WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Les effets du VIH/SIDA sur la mortalité infanto-juvénile dans les pays d'Afrique Subsaharienne

( Télécharger le fichier original )
par Kokou Valère PIHOUN-KOFFI et David Zombre
Université d'Auvergne - Master Professionnel en Economie de la Santé 2007
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

CONCLUSION

A l'issu de cette réflexion et des résultats empiriques que nous avons obtenus, il semble effectivement que le VIH/SIDA joue un rôle très important dans l'explication de la mortalité infanto-juvénile dans les pays de l'Afrique Subsaharienne. En effet une augmentation de la prévalence du VIH/SIDA entraine inéluctablement une augmentation de la mortalité infanto-juvénile. Cet effet du VIH/SIDA sur la mortalité des enfants de moins de cinq ans est plus fort en présence d'instabilité politique.

Néanmoins, on s'aperçoit à travers le résultat de nos régressions, que la prévalence VIH/SIDA n'est significative dans l'explication de la mortalité infanto-juvénile que si elle associée à l'instabilité politique. De plus, ce modèle a permis de mettre en évidence les autres déterminants de la mortalité infanto-juvénile en occurrence la vaccination, l'éducation des mères, le niveau de revenu et l'accouchement assisté.

Toutefois, il est important d'insister sur le fait que ce modèle ne peut être exhaustif, étant donné que nous n'avions pas pu mettre en évidence les effets direct du VIH/SIDA, à travers la prise en compte de tous les aspects de la transmission mère-enfant par manque de données. Ainsi, il est évident que la proportion d'enfants infectée par suite de l'allaitement ou au cours de l'accouchement a sans nul doute, un effet sur la mortalité des enfants due au VIH/SIDA qui n'a pu être prise en compte dans notre modèle.

Nous soulignons à ce niveau, le fait que nous n'avons pas trouvé de bons instruments pour pouvoir vérifier empiriquement, l'exogénéité de notre variable de VIH/SIDA.

Il est important de souligner également, que la littérature portant sur les effets du VIH/SIDA sur la mortalité infantile n'est pas fournie.

Dans la perspective de l'atteinte des Objectifs du Millénaire pour Développement, la mesure des effets du VIH/SIDA sur la mortalité des enfants nécessite des études plus approfondies. Ceci permettra en plus des efforts déjà réalisés dans le domaine scientifique, de mieux cerner cette problématique dans l'optique de leur prise en compte dans les politiques de réduction de la mortalité infanto-juvénile dans les Pays en Développement d'une manière générale.

ANNEXES

. *Statistiques desriptives

Variable | Mean Std. Dev. Min Max | Observations

-----------------+--------------------------------------------+----------------

im overall | 159.3929 59.77393 18 320 | N = 168

between | 58.52353 20 291 | n = 42

within | 14.47225 117.1429 204.8929 | T = 4

| |

hiv overall | 8.27646 8.608894 .0773347 38.8 | N = 168

between | 8.295911 .0780011 34.125 | n = 42

within | 2.554847 -5.96854 16.85146 | T = 4

| |

roug overall | 61.55952 21.72989 18 97 | N = 168

between | 19.62063 29.25 96.75 | n = 42

within | 9.702305 36.05952 97.55952 | T = 4

| |

motheduc overall | 42.52262 19.41235 11 96 | N = 168

between | 18.5753 13.5 86.5 | n = 42

within | 6.164089 24.77262 76.02262 | T = 4

| |

acoucsis overall | 50.14286 21.10263 6 99 | N = 168

between | 20.8135 9 94.75 | n = 42

within | 4.461076 36.89286 66.89286 | T = 4

| |

gdppc overall | 2363.624 3009.127 453.1864 19780 | N = 168

between | 2855.201 489.5347 13217.88 | n = 42

within | 1024.266 -7121.056 8925.748 | T = 4

. *Test de Hausman

Fixed-effects (within) regression Number of obs = 168

Group variable (i): code Number of groups = 42

R-sq: within = 0.2223 Obs per group: min = 4

between = 0.4719 avg = 4.0

overall = 0.4331 max = 4

F(6,120) = 5.72

corr(u_i, Xb) = 0.4522 Prob > F = 0.0000

------------------------------------------------------------------------------

im | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hiv | .4582889 .483487 0.95 0.345 -.4989816 1.415559

roug | -.2190717 .1265995 -1.73 0.086 -.46973 .0315865

motheduc | -.758119 .1926906 -3.93 0.000 -1.139633 -.3766051

acoucsis | -.2700784 .2746772 -0.98 0.327 -.8139202 .2737633

gdppc | .0016068 .0011999 1.34 0.183 -.000769 .0039825

inst_hiv | .7315258 .2602651 2.81 0.006 .216219 1.246833

_cons | 214.3106 16.12429 13.29 0.000 182.3856 246.2355

-------------+----------------------------------------------------------------

sigma_u | 48.831644

sigma_e | 15.056297

rho | .91318543 (fraction of variance due to u_i)

