WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Lien entre le cadre réglementaire de l'activité d'entreprise et les performances économiques

( Télécharger le fichier original )
par Hermann FOTIE
FUNDP - DES 2005
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Bibliographie

Bourbonnais Regis, 1998, Manuel et exercices Corrigis : Econometrie. Paris, Dunod, Deuxieme Edition

Bruno Deffains, Jean-Daniel Guigou, 2002, « Droit, systemes financiers et gouvernement
d'entreprises », in n° special « Droit et Economie », Revue d'Economie Politique,n° 6.

Daron Acemoglu, Simon Johnson, James Robinson, 2004. Institutions as the Fundamental Cause of Long-Run Growth. Handbook of Economic Growth.

Edward L. Glaeser, Rafael La Porta, Florencio Lopez-de-Silanes, Andrei Shleifer, 2004, "Do institutions cause growth?", NBER Working Paper #(105 68) , Cambridge, MA.

La Porta R., Lopez-de-Silanes F., Shleifer A. et Vishny R.,1999, « The quality of government », Journal of Law, Economics and Organi=ation, pp. 222-279.

Janine Aron, 2000, "Growth and Institutions: A Review of the Evidence", the World Bank Research Observer, vol. 15, no. 1 (February 2000), pp. 99-135.

North, D., 1990, Institutions, Institutional change and Economic Performance, Cambridge University Press.

Simeon Djankov, Rafael La Porta, Florencio Lopez-de-Silanes, and Andrei Shleifer, 2002. "Appropriate Institutions" World Bank, Harvard University, Yale University.

Simeon Djankov, Edward L. Glaeser, Rafael La Porta, Florencio Lopez-de-Silanes and Andrei Shleifer, 2003, "The New Comparative Economic",. Discussion Paper Number 2002, Harvard Institute of Economic Research, Cambridge, Massachusetts

W. Easterly, R. Levine, 1997, "Africa's Growth Tragedy: Policies and Ethnic Divisions", the quarterly Journal of Economics.

World Bank, 2002, Building Institutions for Markets: World Development Report 2002. Oxford and London: Oxford University Press.

World Bank, the International Finance Corporation and Oxford University Press, 2004. Removing obstacles to growth. Doing Business series.

World Economic Forum, 2002, the global competitiveness: report 2001-2002, Oxford University Press, New York.

Annexes

Annexe 1 : Codes des pays (Banque Mondiale)

