V.4.3- Informal sector regression
There are three main models in this regression based on
dependent variables: Fixed Deposits and Gross Loans.
? MODEL SUMMARY: FD dependent variable
Model1: HLAR, TA, COA, ROA
74
Analysis of microfinances' performance and
development of informal institutions in Cameroon
By Djamaman Brice Gaétan
Model2: HLAR, TA, COA, ROA, ROE Model2: HLAR, TA, COA, ROA,
OSS
Model
|
R
|
R
Square
|
Adjusted R Square
|
Std. Error of the
Estimate
|
Change Statistics
|
R Square Change
|
F Change
|
df1
|
df2
|
Sig. F Change
|
1
|
1.000*
|
0.999
|
0.999
|
3281.6557
|
0.999
|
11070.171
|
4
|
40
|
0.00
|
2
|
1.000**
|
0.999
|
0.999
|
3266.46464
|
0.000
|
1.373
|
1
|
39
|
0.248
|
3
|
1.000***
|
0.999
|
0.999
|
2965.52991
|
0.000
|
9.317
|
1
|
38
|
0.004
|
* Predictors: (Constant), HLAR, TA, COA, ROA
**Predictors: (Constant), HLAR, TA, COA, ROA, ROE
***Predictors: (Constant), HLAR, TA, COA, ROA, ROE, OSS
Table22: ANOVA OF FD REGRESSION
Model
|
|
Sum of Squares
|
df
|
Mean Square
|
F
|
Sig.
|
1
|
Regression
|
4.7687E+11
|
4
|
1.1922E+11
|
11070.1712
|
0.000
|
|
Residual
|
430770564
|
40
|
10769264.1
|
|
|
|
Total
|
4.773E+11
|
44
|
|
|
|
2
|
Regression
|
4.7689E+11
|
5
|
9.5377E+10
|
8938.976
|
0.000
|
|
Residual
|
416121857
|
39
|
10669791.2
|
|
|
|
Total
|
4.773E+11
|
44
|
|
|
|
3
|
Regression
|
4.7697E+11
|
6
|
7.9494E+10
|
9039.25088
|
0.000
|
|
Residual
|
334185971
|
38
|
8794367.67
|
|
|
|
Total
|
4.773E+11
|
44
|
|
|
|
Table23: FD regression coefficients when FP
influences the informal sector
Model
|
Unstandardized Coefficients
|
Standardized Coefficients
|
t
|
Sig.
|
1
|
|
B
|
Std. Error
|
Beta
|
|
|
(Constant)
|
2125.559
|
991.552
|
|
2.144
|
0.038
|
ROA
|
-34.424
|
74.764
|
-0.003
|
-0.460
|
0.648
|
TA
|
0.099
|
0.001
|
0.998
|
170.777
|
0.000
|
COA
|
-5.102
|
7.066
|
-0.004
|
-0.722
|
0.474
|
HLAR
|
-0.754
|
4.401
|
-0.001
|
-0.171
|
0.865
|
2
|
(Constant)
|
2269.238
|
994.550
|
|
2.282
|
0.028
|
ROA
|
-22.316
|
75.131
|
-0.002
|
-0.297
|
0.768
|
75
Analysis of microfinances' performance and
development of informal institutions in Cameroon
By Djamaman Brice Gaétan
Un der
|
TA
|
0.099
|
0.001
|
0.999
|
168.725
|
0.000
|
COA
|
-4.907
|
7.035
|
-0.004
|
-0.698
|
0.490
|
HLAR
|
-0.715
|
4.381
|
-0.001
|
-0.163
|
0.871
|
ROE
|
-11.537
|
9.847
|
-0.006
|
-1.172
|
0.248
|
3
|
(Constant)
|
-243.712
|
1221.911
|
|
-0.199
|
0.843
|
ROA
|
-43.098
|
68.549
|
-0.004
|
-0.629
|
0.533
|
TA
|
0.099
|
0.001
|
0.999
|
185.848
|
0.000
|
COA
|
1.047
|
6.678
|
0.001
|
0.157
|
0.876
|
HLAR
|
0.098
|
3.986
|
0.000
|
0.025
|
0.980
|
ROE
|
-8.821
|
8.984
|
-0.004
|
-0.982
|
0.332
|
OSS
|
14.625
|
4.791
|
0.014
|
3.052
|
0.004
|
ANOVA of FD regression, we can say that all the models are
statistically significant because the p-value of F test is zero. The R-squared
of the entire models is 0.998, meaning that approximately 99.9% of the
variability of FD is accounted for by the variables in the
model. In this case, the adjusted R-squared also indicates that about 99.9% of
the variability of FD is accounted for by the models; even
after taking into account the number of predictable variables in the models.
The coefficients for each of the variables indicates the
amount of change one could expect in FD given a one-unit
change in the value of that variable, given that all other variables in the
models are held constant.