------------------------------------------------------------------------------

F test that all u_i=0: F(41, 120) = 24.08 Prob > F = 0.0000

Random-effects GLS regression Number of obs = 168

Group variable (i): code Number of groups = 42

R-sq: within = 0.1970 Obs per group: min = 4

between = 0.5861 avg = 4.0

overall = 0.5534 max = 4

Random effects u_i ~ Gaussian Wald chi2(6) = 71.39

corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

------------------------------------------------------------------------------

im | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hiv | .4254233 .4223622 1.01 0.314 -.4023914 1.253238

roug | -.3152181 .1213161 -2.60 0.009 -.5529932 -.077443

motheduc | -.9124917 .1800989 -5.07 0.000 -1.265479 -.5595043

acoucsis | -.7711354 .2271328 -3.40 0.001 -1.216307 -.3259633

gdppc | .0006957 .0011248 0.62 0.536 -.0015089 .0029003

inst_hiv | .5794249 .251837 2.30 0.021 .0858335 1.073016

_cons | 253.6693 13.67986 18.54 0.000 226.8573 280.4813

-------------+----------------------------------------------------------------

sigma_u | 38.143536

sigma_e | 15.056297

rho | .86519435 (fraction of variance due to u_i)

------------------------------------------------------------------------------

. hausman eq1

---- Coefficients ----

| (b) (B) (b-B) sqrt(diag(V_b-V_B))

| eq1 . Difference S.E.

-------------+----------------------------------------------------------------

hiv | .4582889 .4254233 .0328656 .2353079

roug | -.2190717 -.3152181 .0961464 .0361918

motheduc | -.758119 -.9124917 .1543727 .0685132

acoucsis | -.2700784 -.7711354 .5010569 .1544612

gdppc | .0016068 .0006957 .0009111 .0004179

inst_hiv | .7315258 .5794249 .1521008 .0656966

------------------------------------------------------------------------------

b = consistent under Ho and Ha; obtained from xtreg

B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(6) = (b-B)'[(V_b-V_B)^(-1)](b-B)

= 68.20

Prob>chi2 = 0.0000

. *Test de Ramsey Reset

Fixed-effects (within) regression Number of obs = 168

Group variable (i): code Number of groups = 42

R-sq: within = 0.2223 Obs per group: min = 4

between = 0.4719 avg = 4.0

overall = 0.4331 max = 4

F(6,120) = 5.72

corr(u_i, Xb) = 0.4522 Prob > F = 0.0000

------------------------------------------------------------------------------

im | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hiv | .4582889 .483487 0.95 0.345 -.4989816 1.415559

roug | -.2190717 .1265995 -1.73 0.086 -.46973 .0315865

motheduc | -.758119 .1926906 -3.93 0.000 -1.139633 -.3766051

acoucsis | -.2700784 .2746772 -0.98 0.327 -.8139202 .2737633

gdppc | .0016068 .0011999 1.34 0.183 -.000769 .0039825

inst_hiv | .7315258 .2602651 2.81 0.006 .216219 1.246833

_cons | 214.3106 16.12429 13.29 0.000 182.3856 246.2355

-------------+----------------------------------------------------------------

sigma_u | 48.831644

sigma_e | 15.056297

rho | .91318543 (fraction of variance due to u_i)

------------------------------------------------------------------------------

F test that all u_i=0: F(41, 120) = 24.08 Prob > F = 0.0000

Fixed-effects (within) regression Number of obs = 168

Group variable (i): code Number of groups = 42

R-sq: within = 0.2847 Obs per group: min = 4

between = 0.3970 avg = 4.0

overall = 0.3581 max = 4

F(9,117) = 5.17

corr(u_i, Xb) = 0.3909 Prob > F = 0.0000

------------------------------------------------------------------------------

im | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hiv | 59.43723 41.34726 1.44 0.153 -22.44885 141.3233

roug | -28.25424 19.74142 -1.43 0.155 -67.35109 10.84262

motheduc | -97.91025 68.25926 -1.43 0.154 -233.0941 37.27363

acoucsis | -34.77898 24.29715 -1.43 0.155 -82.89822 13.34025

gdppc | .207229 .1444896 1.43 0.154 -.0789252 .4933831

inst_hiv | 94.43629 65.86321 1.43 0.154 -36.00235 224.8749

imhat2 | -1.215096 .9065531 -1.34 0.183 -3.010477 .5802851

imhat3 | .004999 .0040124 1.25 0.215 -.0029473 .0129452

imhat4 | -7.53e-06 6.59e-06 -1.14 0.256 -.0000206 5.52e-06

_cons | 22725.4 15987.17 1.42 0.158 -8936.358 54387.16

-------------+----------------------------------------------------------------

sigma_u | 50.760469

sigma_e | 14.62366

rho | .92336383 (fraction of variance due to u_i)

