroit,
Michigan.
34. Coello C. A.C., (1995). Multiobjective design
Optimization of Counterweight Balancing of a Robot Arm using genetic Algorithm,
Seventh International Conference on Tools with Artificial Intelligence, p.
20-23.
35. Coello C. A.C., (1996). An Empirical study of
Evolutionary Techniques for Multiobjective Optimization in Engineering Design,
Ph.D. Thesis, Department of Computer sciences, Tulane University, New
Orleans.
36. Coello C. A. C., (1999). A comprehensive survey of
evolutionary based multiobjective optimization techniques. Knowledge and
Information Systems. An International Journal, 1(3) :269-308, August.
37. Coello C. A.C., Pulido G.T., (2001). Multiobjective
Optimization using a Micro-genetic Algorithm, In proceedings of the Genetic and
Evolutionary Computation Conference (GECCO'2001), pp. 274-282, San Francisco,
California.
38. Coello C.A.C.,.Veldhuizen D.A.V, Lamont G. B, (2002).
Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic
Publishers, NewYork,May.
39. Coello C. A. C., Lechuga M. S, (2002). MOPSO : A proposal
for multiple objective particle swarm optimization. InCongressonEvolutionary
Computation (CEC'2002), volume 2, pp. 1051-1056, Piscataway, New Jersey,
May.
40. Coello, C. A., Pulido, G. T., Lechuga, M. S, (2004).
Handling Multiple Objectives with Particle Swarm Optimization, IEEE
Transactions on Evolutionary Computation 8(3), pp. 256-279.
41. Colette Y., Siarry P., (2002). Optimisation
multiobjectif, Edition Eyrolles.
42. Corne D.W, (2001). PESA II : Region-based Selection in
Evolutionary Multiobjective Optimization, In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO'2001), pp. 283-290, San Francisco,
California.
43. Crompton W., Hurley S., Stephens N. M., (1994). A
parallel genetic algorithm for frequency assignment problems, in Proceedings of
the IMACS, IEEE Conference on Signal Processing, Robotics and Neural Networks,
Lille, France, pp. 81 -84.
44. Deb K., Goldberg D. E. (1989). An investigation of niche
and species formation in genetic function optimization. In J. David Schaffer,
editor, Proceedings of the Third International Conference on Genetic
Algorithms, pp. 42-50, San Mateo, California, June. George Mason University,
Morgan Kaufmann Publishers.
45. Deb K.,(1999). Multi-objective genetic algorithms :
Problem difficulties and construction of test problems. Evolutionary
Computation Journal, 7(3), pp. 311-338.
46. Deb, K., (2000). A Fast Elitist Non-Dominated Sorting
Genetic Algorithm for Multiobjective Optimization : NSGA II, Parallel problem
Solving form Nature-PPSN VI, Springer lecture Notes in computing Science, p.
849-858.
47. Deb, K., (2001). Multiobjective Optimization Using
Evolutionary Algorithms, John Wiley and Sons.
48. Deb K., Jain S., (2002). Running Performance Metrics for
Evolutionary Multi-objective Optimization, Tech. rep, KanGAL Report.
49. Deb K., Pratap A., Agarwal S., Meyarivan T., (2002). A
fast and elitist multiobjective genetic algorithm : NSGA-II. IEEE Transactions
on Evolutionary Computation, 6(2), pp. 182-197, April.
50. De Castro L. N, Von Zuben F., (1999). Artificial Immune
Systems: Part I : Basic Theory and Applications. Technical Report TR-DCA 01/99,
Department of Computer Engineering and Industrial Automation, School of
Electrical and Computer Engineering, State University of Campinas, Brazil.
51. De Castro L. N, Von Zuben F., (2000). Artificial Immune
Systems : Part II : A Survey of Applications. Technical Report DCA-RT 02/00,
Department of Computer Engineering and Industrial Automation, School of
Electrical and Computer Engineering, State University of Campinas, Brazil.