The T test in the first model: T(0.05;40) is 2.021. This
statistic proves in the case of TA regression coefficient that independents
variables (financial performance variable) influence deposit by clients of
small and medium size enterprises, ceteris paribus. But other regression
coefficients are not significant because their T values are less than empirical
value.
When we look at models 2 and 3, we can draw the same
conclusion. Thus MFIs must concentrate their effort to improve their total
assets, which results in the valorization of FD amount by the clients. This
situation corresponds to H3.
? MODEL SUMMARY: FD dependent variable
Model1: HLAR, TA, COA, ROA
Model2: HLAR, TA, COA, ROA, ROE Model2: HLAR, TA, COA, ROA,
OSS
76
Analysis of microfinances' performance and
development of informal institutions in Cameroon
By Djamaman Brice Gaétan
Model
|
R
|
R
Square
|
Adjusted R Square
|
Std. Error of the Estimate
|
Change Statistics
|
R Square Change
|
F Change
|
d f
1
|
df2
|
Sig. F Change
|
1
|
1.000*
|
1.000
|
1.0000
|
1232.30476
|
1.000
|
1005282.31
|
4
|
40
|
0.000
|
2
|
1.000**
|
1.000
|
1.0000
|
1247.30904
|
0.000
|
0.04344216
|
1
|
39
|
0.836
|
3
|
1.000***
|
1.000
|
1.0000
|
1195.53135
|
0.000
|
4.45128185
|
1
|
38
|
0.0421
|
* Predictors: (Constant), HLAR, TA, COA, ROA
**Predictors: (Constant), HLAR, TA, COA, ROA, ROE
***Predictors: (Constant), HLAR, TA, COA, ROA, ROE, OSS
Table24: FD regression coefficients when SP
influences the informal sector
Model
|
Unstandardized Coefficients
|
Standardized Coefficients
|
t
|
Sig.
|
1
|
|
B
|
Std. Error
|
Beta
|
|
|
(Constant)
|
520.664
|
372.341
|
|
1.398
|
0.170
|
ROA
|
-57.588
|
28.075
|
-0.001
|
-2.051
|
0.047
|
TA
|
0.353
|
0.000
|
0.999
|
1628.568
|
0.000
|
COA
|
-2.614
|
2.653
|
-0.001
|
-0.985
|
0.331
|
HLAR
|
0.063
|
1.653
|
0.000
|
0.038
|
0.970
|
2
|
(Constant)
|
510.904
|
379.772
|
|
1.345
|
0.186
|
ROA
|
-58.411
|
28.689
|
-0.001
|
-2.036
|
0.049
|
TA
|
0.353
|
0.000
|
0.999
|
1580.185
|
0.000
|
COA
|
-2.627
|
2.686
|
-0.001
|
-0.978
|
0.334
|
HLAR
|
0.060
|
1.673
|
0.000
|
0.036
|
0.971
|
ROE
|
0.784
|
3.760
|
0.000
|
0.208
|
0.836
|
3
|
(Constant)
|
1211.150
|
492.604
|
|
2.459
|
0.019
|
ROA
|
-52.620
|
27.635
|
-0.001
|
-1.904
|
0.064
|
TA
|
0.353
|
0.000
|
0.999
|
1648.621
|
0.000
|
COA
|
-4.286
|
2.692
|
-0.001
|
-1.592
|
0.120
|
HLAR
|
-0.166
|
1.607
|
0.000
|
-0.103
|
0.918
|
ROE
|
0.027
|
3.622
|
0.000
|
0.007
|
0.994
|
OSS
|
-4.075
|
1.932
|
-0.001
|
-2.110
|
0.042
|
? MODEL SUMMARY: GL dependent variable
Model1: HLAR, AL, COA
Model2: HLAR, AL, COA, CFIR
77
Analysis of microfinances' performance and
development of informal institutions in Cameroon
By Djamaman Brice Gaétan
Model2: HLAR, AL, COA, CFGR
Model
|
R
|
R
Square
|
Adjusted R Square
|
Std. Error of the Estimate
|
Change Statistics
|
|
R Square Change
|
F Change
|
df1
|
df2
|
Sig. F Change
|
1
|
1.000*
|
1.000
|
1.000
|
1906.119
|
1.000
|
559918.371
|
3
|
40
|
0.000
|
2
|
1.000**
|
1.000
|
1.000
|
1929.461
|
0.000
|
0.038
|
1
|
39
|
0.846
|
3
|
1.000***
|
1.000
|
1.000
|
1954.172
|
0.000
|
0.020
|
1
|
38
|
0.889
|
* Predictors: (Constant), HLAR, AL, COA
**Predictors: (Constant), HLAR, AL, COA, CFIR
***Predictors: (Constant), HLAR, AL, COA, CFIR, CFGR
Table25: GL regression coefficients when FP
influences the informal sector
Model
|
Unstandardized Coefficients
|
Standardized Coefficients
|
t
|
Sig.
