Bibliographie
[1] P. Adda, J. L. Dimi, A. Iggidr, J. C. Kamgang, G.
Sallet and J. J. Tewa, General models of host parasite systems. Gobal analysis,
discrete and continuous dynamical systems-series B, vol 8,
N°1, july 2007, pp. 260-278.
[2] R. M. Anderson, Complex dynamic in the interaction
between parasite population and the host's immune system, Int J parasito, 28
(1998), pp. 551-566.
[3] R. M. Anderson, R.M. May and S. Gupta, Non-linear
phenomena in host-parasite interaction, Parazitology, 99 suppl.(1989), pp.
59-79.
[4] M. M. Ballyk, C. C. McCluskey, G. S. K.
Wolkovicz, Global analysis of competition for perfectly substitutable resources
with linear response, J. Math. Biol, 51(2005), pp. 458-490.
[5] N. P. Bathia and G. P. Szegö, Stability theory
of dynamical systems, Springer-Verlag, (1970).
[6] E. Berretta and V. Capasso, on the general structure
of epidemic systems. Global asymptotic stability, J. Dyn. Diff. Equations,
16(2004), pp. 139-166.
[7] S. Bowong, Contribution à la stabilisation
et stabilité des systèmes non linéaires : Applications
à des systèmes mécaniques et
épidémiologiques, Thèse de doctorat, Université de
Metz, France, (2003).
[8] V. Capasso, Mathematical structure of epidemic
systems, Lect. Notes in Biomath., vol 97, Springer Verlag,(1993).
[9] H. H. Diebner, M. Eichner, L. Molineaux, W.E.
Collins, G.M. Jeffrery, and K. Dietz, Modelling the transition of asexual blood
stages of plasmodium falciparum gametocytes, J. Theoret. Biol., 202(2002), pp.
113-127.
[10] O. Diekmann, J. A. Heesterbeek, J. A. J. Metz,
On the definition and the computation of the basic reproduction R0
in models for infectious diseases in heterogeneous populations, J.
Math. Biol. 28 (1990), pp. 365-382.
[11] O. Diekmann, J. A. Heesterbeek, J. A. J. Metz,
Mathematical epidemiology of infections diseases, Model Building and analysis
and interpretation, Wiley & Sons Ltd., Chichester, (2000).
[12] B. Goh, non vulnerability of ecosystems in
unpredictable environments, theor. population biology, 10(1976), pp.
83-95.
Mémoire de DEA: Dany Pascal MOUALEU c~, UYI
2008
[13] M. B. Gravenor and A. L. Lloyd, Reply to :
Models for the in-host dynamics of malaria revisited : Errors in some basic
models lead to large over-estimate of growth rates, parasitology, 117(1998),
pp. 409-410.
[14] M. B. Gravenor, A. L. Lloyd, P. G. Kemsner, M.
A. Missinou, M. English, K. Marsh and D. Kwiatkowski, A model for estimating
total parasite load in falciparum malaria patients, J. Theoret. Biol.,
217(2002), pp. 137-148.
[15] A. B. Gumel, C. C. McCluskey, J. Watmough,
modelling the potential impact of SARS vaccine, Math. Biosci. Eng., 3(3)(2006)
pp. 485-512.
[16] A. B. Gumel, C. C. McCluskey, P. van den
Driessche, Mathematical study of a staged-progression HIV model with imperfect
vaccine, Bull. of Mathematical Biol., DOI 10.1007/s11538-006-9095-7,
(2006).
[17] H. Guo and M. Y. Li, Global dynamics of staged
progression model for infectious disease, Math. Biosci. Eng., 3(3)(2006), pp.
513-525.
[18] J. Hale, Ordinary differential equation, John
Wiley, New york, (1969).
[19] J. Hoftbauer, K. Sigmund, Evolutionary games and
population dynamics, Cambridge University Press, Cambridge, (1998).
[20] J. M. Hyman and J. Li, Differential susceptibility
and infectivity epidemic models, Math. Biosci. Eng., 3 (2006).
[21] J. M. Hyman and J. Li, Treshold conditions for the
spread of HIV infection in age structured populations of homosexual men, J.
Theoret. Biol., 166(1994), pp. 9-31
[22] J. M. Hyman and J. Li, Differential susceptibility
and infectivity epidemic models, J. Math. Biol., 50(2005), pp.
626-644.
[23] J. M. Hyman, J. Li and E.A. Stanley, The
initialization and sensivity of multi group models for transmission of HIV, J.
theoret. Biol., 208(2001), pp. 227-249.
[24] J. M. Hyman, and J. Li, An intuitive formulation
for reproduction number for the spread of diseases on heterogeneous
populations, Math. Biosci., 167(2000).
[25] J. M. Hyman, and J. Li, The reproductive number for
an HIV models with differential infectivity and staged progression,J. Lin. alg.
appl., 398(2005), pp. 101-116.