52. De Castro L. N., Timmis J., (2002). An artificial Immune
Network for multimodal function optimization. The IEEE World Congress on
Computational Intelligence.
53. De Falco I., Della Cioppa A., Tarantino E., (2007).
Facing classification problems with Particle Swarm Optimization. Applied Soft
Computing 7, pp. 652-
658.
54. Deneubourg J. L., Goss S. (1989). Collective patterns and
decision-making, Ethology and Evolution, (1), pp. 295-311.
55. Deneubourg J.L., Pasteels J.M., Verhaeghe J.C. (1983).
Probabilistic behaviour in ants : A strategy of errors, Journal of Theoretical
Biology, 105, pp. 259-271.
56. DiPierro F., Khu S., Savi D., (2007). An Investigation on
Preference Order Ranking Scheme for Multiobjective Evolutionary Optimization,
IEEE Transactions on Evolutionary Computation 11(1), pp. 17-45.
57. Duque-Anton M., Kunz D., Ruber B., (1993). Channel
assignment for cellular radio using simulated annealing. IEEE Trans.Vehicular
Technol.42, pp. 14 -21.
58. Durham W. H., (1994). Co-evolution : Genes, Culture, and
Human Diversity. Stanford University Press, Stanford, California.
59. Eberhart, R. Kennedy, J. (1995). New optimizers using
particle swarm theory. In Proceedings of the 6th
International Sysmposium on Micro Machine and Human Science, pp. 39-43.
60. El Imrani A.A., (2000). Conception d'un Algorithme
Génétique Coévolutif. Application à l'optimisation
des Histoires Thermiques. Thèse de Doctorat d'Etat. Faculté des
Sciences, Rabat.
61. El Imrani A. A., Bouroumi A., Zine El Abidine H., Limouri
M., Essaïd A., (1999a). A Fuzzy Clustering-based Niching Approach to
Multimodal Function Optimization. Journal Cognitive Systems research, Volume
(1) issue (2) 2000, pp. 119-133.
62. El Imrani A. A., Bouroumi A., Limouri M., Essaïd A.,
(1999b). A Coevolutionary Genetic Algorithm using Fuzzy Clustering.
International Journal of Intelligent Data Analysis, Vol 4(2000), pp.
183-193.
63. Farina M., Amato P., (2004). A Fuzzy Definition of
Optimality for Many-criteria Optimization Problems, IEEE Transactions on
Systems, Man and Cybernetics, Part A 34 (3), pp. 315-326.
64. Fieldsend J. E., Singh S., (2002). A multiobjective
algorithm based upon particle swarm optimisation, an efficient data structure
and turbulence. In Proceedings of the 2002 U.K. Workshop on Computational
Intelligence, pp. 37-44,
Birmingham, UK, September.
65. Fogel D. B., (1995). A comparison of evolutionary
programming and genetic algorithms on selected constrained optimization
problems, Simulation, pp. 397-403, June 1995.
66. Fogel, L. J., Owens, A. J., Walsh, M. J., (1966). Artificial
Intelligence through Simulated Evolution.
67. Fonseca C.M., Fleming P.J, (1993). Genetic Algorithms for
Multiobjective Optimization : formulation, discussion and Generalization, In
Proceeding of the Fifth International Conference on Genetic Algorithms. San
Mateo, California, pp. 416-423.
68. Forrest S., Javornik B., Smith R.E., Perelson
A.S.,(1993). Using genetic algorithms to explore pattern recognition in the
immune system, Evol. Comput. 1 (3) 191-211.
69. Fourman, (1985). Compaction of symbolic Layout using
Genetic Algorithms. In Genetic Algorithms and their Applications : Proceedings
of the First International Conference on Genetic Algorithm, pp. 141-153.
70. Funabiki N., Takefuji Y., (1992). A neural network
parallel algorithm for channel assignment problems in cellular radio networks.
IEEE Transactions on Vehicular Technology, Vol. 41, pp. 430-436.
71. Goldberg D. E., (1989a). Genetic Algorithms in search,
optimization and machine learning. Addison-wesley Publishing Inc.