Pays

Code_pays

Pays

Code_pays

Pays

Code_pays

Angola

AGO

France

FRA

Mongolia

MNG

Albania

ALB

Micronesia Fed, Sts

FSM

Mozambique

MOZ

United Arab Emirates

ARE

United Kingdom

GBR

Mauritania

MRT

Argentina

ARG

Georgia

GEO

Malawi

MWI

Armenia

ARM

Ghana

GHA

Malaysia

MYS

Australia

AUS

Guinea

GIN

Namibia

NAM

Austria

AUSTRIA1 6

Greece

GRC

Niger

NER

Azerbaijan

AZE

Guatemala

GTM

Nigeria

NGA

Burundi

BDI

Hong Kong China

HKG

Nicaragua

NIC

Belgium

BEL

Honduras

HND

Netherlands

NLD

Benin

BEN

Croatia

HRV

Norway

NOR

Burkina Faso

BFA

Haiti

HTI

Nepal

NPL

Bangladesh

BGD

Hungary

HUN

New Zealand

NZL

Bulgaria

BGR

Indonesia

IDN

Oman

OMN

Bosnia and Herzegovina

BIH

India

IND

Pakistan

PAK

Belarus

BLR

Ireland

IRL

Panama

PAN

Bolivia

BOL

Iran Islamic Rep,

IRN

Peru

PER

Brazil

BRA

Israel

ISR

Philippines

PHL

Bhutan

BTN

Italy

ITA

Palau

PLW

Botswana

BWA

Jamaica

JAM

Papua New Guinea

PNG

Central African Republic

CAF

Jordan

JOR

Poland

POL

Canada

CAN

Japan

JPN

Puerto Rico

PRI

Switzerland

CHE

Kazakhstan

KAZ

Portugal

PRT

Chile

CHL

Kenya

KEN

Paraguay

PRY

China

CHN

Kyrgyz Republic

KGZ

Romania

ROM

Cote d'Ivoire

CIV

Cambodia

KHM

Russian Federation

RUS

Cameroon

CMR

Kiribati

KIR

Rwanda

RWA

Congo Rep,

COG

Korea Rep,

KOR

Saudi Arabia

SAU

Colombia

COL

Kuwait

KWT

Senegal

SEN

Costa Rica

CRI

Lao PDR

LAO

Singapore

SGP

Czech Republic

CZE

Lebanon

LBN

Solomon Islands

SLB

Germany

DEU

Sri Lanka

LKA

Sierra Leone

SLE

Denmark

DNK

Lesotho

LSO

El Salvador

SLV

Dominican Republic

DOM

Lithuania

LTU

Slovak Republic

SVK

Algeria

DZA

Latvia

LVA

Slovenia

SVN

Ecuador

ECU

Morocco

MAR

Sweden

SWE

Egypt Arab Rep,

EGY

Moldova

MDA

Syrian Arab Republic

SYR

Spain

ESP

Madagascar

MDG

Taiwan China

TAI

Estonia

EST

Mexico

MEX

Chad

TCD

Ethiopia

ETH

Marshall Islands

MHL

Togo

TGO

Finland

FIN

Macedonia FYR

MKD

Thailand

THA

Fiji

FJI

Mali

MLI

Tonga

TON

Turkey

TUR

Uzbekistan

UZB

Serbia and Montenegro

YUG

Tanzania

TZA

Venezuela

VEN

South Africa

ZAF

Uganda

UGA

Vietnam

VNM

Congo Dem, Rep,

ZAR

Ukraine

UKR

Vanuatu

VUT

Zambia

ZMB

Uruguay

URY

Samoa

WSM

Zimbabwe

ZWE

United States

USA

Yemen Rep,

YEM

 
 

1 6 Ce code ne correspond pas a celui de la Banque Mondiale

 

Annexe 2-
IFEE

Test de correlation IFCE

IRMT

IFEB

IFAC

IPI

IFEC

IRF

GNI per
Capita

Informal
Economy

Taux_ou
99-02)

VA
service

VA ind

IFEE

1,000

 
 
 
 
 
 
 
 
 
 
 
 

IFCE

,823(**)

1,000

 
 
 
 
 
 
 
 
 
 
 

IRMT

, 649(**)

,498(**)

1,000

 
 
 
 
 
 
 
 
 
 

IFEB

, 672(**)

,500(**)

,4 63(**)

1,000

 
 
 
 
 
 
 
 
 

IFAC

,721(**)

, 604(**)

,51 6(**)

,527(**)

1,000

 
 
 
 
 
 
 
 

IPI

,771(**)

,397(**)

,139

,400(**)

,52 6(**)

1,000

 
 
 
 
 
 
 

IFEC

,817(**)

,550(**)

,371(**)

,450(**)

,512(**)

,5 62(**)

1,000

 
 
 
 
 
 

IRF

,754(**)

,472(**)

,307(**)

,375(**)

,444(**)

,500(**)

, 654(**)

1,000

 
 
 
 
 

GNI per Capita

-,705(**)

-,55 2(**)

-,377(**)

-,557(**)

-,657(**)

-,577(**)

-,548(**)

-,551(**)

1,000

 
 
 
 

Informal Economy

,5 62(**)

,390(**)

,284(**)

,442(**)

,5 60(**)

,484(**)

,390(**)

,297(**)

-, 675(**)

1,000

 
 
 

Taux d'ouverture (99-02)

-,232(*)

-,194(*)

-,310(**)

