CHAPITRE 3
PRéSENTATION DU MODèLE ET DE LA
MCS
29
Le modèle d'équilibre général
calculable à dynamique séquentielle est un modèle qui ne
provient pas d'une optimisation dynamique intertemporelle : c'est une
succession d'équilibres statiques. Le modèle adopté ici
est inspiré du modèle standard du réseau PEP
dénommé « The PEP standard computable general equilibrum
model single-country, recursive dynamic version : PEP-1-t ».
L'objectif de cette section est de présenter quelques
spécificités du modèle retenu pour cette étude. Il
sera également question ici d'apprécier l'économie
béninoise en 2007 à travers la MCS. Enfin, la calibration et les
règles de bouclage viendront clore cette section.
3.1 Modèle
Nous présenterons dans un premier temps le modèle
statique et ensuite celui dynamique.
3.1.1 Modèle statique
Cette partie présente les principaux blocs
d'équations du modèle statique. Seules quelques équations
y sont exposées, l'annexe présente toutes les équations du
modèle.
3.1.1.1 Production
Comme le schéma ci-dessous le montre, la production
(XST) est modélisée par une fonction du type leontief de la
valeur ajoutée (V Aj) et de la consommation
intermédiaire
30
totale (CI ) du secteur j. Autrement dit, la valeur
ajoutée du secteur j et la consommation intermédiaire de ce
secteur sont en proportions fixes de sa production et s'écrivent :
Encadré 3 :Schéma de modélisation de la
production
La valeur ajoutée de chaque secteur est aussi du type
CES (Constant Elasticity of Substitution) de la demande sectorielle de travail
composite (LDC ) et de la demande sectorielle du capital (KD
).
-1
ñV A
V A = BV A
[âV A
LDC_ñV A
+ (1 - âV A
j )KD_ñV A j
]
j (3.1)
Où :
BV A
est le paramètre d'échelle dans la CES de la valeur
ajoutée
âV A
est le paramètre distributif
ñV A
est l'élasticité dans la CES
La maximisation du profit (ou la minimisation du coût) par
les firmes permet d'obtenir la demande de travail et de capital. Pour les
fonctions de type CES, la demande de travail dépend de la demande de
capital.
(3.2)
óV A
LDC = [ âV A
j Rj j KDC
1_âV A W Cj ]
j
Avec :
R est la rémunération sectorielle de
Capital du secteur j
31
WCj est le taux de salaire sectoriel de travail composite
óV A
j est l'élasticité dans la CES.
La demande du travail composite est une fonction CES des
demandes des différents types de travail (LDi,j. La
consommation intermédiaire pour chaque secteur est une combinaison des
demandes intermédiaires (DIi,j)du secteur
en proportion constante.
|