72. Goldberg D.E, (1989b). Sizing Populations for Serial and
Parallel Genetic Algorithms, Proceedings of the Third International Conference
on Genetic Algorithm, pp. 70-97, San-Mateo, California.
73. Goldberg D.E, Deb D., Horn H., (1992). Massive
multiomodality and genetic algorithms, Ed. R. Manner, B. Manderick, parallel
problem solving from nature 2, Brussels, pp. 37-46.
74. Goldberg D. E., Richardson J., (1987). Genetic algorithms
with sharing for multimodal function optimization. Proceedings of the Second
International Conference on Genetic Algorithms, pp. 41-49.
75. Goldberg D. E., Wang L., (1997). Adaptative niching via
coevolutionary sharing. Quagliarella et al.(Eds.). Genetic Algorithms in
Engineering and Computer Science (John Wiley and Sons, Ltd). pp. 21-38.
76. Goss S., Beckers R., Deneubourg J.L., Aron S., Pasteels
J.M. (1990). How trail lying and trail following can solve foraging problems
for ant colonies. In : Behavioural Mechanisms of Food Selection, R.N. Hughes
ed., NATO-ASI Series, vol. G20, Berlin : Springer verlag.
77. Hale W. K., (1981). New spectrum management tools.
Proceedings IEEE Int. Symp. Electromag. Compatibility, pp. 47- 53, Aug.
78. Ho S.L, Shiyou Y., Guangzheng N., Lo E. W.C., Wong H.C,
(2005). A particle swarm optimization based method for multiobjective design
optimizations. IEEE Transactions on Magnetics, 41(5), pp. 1756-1759, May.
79. Hoffmeyer J.,(1994). The Swarming Body. In I. Rauch and
G.F. Carr, editors, Semiotics Around the World, Proceedings of the Fifth
Congress of the International Association for Semiotic Studies, pp. 937-940.
80. Hofmeyr S.A., Forrest S., (1999). Immunity by Design : An
Artificial Immune System, in : Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), Morgan Kaufmann, San Francisco, CA, pp.
1289-1296.
81. Holland, J. H. , (1962). Outline for logical theory of
adaptive systems. J. Assoc. Comput. March, 3, pp. 297-314.
82. Holland, J. H. , (1975). Adaptation in Natural and
Artificial Systems. The University of Michigan Press, Ann Arbor, MI.
83. Holland J.H., Holyoak K.J., Nisbett R.E., Thagard P.R.,
(1986). Induction : Processes of Inference, learning and discovery. MIT Press,
Cambridge, MA, USA.
84. Hopfield J. J., (1982). Neural networks and physical
systems with emergent collective computational abilities. Proceedings of the
national academy of sciences, USA, pp. 2554-2558.
85. Horn J., Nafpliotis N., (1993). Multiobjective Optimization
using the Niched Pareto Genetic Algorithm, Illigal TR. 93005, July.
86. Hu X. , Eberhart R, (2002). Multiobjective optimization
using dynamic neighborhood particle swarm optimization. In Congress on
Evolutionary Computation (CEC'2002), volume 2, pp. 1677-1681, Piscataway, New
Jersey, May.
87. Hu X., Eberhart R., Shi Y, (2003). Particle swarm with
extended memory for multiobjective optimization. In Proceedings of the 2003
IEEE Swarm Intelligence Symposium, pp. 193-197, Indianapolis, Indiana,USA,
April.
88. Hurley S., Smith D. H., Thiel S. U., (1997). FASoft : A
system for discrete channel frequency assignment. Radio Science, vol. 32, no.
5, pp. 1921- 1939.
89. Ignizio J.P., (1981). The Determination of a Subset of
Efficient Solutions via Goal Programming, Computing and Operations Research 3,
pp. 9-16.
90. Ishibuchi H., Murata T., (1996). Multi-objective Genetic
Local Search Algorithm. In Toshio Fukuda and Takesshi Furuhashi editors,
Proceedings of the 1996 International conference on Evolutionary Computation,
pp. 119-124, Nagoya, Japan.