|
B
|
Std. Error
|
Beta
|
|
|
1
|
(Constant)
|
-400.556
|
532.146
|
|
-0.753
|
0.456
|
AL
|
7646.003
|
5.920
|
1.000
|
1291.493
|
0.000
|
COA
|
0.685
|
4.199
|
0.000
|
0.163
|
0.871
|
HLAR
|
-1.569
|
2.555
|
0.000
|
-0.614
|
0.543
|
2
|
(Constant)
|
-389.330
|
541.730
|
|
-0.719
|
0.477
|
AL
|
7646.007
|
5.993
|
1.000
|
1275.861
|
0.000
|
COA
|
0.594
|
4.276
|
0.000
|
0.139
|
0.890
|
HLAR
|
-1.558
|
2.587
|
0.000
|
-0.602
|
0.551
|
CFIR
|
-2.692
|
13.802
|
0.000
|
-0.195
|
0.846
|
3
|
(Constant)
|
-375.289
|
557.619
|
|
-0.673
|
0.505
|
AL
|
7645.962
|
6.078
|
1.000
|
1257.968
|
0.000
|
COA
|
0.599
|
4.331
|
0.000
|
0.138
|
0.891
|
HLAR
|
-1.559
|
2.621
|
0.000
|
-0.595
|
0.555
|
CFIR
|
-1.092
|
17.999
|
0.000
|
-0.061
|
0.952
|
CFGR
|
-1.314
|
9.315
|
0.000
|
-0.141
|
0.889
|
In this case, we have a similar result as the above
conclusion: empirical value of T test is higher than T test of observed value
in the entire models, except the case of Average Loan/ GDP. Indeed in the
entire models, the T value of AL/GDP is greater than one of the empirical value
(t (0.05; 40)). We can conclude that only AL/GDP is significant. Therefore,
social performance
78
Analysis of microfinances' performance and
development of informal institutions in Cameroon
By Djamaman Brice Gaétan
through the AL/GDP influences the Gross Loan and consequently the
development of informal sector.
? MODEL SUMMARY: GL dependent variable
Model1: HLAR, AL, COA
Model2: HLAR, AL, COA, CFIR Model2: HLAR, AL, COA, CFGR
Model
|
R
|
R
Square
|
Adjusted R Square
|
Std. Error of the Estimate
|
Change Statistics
|
|
R Square Change
|
F Change
|
df1
|
df2
|
Sig. F Change
|
1
|
1.000
|
1.000
|
1.000
|
1906.11900
|
1.000
|
559918.371
|
3
|
40
|
0.000
|
2
|
1.000
|
1.000
|
1.000
|
1929.46125
|
0.000
|
0.038
|
1
|
39
|
0.846
|
3
|
1.000
|
1.000
|
1.000
|
1954.17216
|
0.000
|
0.020
|
1
|
38
|
0.889
|
* Predictors: (Constant), HLAR, AL, and COA; **Predictors:
(Constant), HLAR, AL, COA, and CFIR ***Predictors: (Constant), HLAR, AL, COA,
CFIR, CFGR
Table26: GL regression coefficients when SF
influences the informal sector
Model
|
Unstandardized Coefficients
|
Standardized Coefficients
|
t
|
Sig.
|
B
|
Std. Error
|
Beta
|
|
|
1
|
(Constant)
|
-400.556
|
532.146
|
|
-0.753
|
0.456
|
AL
|
7646.003
|
5.920
|
1.000
|
1291.493
|
0.000
|
COA
|
0.685
|
4.199
|
0.000
|
0.163
|
0.871
|
HLAR
|
-1.569
|
2.555
|
0.000
|
-0.614
|
0.543
|
2
|
(Constant)
|
-389.330
|
541.730
|
|
-0.719
|
0.477
|
AL
|
7646.007
|
5.993
|
1.000
|
1275.861
|
0.000
|
COA
|
0.594
|
4.276
|
0.000
|
0.139
|
0.890
|
HLAR
|
-1.558
|
2.587
|
0.000
|
-0.602
|
0.551
|
CFIR
|
-2.692
|
13.802
|
0.000
|
-0.195
|
0.846
|
3
|
(Constant)
|
-375.289
|
557.619
|
|
-0.673
|
0.505
|
AL
|
7645.962
|
6.078
|
1.000
|
1257.968
|
0.000
|
COA
|
0.599
|
4.331
|
0.000
|
0.138
|
0.891
|
HLAR
|
-1.559
|
2.621
|
0.000
|
-0.595
|
0.555
|
CFIR
|
-1.092
|
17.999
|
0.000
|
-0.061
|
0.952
|
CFGR
|
-1.314
|
9.315
|
0.000
|
-0.141
|
0.889
|
79
Analysis of microfinances' performance and
development of informal institutions in Cameroon
By Djamaman Brice Gaétan
CHAPTER VI- CONCLUSION, LIMITATIONS AND
RECOMMENDATIONS
At the end of this chapter we will be able to conversant
firstly with the conclusion of the results of our research. Secondly, to give
the difficulties faced during the research. Lastly, to make recommendations for
further researches in the same field of study.
|