[26] A. Iggidr, J. C. Kamgang, G. Sallet and J. J.
Tewa, Global analysis of new malaria intra host models
zithacompetitiveexclusionprinciple, SIAM. J. Appl. Math., vol 67,
N°1, Dec. 2006, pp. 260-278.
[27] J. M. Hyman, J. Li and E.A. Stanley, The
differencial infectivity and stage progression models for the transmission,
Math. Biosci., 155(2)(1999), pp. 77-109.
[28] J. C. Kamgang, Contribution à la
stabilisation des modèles mécaniques, contribution à
l'étude de la stabilité des modèles
épidémiologiques, Thèse de Doctorat à
l'Université de Metz,(2003).
Mémoire de DEA:
|
Dany Pascal MOUALEU c~, UYI 2008
|
[29] J. P. LaSalle, The stability of dynamical systems,
SIAM, Philadelphia, 1976.
[30] J. P. LaSalle, Stability theory for ordinary
differential equations, J. Differ. equations, 41 (1968), pp. 57-65.
[31] J. P. LaSalle, Stability of dynamical systems,
SIAM, Princetown univ. Press, Prince-town, NJ, (1949).
[32] J. Li, Y. Zhou, Z. Ma, and J. M. Hyman,
epidemiological models for mutating pathogens, SIAM J. Appl. Math., 65(2004),
pp. 1-23.
[33] M. Y. Li, J.S. Mudolwey and P. van den Driessche, A
geometric approach to global stability problems, SIAM. J. Appl. Appl.,
27(1996), pp. 1070-1083.
[34] M. Y. Li, J. S. Mudolwey and P. van den Driessche,
Global stability of SEIRS model in epidemiology, Can. Appl. Math. Q.,
7(4)(1999), pp. 409-425.
[35] X. Lin and J. W. H. So, Global stability of the
endemic equilibrium and uniform persistence in epidemic models with
subpopulations, J. Aust. Math. Soc., ser. B, 34 (1993), pp.
282-295.
[36] D. G. Luenberger, Introduction to dynamics theory
models and application, John Wiley and New York, (1979).
[37] A. Lyapunov, problème général
de stabilité du mouvement,Ann. of Math. stud.,vol 17 Philadelphia,
(1976).
[38] D. P. Mason, F. E. McKenzie, and W. H. Bossert,
the blood-staged dynamics of mixed plasmodium malariae-plasmodium falciparum
infections, J. Theoret. Biol., 198(1999), pp. 549-566.
[39] C. C. McCluskey, Global stability for a class of
mass action systems allowing for in tuberculosis, J. Math., Anal. Appl.
(2007).
[40] C. C. McCluskey and P. Van den Driessche, Global
analysis of two tuberculosis models, Journal of Dynamics and
Différential Equations, Vol N°1 ,
January 2004.
[41] C. C. McCluskey, P. van den Driessche, Global
analysis of two tuberculosis models, J. Diff. Equations, 16(1)(2004), pp.
139-166.
[42] C. C. McCluskey and P. Van den Driessche, Global
analysis of two tuberculosis models, Journal of Dynamics and
Différential Equations, Vol N°1 January
2004.
[43] F. E. McKenzie and W. H. Bossert, The dynamics of
plasmodium falciparum blood-stage infection, J. Theoret. Biol., 188(1997), pp.
127-140.
[44] F. E. McKenzie and W.H. Bossert, The optimal
production of gametocytes by plasmodium falciparum, J. Theoret. Biol.,
193(1998), pp. 419-428.
[45] D. P. Moualeu, Analyse globale d'une classe de
modèles épidémiologiques, Mémoire de DIPES II,
ENS-UYI, (2008).
Mémoire de DEA:
|
Dany Pascal MOUALEU c~, UYI 2008
|
[46] D. P. Moualeu, Estimation des états et
paramè tres dans un modèle épidémiologique,
Mémoire de maîtrise, Université de Douala, Cameroun,
(2007).
[47] C. P. Simon and J.A. Jacquez, Reproduction
numbers and the stability of equilibria of S. I. models for heterogeneous
populations, SIAM J. Appl. Math., 52(2)(1992), pp. 541-576.
[48] J. J. Tewa, Analyse globale des modèles
épidémiologiques multicompartimentaux : Application à des
modèles intra-hôtes de paludisme et de VIH, Thèse de
doctorat, Université de Metz, (2007)
[49] P. van den Driessche, J. Watmough, Reproduction
numbers and sub-treshold endemic equilibria for compartmental models of disease
transmission, Math. Biosci. 180 (2002), pp. 29-48.
[50] http ://
www.sida-info-service.org/informer/proteger/transmission.php4.
[51] Ministère de la Santé Publique,
Programme National de Lutte contre la Tuberculose, Guide technique pour le
personnel de santé, (2001).
Mémoire de DEA:
|
Dany Pascal MOUALEU c~, UYI 2008
|
|
|