91. Janson S., Merkle D., (2005). A new multiobjective
particle swarm optimization algorithm using clustering applied to automated
docking. In Maria J. Blesa, Christian Blum, Andrea Roli, and Michael Sampels,
editors, Hybrid Metaheuristics, Second International Workshop, HM2005, pp.
128-142, Barcelona, Spain, August. Springer. Lecture Notes in ComputerScience
Vol.3636.
92. Jedra M., (1999). Modèles connexionnistes
temporels, Application à la reconnaissance des variétés de
semences et à l'analyse de contexte des caractères arabes.
Thèse de Doctorat d'Etat, Faculté des sciences, Rabat.
93. Kennedy J., Eberhart R. C., (1995). Particle swarm
optimization. In Proceedings of the IEEE International Conference on Neural
Networks, pages 1942- 1948, Piscataway, New Jersey, 1995. IEEE Service
Center.
94. Kennedy J., (2000). Stereotyping : Improving particle
swarm performance with cluster analysis. Proceedings of the IEEE Congress on
Evol. Comput. (San Diego, California, U.S.A.), pp. 1507-1512.
95. Kim J. S., Park S. H., Dowd P. W., Nasrabadi N. M.,
(1997). Cellular radio channel assignment using a modified Hopfield network.
IEEE Transactions on Vehicular Technology, Vol. 46, pp. 957-967.
96. Knowles J.D., Corne D.W., (1999). The Pareto Archived
Evolution Strategy: A New Baseline Algorithm for Multiobjective Optimisation,
Congress on Evolutionary Computation, pp. 98-105, Washington, July.
97. Knowles J.D., Corne D.W., Oates M.J., (2000). The
Pareto-Envelope based Selection Algorithm for Multiobjective Optimization, In
Proceeding of the Sixth International Conference on Parallel Problem Solving
from Nature (PPSN VI), pp.839-848, Berlin, September.
98. Kohonen T., (1989). Self organization and associative
memory. Springer series in information sciences, springer verlag,
3rd edition.
99. Koza J.R., (1992). Genetic Programming. MIT Press, ISBN :
0-262-11170-5.
100. Kunz D., (1991). Channel assignment for cellular radio
using neural network. IEEE Transactions on Vehicular Technology, Vol. 40, pp.
188-193.
101. Kurwase F., (1984). A variant of Evolution Strategies for
Vector optimization, Ph. D Thesis, Vanderbilt University, Nashville,
Tennessee.
102. Laumanns M., Thiele L., Deb K., Zitzler E, (2002).
Combining convergence and diversity in Evolutionary multi-objective
optimization. Evolutionary Computation, 10(3), pp. 263-282.
103. Lechuga M.S, Rowe J, (2005). Particle swarm optimization
and fitness sharing to solve multi-objective optimization problems. In
Congresson Evolutionary Computation (CEC'2005), pp. 1204-
1211,Edinburgh,Scotland,UK,September.IEEE Press.
104. Lee C.C., (1990). Fuzzy logic in control systems : Fuzzy
logic controller, Part I, Part II. IEEE Trans. on Syst., Man, and Cyber., Vol.
20, No.2, pp. 404- 435.
105. Li S. Z., (1995). Markov Random Field, Modeling in computer
vision. Spring Verlag, 1995.
106. Li J. P., Balazs M. E., Parks G., Clarkson P. J.,
(2002). A species conserving genetic algorithm for multimodal function
optimization, Evolutionary Computation, 10(3), pp. 207-234.
107. Li X., (2003). A non-dominated sorting particle swarm
optimizer for multiobjective optimization. In Erick Cantu-Paz et al., editor,
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO'2003), pp 37-48. Springer. Lecture Notes in Computer Science Vol.2723,
July.
108. Li X., (2004). Adaptively choosing neighborhood bests using
species in swarm optimizer for multimodal function optimization. GECCO, pp.
105-116.
