WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Analyse des déterminants de la production des cultures vivrières au Bénin: cas du maà¯s et de l'igname

( Télécharger le fichier original )
par Nouta௠Rodrigue HONKPEHEDJI
Université nationale du Bénin - Ingénieur statisticien économiste 2009
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

ANNEXE 2 : Les différents tests pour le modèle à
effets fixes : cas du maïs

. xtreg lprod lsup lpoprur lprix lhautpl, fe

Fixed-effects (within) regression Group variable: comm

Number of obs =

Number of groups =

88

8

R-sq:

within

= 0.5771

 
 

Obs per group: min =

11

 

between

= 0.9206

 
 

avg =

11.0

 

overall

= 0.8790

 
 

max =

11

 
 
 
 
 

F(4,76) =

25.93

corr(u_i, Xb)

= 0.7783

 
 

Prob > F =

0.0000

 

lprod |

Coef.

Std. Err.

t

P>|t| [95% Conf.

Interval]

 

+

 
 
 
 
 
 

lsup |

.399503

.0719143

5.56

0.000 .2562732

.5427328

 

lpoprur |

.5146713

.1144338

4.50

0.000 .2867567

.7425858

 

lprix |

-.2096241

.128581

-1.63

0.107 -.4657153

.0464672

 

lhautpl |

-.1152291

.1195592

-0.96

0.338 -.353352

.1228937

 

|

_cons

.272134

1.524566

0.18

0.859 -2.764303

3.308571

 

+

 
 
 
 
 
 

sigma_u |

.77191572

 
 
 
 
 

sigma_e |

.26264837

 
 
 
 
 

rho |

.89623914

(fraction of variance due to u_i)

 

F test that all u_i=0: F(7, 76) =

33.58

Prob > F =

0.0000

. est store fixed

. xtreg lprod lsup lpoprur lprix lhautpl, Random-effects GLS regression

re

Number of obs =

88

Group variable: comm

 

Number of groups =

8

R-sq: within = 0.5770

 

Obs per group: min =

11

between = 0.9211

 

avg =

11.0

overall = 0.8795

 

max =

11

Random effects u_i ~ Gaussian

 

Wald chi2(4) =

135.74

corr(u_i, X) = 0 (assumed)

 

Prob > chi2 =

0.0000

lprod |

Coef.

Std. Err.

z

P>|z|

[95% Conf.

Interval]

+

 
 
 
 
 
 

lsup |

.4453965

.0720188

6.18

0.000

.3042423

.5865507

lpoprur |

.5582101

.1141239

4.89

0.000

.3345313

.7818889

 
 

e

Réalisé et soutenu par Samson James Aimé AGBO et Rodrigue Noutaï HONKPEHEDJI

 
 

lprix | -.2161175 .1321722 -1.64 0.102 -.4751703 .0429353

lhautpl | -.117592 .1222238 -0.96 0.336 -.3571462 .1219621

_cons | -.4443465 1.535815 -0.29 0.772 -3.454488 2.565795

+

sigma_u | .55216822

sigma_e | .26264837

rho | .81548815 (fraction of variance due to u_i)

. hausman fixed

---- Coefficients ----

| (b) (B) (b-B) sqrt(diag(V_b-V_B))

| fixed . Difference S.E.

+

lsup | .399503 .4453965 -.0458934 .

lpoprur | .5146713 .5582101 -.0435389 .0084152

lprix | -.2096241 -.2161175 .0064934 .

lhautpl | -.1152291 -.117592 .0023629 .

b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(4) = (b-B)'[(V_b-V_B)^(-1)](b-B)

= 10.78

Prob>chi2 = 0.0292

(V_b-V_B is not positive definite)

predict fixed, u sktest fixed

Skewness/Kurtosis tests for Normality

joint

Variable | Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2

+

fixed | 0.001 0.373 10.51 0.0052

. gen fixed2 = fixed*fixed

. reg fixed2 lprod lsup lpoprur lprix lhautpl, fe option fe not allowed

r(198);