-,154

-,291(**)

-,1 60

-,258(**)

-,15 6

,235(**)

-,1 66

1,000

 
 

VA service (99-03)

-,580(**)

-,473(**)

-,315(**)

-,391(**)

-,523(**)

-,3 69(**)

-,487(**)

-,429(**)

,789(**)

-,404(**)

,059

1,000

 

VA ind(99-03):

-,049

,027

-,128

,049

,117

-,025

,055

-,042

-,029

,054

,110

,019

1,000

** Correlation is significant at the 0.01 level (2-tailed).* Correlation is significant at the 0.05 level (2-tailed).

Annexe 3- Regression sur le revenu des differents indicateurs des aspects du cadre reglementaire Tableau 1: Variables Entered/Removed (a)

Modele

Variables Entered

Method

1

IFAC

Forward (Criterion: Probability-of-F-to-enter <= ,050)

2

IRF

Forward (Criterion: Probability-of-F-to-enter <= ,050)

3

IFEB

Forward (Criterion: Probability-of-F-to-enter <= ,050)

4

IPI

Forward (Criterion: Probability-of-F-to-enter <= ,050)

a Dependent Variable: lrev

La premiere variable entree est celle qui est la plus correlee a la variable dependante est forme le modele 1, le modele 2 est obtenu par ajout de la variable qui a le plus grand coefficient de correlation partielle avec la dependante, l'effet des autres variables etant retire...

Tableau 2 : choix des variables a partir du calcul des coefficients de correlation partielle et des t-statistics

Model

 

Beta In

t

Sig.

Partial Correlation

1

IFCE

-,345(a)

-4,097

,000

-,371

IRMT

-,0 66(a)

-,778

,438

-,07 6

IFEB

-,317(a)

-3,987

,000

-,3 63

IPI

-,283(a)

-3,528

,001

-,32 6

IFEC

-,325(a)

-4,0 62

,000

-,3 68

IRF (choisi)

-,323(a)

-4, 224

,000

-,381

2

IFCE

-,244(b)

-2,755

,007

-,2 61

IRMT

,002(b)

,025

,980

,002

IFEB(choisi)

-, 268(b)

-3,5 29

,001

-,327

IPI

-,198(b)

-2,45 6

,01 6

-,234

IFEC

-,197(b)

-2,049

,043

-,197

3

IFCE

-,159(c)

-1,74 6

,084

-,170

IRMT

,085(c)

1,059

,292

,104

IPI (choisi)

-,170(c)

- 2,191

,031

-, 211

IFEC

-,143(c)

-1,527

,130

-,149

4

IFCE

-,117(d)

-1,254

,213

-,123

IRMT

,079(d)

1,009

,31 6

,099

IFEC

-,087(d)

-,88 6

,378

-,087

a Predictors in the Model: (Constant), IFAC

b Predictors in the Model: (Constant), IFAC, IRF

c Predictors in the Model: (Constant), IFAC, IRF, IFEB

d Predictors in the Model: (Constant), IFAC, IRF, IFEB, IPI

e Dependent Variable: lrev

Tableau 3 : Coefficients estimés (a)

Modele

 

Coefficients

t-statistics

Sig

1

(Constant)

10,370

35, 628

,000

IFAC

-,040

-9,324

,000

2

(Constant)

10,833

37,137

,000

IFAC

-,031

- 6,749

,000

IRF

-,01 6

-4,224

,000

3

(Constant)

11,292

3 6,899

,000

IFAC

-,024

-4,927

,000

IRF

-,014

-3,785

,000

IFEB

-,01 6

-3,529

,001

4

(Constant)

11, 292

37,568

,000

IFAC

-,020

-4,114

,000

IRF

-,011

-3,031

,003

IFEB

-,015

-3,331

,001

IPI

-,007

-2,191

,031

a Dependent Variable: lrev

précédent sommaire






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Qui vit sans folie n'est pas si sage qu'il croit."   La Rochefoucault