109. Lin C.T., Lee C.S.G., (1991). Neural-network-based Fuzzy
logic control and decision system. IEEE Trans. On Comp., Vol.40, No. 12, pp.
1320-1336.
110. Lis J., Eiben A.E., (1996). A Multi-Sexual Genetic
Algorithm for Multiobjective Optimization, In T.Fukuda and T. Furuhashi ed.,
Proceedings of the 1996 International Conference on Evolutionary Computation,
Nagoya, Japan, pp.59-64.
111. Loukdache A., Alami J., El Belkacemi M., El Imrani A.,
(2007). New control approach for permanent magnet synchronous machine.
International Journal
of Electrical and Power Engineering 1(4), pp. 455 -462.
112. Mahfoud, S. W., (1992). Crowding and preselection
revisited. Parallel Problem Solving from Nature. North-Holland, Amsterdam, (2),
pp. 27-36.
113. Mahfoud S.W, (1994). Crossover Interactions Among niches.
Proceedings of the 1st IEEE Conference on Evolutionary Computation, pp.
188-193.
114. Mahfoud S. W, (1995). Niching Methods for Genetic
Algorithms. PhD Thesis, University of Illinois.
115. Mahfouf, M., Chen, M. Y., Linkens, D. A., (2004).
Adaptive Weighted Particle Swarm Optimization for Multi- objective Optimal
Design of Alloy Steels, Parallel Problem Solving from Nature - PPSN VIII, pp.
762-771, Birmingham, UK, Springer-Verlag. Lecture Notes in Computer Science
Vol. 3242.
116. Maniezzo V., Montemanni R., (1999). An exact algorithm
for the radio link frequency assignment problem. Report CSR 99-02, Computer
Science, Univ. of Bologna.
117. Martinez T. M., Schulten K. J., (1991). A "neural-gas"
network learns topologies. Artificial neural network, Rédacteurs : T.
Kohonen, K. Mäkisara, O. Simula et J. Kanges, pp. 397-402, Elsevier
Science Publishers, B. V(North Holland).
118. Mathar R., Mattfeldt J., (1993). Channel assignment in
cellular radio networks. IEEE Transactions on Vehicular Technology, Vol. 42,
pp. 647-656.
119. McCulloch W. S., Pitts W., (1943). A logical calculus of
the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5,
pp. 115-133.
120. Michalewicz Z., (1996). Genetic Algorithms + Data
Structures = Evolution Programs. Springer-Verlag, New York.
121. Miettinen K., (1999). Nonlinear Multiobjective
Optimization. Kluwer Academic Publishers, Boston, Massachusetts.
122. Miller B.L., Shaw M.J., (1996). Genetic Algorithms with
Dynamic Niche Sharing for Multimodal Function Optimization. IlliGAL Report no.
95010.
123. Mitchell M., Forrest S., (1993). Genetic Algorithms and
Artificial Life. Paper 93-11-072.
124. Montemanni R., Moon Jim N. J., Smith D. H., (2003). An
improved Tabu search algorithm for the fixed spectrum frequency assignment
problem. IEEE Transactions on Vehicular Technology, vol. 52, No.3, May.
125. Moore J., Chapman R., (1999). Application of particle
swarm to multiobjective optimization. Department of Computer Science and
Software Engineering, Auburn University.
126. Mostaghim S., Teich J., 2003(a). Strategies for finding
good local guides in multi-objective particle swarm optimization (MOPSO). In
Proceedings of the 2003 IEEE Swarm Intelligence Symposium, pp. 26-33,
Indianapolis, Indiana, USA, April.
127. Mostaghim S., Teich J., 2003(b). The role of c--
dominance in multi objective particle swarm optimization methods. In
Congress on Evolutionary Computation (CEC'2003), volume 3, pp. 1764-1771,
Canberra, Australia, December.
128. Mostaghim S., Teich J., (2004). Covering pareto-optimal
fronts by subswarms in multi-objective particle swarm optimization. In Congress
on Evolutionary Computation (CEC'2004), volume 2, pp. 1404- 1411, Portland,
Oregon, USA, June.