. reg fixed2 lsup lpoprur lprix lhautpl, fe option fe not allowed

r(198);

. reg fixed2 lsup lpoprur lprix lhautpl

Source | SS df MS Number of obs = 88

+ F( 4, 83) = 8.53

Model | 10.1582918 4 2.53957294 Prob > F = 0.0000

Residual | 24.7146116 83 .297766405 R-squared = 0.2913

+ Adj R-squared = 0.2571

Total | 34.8729034 87 .40083797 Root MSE = .54568

fixed2 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

+

lsup | -.1340434 .082597 -1.62 0.108 -.2983254 .0302387

lpoprur | .5297644 .127636 4.15 0.000 .2759016 .7836273

 
 

f

Réalisé et soutenu par Samson James Aimé AGBO et Rodrigue Noutaï HONKPEHEDJI

 
 

lprix | -.374556 .2414996 -1.55 0.125 -.854889 .105777

lhautpl | -.6337519 .1865383 -3.40 0.001 -1.004769 -.2627348

_cons | 1.906683 1.969337 0.97 0.336 -2.010248 5.823615

. xtregar lprod lsup lpoprur lprix lhautpl, fe

FE (within) regression with AR(1) disturbances Number of obs = 80

Group variable: comm Number of groups = 8

R-sq: within = 0.5400 Obs per group: min = 10

between = 0.9095 avg = 10.0

overall = 0.8667 max = 10

F(4,68) = 19.96

corr(u_i, Xb) = 0.7855 Prob > F = 0.0000

lprod | Coef. Std. Err. t P>|t| [95% Conf. Interval]

+

lsup | .3024995 .0761919 3.97 0.000 .1504609 .454538

lpoprur | .5682697 .1119369 5.08 0.000 .3449032 .7916363

lprix | -.2498191 .126181 -1.98 0.052 -.5016093 .0019712

lhautpl | -.1678023 .1355912 -1.24 0.220 -.4383704 .1027657

_cons | .8956003 1.036103 0.86 0.390 -1.171911 2.963111

+

rho_ar | .34613866

sigma_u | .84524194

sigma_e | .26181561

rho_fov | .91245333 (fraction of variance because of u_i)

F test that all u_i=0: F(7,68) = 17.80 Prob > F = 0.0000

. xtregar lprod lsup lpoprur lprix lhautpl, fRe option fRe not allowed

r(198);

. xtregar lprod lsup lpoprur lprix lhautpl, re

RE GLS regression with AR(1) disturbances Number of obs = 88

Group variable: comm Number of groups = 8

R-sq: within = 0.5767 Obs per group: min = 11

between = 0.9215 avg = 11.0

overall = 0.8793 max = 11

Wald chi2(5) = 170.99

corr(u_i, Xb) = 0 (assumed) Prob > chi2 = 0.0000

lprod | Coef. Std. Err. z P>|z| [95% Conf. Interval]

+

lsup | .4855914 .0768424 6.32 0.000 .334983 .6361997

lpoprur | .6240351 .1136918 5.49 0.000 .4012032 .8468669

lprix | -.2956279 .1390389 -2.13 0.033 -.5681392 -.0231167

lhautpl | -.1572632 .1376602 -1.14 0.253 -.4270722 .1125459

_cons | -.7440033 1.554131 -0.48 0.632 -3.790045 2.302038

+

rho_ar | .34613866 (estimated autocorrelation coefficient)

sigma_u | .35540846 sigma_e | .32537836 rho_fov | .5440252 (fraction of variance due to u_i)

theta | .62604963

 
 

g

Réalisé et soutenu par Samson James Aimé AGBO et Rodrigue Noutaï HONKPEHEDJI

 
 

. xtreg lprod lsup lpoprur lprix lhautpl, re

 
 

Random-effects GLS regression

Number of obs =

88

Group variable:

comm

 

Number of groups =

8

R-sq: within =

0.5770

 

Obs per group: min =

11

between =

0.9211

 

avg =

11.0

overall =

0.8795

 

max =

11

Random effects u_i ~ Gaussian

Wald chi2(4) =

135.74

corr(u_i, X) = 0 (assumed)

Prob > chi2 =

0.0000

lprod |

Coef.