129. Pareto V., (1896). Cours d'économie politique,
vol. 1 et 2, F. Rouge, Lausanne.
130. Parsopoulos K. E., Vrahatis M. N., (2002). Particle
swarm optimization method in multiobjective problems. In Proceedings of the
2002 ACM Symposium on Applied Computing (SAC'2002), pp. 603-607, Madrid,
Spain.
131. Parsopoulos K. E., Tasoulis D., Vrahatis M. N., (2004).
Multiobjective optimization using parallel vector evaluated particle swarm
optimization. In Proceedings of the IASTED International Conference on
Artificial Intelligence and Applications (AIA 2004), volume 2, pp. 823-828,
Innsbruck, Austria, February.
132. Pelikan M., Goldberg D. E., (2001). Escaping
hierarchical traps with competent genetic algorithms. In Proceeding. of the
Genetic and Evolutionary Computation Conference, pp. 511- 518.
133. Petrowsky A., (1996). A clearing procedure as a niching
method for Genetic Algorithms. Proceedings of IEEE International Conference of
Evolutionary Computation, (Nagoya-Japan), pp. 798-803.
134. Pulido G. T., (2005). On the Use of Self-Adaptation and
Elitism for Multiobjective Particle Swarm Optimization. PhD thesis, Computer
Science Section, Department of Electrical Engineering, CINVESTAV-IPN, Mexico,
September.
135. Pulido, G. T., Coello, C. A., (2004). Using Clustering
Techniques to Improve the Performance of a Particle Swarm Optimizer, In
Kalyanmoy Deb et al., editor, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO'2004), pp. 225-237, Seattle, Washington, USA,
Springer-Verlag, Lecture Notes in Computer Science Vol. 3102.
136. Qing L., Gang W., Zaiyue Y., Qiuping W., (2008).
Crowding clustering genetic algorithm for multimodal function optimization,
Applied Soft Computing 8, pp. 88-95.
137. Rahman M.A., Hoque M. A., (1998). On-line adaptive
artificial neural network based vector control of permanent magnet synchronous
motors. IEEE Trans. On Energy Conversion, Vol.13, No. 4, pp. 311-318, 1998.
138. Ramos V., Fernandes C., Rosa A.C., (2005). Social Cognitive
Maps, Swarm Collective Perception and Distributed Search on Dynamic Landscapes.
Technical report, Instituto Superior Técnico, Lisboa, Portugal, http
://alfa.ist.utl.pt/ cvrm/staff/vram 58.html.
139. Raquel C. R., Naval Jr. P. C., (2005). An effective use
of crowding distance in multiobjective particle swarm optimization. In
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO2005),
pp 257-264, Washington, DC, USA, June.
140. Ray T., Liew K.M., (2002). A swarm metaphor for
multiobjective design optimization. Engineering Optimization, 34(2), pp.
141-153, March.
141. Rechenberg, I., (1965). Cybernetic Solution Path of an
Experimental Problem. Royal Aircraft Establishment Library Translation.
142. Rechenberg I., (1973). Evolutionsstrategie : Optimierung
technischer Systeme nach Prinzipien der biologischen Evolution, Stuttgart.
143. Renfrew A. C., (1994). Dynamic Modeling in Archaeology :
What, When, and Where? In S. E. van der Leeuw, editor, Dynamical Modeling and
the Study of Change in Archaelogy. Edinburgh University Press, Edinburgh,
Scotland.
144. Reyes M. S., Coello C. A. C., (2005). Improving
PSO-based multi-objective optimization using crowding, mutation and
c--dominance. In Third International Conference on Evolutionary
Multi-Criterion Optimization, EMO 2005, pp. 505-519, Guanajuato, México.
LNCS 3410, Springer- Verlag.
145. Reynolds R. G., (1994). An Introduction to Cultural
Algorithms. In Antony V, Sebald and Lawrence J. Fogel, editors, Proceedings of
the Third Annual
Conference on Evolutionary Programming, pp. 131- 139. World
Scientific.
146. Reynolds R. G., (1997). Using Cultural Algorithms to
support Re-Engineering of Rule-Based Expert Systems in Dynamic Performance
Environments : A Case Study in Fraud Detection. IEEE Transactions on
Evolutionary Computation, volume 1 No.4, November.
147. Reynolds R. G., Zannoni E., (1994). Learning to
Understand Software Using Cultural Algorithms. In Antony V, Sebald and Lawrence
J. Fogel, editors, Proceedings of the Third Annual Conference on Evolutionary
Programming. World Scientific.
148. Ritzel B., (1994). Using Genetic Algorithms to Solve a
Multiple Objective Groundwater Pollution Containment Problem. Water Resources
Research 30, pp. 1589-1603.
149. Rosenblatt F., (1958). The perceptron : a probabilistic
model for information storage and organization in the brain. Psychological
review, 65, pp. 386-408.
150. Rudolph G., (1998). On a multi-objective evolutionary
algorithm and its convergence to the Pareto set. In Proceedings of the 5th IEEE
Conference on Evolutionary Computation, pp. 511-516, Piscataway, New Jersey.
151. Säreni B., Krähenbühl L., (1998). Fitness
sharing and niching methods revisited. IEEE transactions on Evolutionary
Computation vol. 2, No. 3, pp. 97-106.
152. Säreni B., (1999). Méthodes d'optimisation
multimodales associées à la modélisation numérique
en électromagnétisme. Thèse de doctorat, l'école
centrale de Lyon.
153. Schaffer J.D., (1985). Multiple objective optimization
with vector evaluated genetic algorithms, In J.J. Grefenstette ed., Proceedings
of the First International Conference on Genetic Algorithms and Their
Applications, Pittsburgh, PA, pp. 93-100.
154. Schoeman, I.L., Engelbrecht, A.P., (2004). Using vector
operations to identify niches for particle swarm optimization. Proceedings of
the conference on cybernetics and intelligent systems.
155. Schoeman I.L., Engelbrecht A., (2005). A parallel
vector-based particle swarm optimizer. International Conf. on Artificial Neural
Networks and Genetic Algorithms (ICANNGA), Portugal.
156. Schoenauer M., Michalewicz Z., (1997). Evolutionary
Computation. Control and Cybernetics, 26(3), pp. 307-338.
157. Schott J. R., (1995). Fault tolerant design using single
and multi-criteria genetic algorithms. Master's thesis, Departement of
Aeronautics and Astronautics, Boston.
158. Shi Y., Eberhart R., (1998). Parameter selection in
particle swarm optimization. In Evolutionary Programming VII : Proceedings of
the Seventh annual Conference on Evolutionary Programming, pp. 591-600,
NewYork, USA. Springer-Verlag.
159. Shirazi S. A. G., Amindavar H., (2005). Fixed channel
assignment using new dynamic programming approach in cellular radio networks.
Computers and Electrical Engineering 31, pp. 303-333.
160. Sierra, M. R., Coello C., (2006). Multi-objective
Particle Swarm Optimizers : A Survey of the State-of-the-art, Inter-national
Journal of Computational Intelligence Research 2 (3), pp. 287-308.
161. Slemon G. R., (1994). Electrical machines for
variable-frequency drives. Proceeding of IEEE, Vol.82, No.8, pp. 1123-1139.
162. Smith R., Forrest S., Perelson A. S., (1993). Searching
for diverse, cooperative populations with genetic algorithms. Evolutionary
Computation 1(2), pp. 127-149.
163. Spears W.M., (1994). Simple sub-populations schemes.
Proceedings of the 3rd Annual Conference on Evolutionary Programming, World
Scientific, pp. 296- 307.
164. Srivinas N., Deb K., (1993). Multiobjective Optimization
using Non dominated Sorting in Genetic Algorithms, technical Report,
Departement of Mechanical Engineering, Institute of Technology, India.