Std. Err. z

P>|z| [95% Conf.

Interval]

+

lsup |

.4453965

.0720188 6.18

0.000 .3042423

.5865507

lpoprur |

.5582101

.1141239 4.89

0.000 .3345313

.7818889

lprix |

-.2161175

.1321722 -1.64

0.102 -.4751703

.0429353

lhautpl |

-.117592

.1222238 -0.96

0.336 -.3571462

.1219621

|

_cons

-.4443465

1.535815 -0.29

0.772 -3.454488

2.565795

+

sigma_u |

.55216822

 
 
 

sigma_e |

.26264837

 
 
 

rho |

.81548815

(fraction of variance due to u_i)

 

. xtregar lprod lsup lpoprur lprix lhautpl, re

 
 

RE GLS regression with AR(1)

disturbances

Number of obs =

88

Group variable:

comm

 

Number of groups =

8

R-sq: within =

0.5767

 

Obs per group: min =

11

between =

0.9215

 

avg =

11.0

overall =

0.8793

 

max =

11

 
 
 

Wald chi2(5) =

170.99

corr(u_i, Xb)

= 0 (assumed)

Prob > chi2 =

0.0000

lprod |

Coef.

Std. Err. z

P>|z| [95% Conf.

Interval]

+

lsup |

.4855914

.0768424 6.32

0.000 .334983

.6361997

lpoprur |

.6240351

.1136918 5.49

0.000 .4012032

.8468669

lprix |

-.2956279

.1390389 -2.13

0.033 -.5681392

-.0231167

lhautpl |

-.1572632

.1376602 -1.14

0.253 -.4270722

.1125459

|

_cons

-.7440033

1.554131 -0.48

0.632 -3.790045

2.302038

+

 
 
 
 

rho_ar |

.34613866

(estimated autocorrelation coefficient)

 

sigma_u |

.35540846

 
 

sigma_e |

.32537836

 
 

rho_fov |

.5440252

(fraction of variance due to u_i)

 

theta |

.62604963

 
 
 

. xtregar lprod lsup lpoprur lprix lhautpl, fe

lbi

 

FE (within) regression with AR(1)

disturbances

Number of obs =

80

Group variable: comm

 

Number of groups =

8

R-sq: within = 0.5400

 

Obs per group: min =

10

between = 0.9095

 

avg =

10.0

overall = 0.8667

 

max =

10

 
 

F(4,68) =

19.96

corr(u_i, Xb) = 0.7855

 

Prob > F =

0.0000

 
 

h

Réalisé et soutenu par Samson James Aimé AGBO et Rodrigue Noutaï HONKPEHEDJI

 
 

lprod

|

Coef.

Std. Err.

t

P>|t|

[95% Conf.

Interval]

+

 
 
 
 
 
 
 

lsup

|

.3024995

.0761919

3.97

0.000

.1504609

.454538

lpoprur

|

.5682697

.1119369

5.08

0.000

.3449032

.7916363

lprix

|

-.2498191

.126181

-1.98

0.052

-.5016093

.0019712

lhautpl

|

-.1678023

.1355912

-1.24

0.220

-.4383704

.1027657

_cons

|

.8956003

1.036103

0.86

0.390

-1.171911

2.963111

+

 
 
 
 
 
 
 

rho_ar

|

.34613866

 
 
 
 
 

sigma_u

|

.84524194

 
 
 
 
 

sigma_e

|

.26181561

 
 
 
 
 

rho_fov

|

.91245333

(fraction of variance because

of u_i)

 

F test that all u_i=0: F(7,68) = 17.80 Prob > F = 0.0000

modified Bhargava et al. Durbin-Watson = 1.3889366

Baltagi-Wu LBI = 1.6300891

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Qui vit sans folie n'est pas si sage qu'il croit."   La Rochefoucault