165. Stacey A., Jancic M., Grundy I., (2003). Particle swarm
optimization with mutation. In Proceedings of the Congress on Evolutionary
Computation, pp. 1425-1430,Camberra, Australia.
166. Surry P., (1995). A Multiobjective Approach to
Constrained Optimisation of Gas Supply Networks : The COMOGA Method,
Evolutionary Computing AISB Workshop Selected Papers, Lecture Notes in
Computing Sciences, pp. 166-180.
167. Tanaki H., (1995). Multicriteria optimization by Genetic
Algorithms : a case of scheduling in hot rolling process, In Proceeding of the
Third APORS, pp. 374-381.
168. Ursem R.K., (1999). Multinational evolutionary
algorithms. Proceedings of Congress of Evolutionary Computation (CEC-99), vol.
3, Washington, DC, USA, pp. 1633-1640.
169. Van Veldhuizen D.A., (1999). Multiobjective,
evolutionary algorithms : classification, analyses and new innovation, air
force institute of Technology, United States.
170. Valenzuela M., Uresti-Charre E., (1997). A Non-
Cenerational Genetic Algorithm for Multiobjective Optimization, Proceedings of
the Seventh International Conference on Genetic Algorithms, pp. 658-665.
171. Wang, Y., Yang, Y., (2008). Handling Multiobjective
Problem with a Novel Interactive Multi-swarm PSO, Proceedings of the
4th International Conference on Intelligent Computing :
Advanced Intelligent Computing Theories and Applications 5227, pp. 575-582.
172. Watson J.P., (1999). A performance assessment of modern
niching methods for parameter optimization problems. Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO) (Morgan- Kaufmann, San
Francisco).
173. Xie L. X, BENI G., (1991). A Validity Measure for Fuzzy
Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol
13 No 8.
174. Xiao-hua Z, Hong-yun M., Li-cheng J., (2005).
Intelligent particle swarm optimization in multiobjective optimization. In
Congress on Evolutionary Computation (CEC'2005), pp. 714-719, Edinburgh,
Scotland,UK, September.
175. Zadeh L.A., (1965). Fuzzy Sets. Information and control,
8, pp. 338-353.
176. Zadeh L.A., (1994). Soft Computing, LIFE lecture,
Japan.
177. Zannoni E., Reynolds R. G., (1997). Extracting Design
Knowledge from Genetic Programs Using Cultural Algorithms. Full version in
Journal Evolutionary Computation.
178. Zhang J., Huang De-Shuang, Lok T., Lyu M. R., (2006). A
novel adaptive sequential niche technique for multimodal function optimization.
Neurocomputing 69, pp. 2396-2401.
179. Zhang L.B., Zhou C.G., Liu X.H., Ma Z.Q., Liang Y.C.,
(2003). Solving multi objective optimization problems using particle swarm
optimization. In Congress on Evolutionary Computation (CEC'2003), volume 3, pp.
2400-2405,
Canberra, Australia, December.
180. Zhao B., Cao Y., (2005). Multiple objective particle
swarm optimization technique for economic load dispatch. Journal of Zhejiang
University SCIENCE, 6A (5), pp. 420-427.
181. Zhu. S., Reynolds. R.G., (1998). The Design of Fully
Fuzzy Cultural Algoritms with Evolutionary Programming for Function
Optimization. International Conference GP May.
182. Zitzler E.,. Deb k., Thiele L., (2000).Comparison of
Multiobjective Evolutionary Algorithms : Empirical Results. Evolutionary
Computation, 8(2), pp. 173-195.
183. Zitzler E., Thiele L., (1998). An Evolutionary Algorithm
for Multiobjective optimization : The Strength Pareto Approach, TIK-Report
43.
Discipline : Sciences de l'ingénieur
Spécialité : Informatique et
Télécommunications
UFR : Informatique et
Télécommunications
Responsable de l'UFR : Driss Aboutajdine
Période d'accréditation : 2005- 2008
Titre de la thèse : Contribution à
l'optimisation complexe par des techniques de Swarm Intelligence
Prénom, Nom : Lamia Benameur
|
|