------------------------------------------------------------------------------

F test that all u_i=0: F(41, 117) = 25.31 Prob > F = 0.0000

. test imhat2 imhat3 imhat4

( 1) imhat2 = 0

( 2) imhat3 = 0

( 3) imhat4 = 0

F( 3, 117) = 1.59

Prob > F = 0.1952

. *test de la normalité des residu

Fixed-effects (within) regression Number of obs = 168

Group variable (i): code Number of groups = 42

R-sq: within = 0.2223 Obs per group: min = 4

between = 0.4719 avg = 4.0

overall = 0.4331 max = 4

F(6,120) = 5.72

corr(u_i, Xb) = 0.4522 Prob > F = 0.0000

------------------------------------------------------------------------------

im | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hiv | .4582889 .483487 0.95 0.345 -.4989816 1.415559

roug | -.2190717 .1265995 -1.73 0.086 -.46973 .0315865

motheduc | -.758119 .1926906 -3.93 0.000 -1.139633 -.3766051

acoucsis | -.2700784 .2746772 -0.98 0.327 -.8139202 .2737633

gdppc | .0016068 .0011999 1.34 0.183 -.000769 .0039825

pol_hiv | .7315258 .2602651 2.81 0.006 .216219 1.246833

_cons | 214.3106 16.12429 13.29 0.000 182.3856 246.2355

-------------+----------------------------------------------------------------

sigma_u | 48.831644

sigma_e | 15.056297

rho | .91318543 (fraction of variance due to u_i)

------------------------------------------------------------------------------

F test that all u_i=0: F(41, 120) = 24.08 Prob > F = 0.0000

. sktest residu

Skewness/Kurtosis tests for Normality

------- joint ------

Variable | Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2

-------------+-------------------------------------------------------

residu | 0.158 0.795 2.09 0.3518

. *test d'homoscedasticité

Source | SS df MS Number of obs = 168

-------------+------------------------------ F( 6, 161) = 5747.05

Model | 5.0287e+09 6 838123558 Prob > F = 0.0000

Residual | 23479518.5 161 145835.519 R-squared = 0.9954

-------------+------------------------------ Adj R-squared = 0.9952

Total | 5.0522e+09 167 30252819.6 Root MSE = 381.88

------------------------------------------------------------------------------

residu2 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hiv | 152.3262 4.196293 36.30 0.000 144.0393 160.6131

roug | -72.04528 1.577225 -45.68 0.000 -75.16 -68.93057

motheduc | -239.285 2.374088 -100.79 0.000 -243.9733 -234.5966

acoucsis | -89.08242 2.001651 -44.50 0.000 -93.0353 -85.12954

gdppc | .5608018 .0132142 42.44 0.000 .5347062 .5868973

pol_hiv | 216.0009 3.262524 66.21 0.000 209.5581 222.4438

_cons | 43157.03 111.3058 387.73 0.000 42937.22 43376.83

------------------------------------------------------------------------------

. * correction de l'héteroscedasticité

Linear regression, absorbing indicators Number of obs = 168

F( 6, 120) = 9.15

Prob > F = 0.0000

R-squared = 0.9544

Adj R-squared = 0.9366

Root MSE = 15.056

------------------------------------------------------------------------------

| Robust

im | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hiv | .4582889 .7076847 0.65 0.518 -.9428775 1.859455

roug | -.2190717 .1132868 -1.93 0.055 -.4433716 .0052281

motheduc | -.758119 .2301168 -3.29 0.001 -1.213734 -.3025038

acoucsis | -.2700784 .3393422 -0.80 0.428 -.9419523 .4017954

gdppc | .0016068 .0005645 2.85 0.005 .0004891 .0027244

pol_hiv | .7315258 .2732748 2.68 0.008 .1904607 1.272591

_cons | 214.3106 18.94468 11.31 0.000 176.8014 251.8197

-------------+----------------------------------------------------------------

code | absorbed (42 categories)

. *test d'endogenéité

Source | SS df MS Number of obs = 164

-------------+------------------------------ F( 6, 157) = 23.02

Model | 5663.88005 6 943.980009 Prob > F = 0.0000

Residual | 6437.58416 157 41.0037207 R-squared = 0.4680

-------------+------------------------------ Adj R-squared = 0.4477

Total | 12101.4642 163 74.2421117 Root MSE = 6.4034

------------------------------------------------------------------------------

hiv | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

roug | .1241879 .0259414 4.79 0.000 .0729488 .1754269

motheduc | .0882306 .0403221 2.19 0.030 .0085869 .1678744

acoucsis | .0827753 .0342647 2.42 0.017 .015096 .1504546

muslim | -.0710005 .0180237 -3.94 0.000 -.1066007 -.0354004

vmr | (dropped)

gdppc | .0001004 .0002329 0.43 0.667 -.0003597 .0005605

pol_hiv | -.0177579 .0570255 -0.31 0.756 -.1303941 .0948782

_cons | -5.008685 2.142561 -2.34 0.021 -9.24065 -.7767212

------------------------------------------------------------------------------

Linear regression Number of obs = 164

F( 7, 156) = 32.42

Prob > F = 0.0000

R-squared = 0.5322

Root MSE = 39.378

------------------------------------------------------------------------------

| Robust

im | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hiv | 2.838934 1.273781 2.23 0.027 .3228514 5.355017

roug | -.9051552 .2210186 -4.10 0.000 -1.341731 -.4685799

motheduc | -1.305785 .3443464 -3.79 0.000 -1.985968 -.6256019

acoucsis | -1.360461 .1929943 -7.05 0.000 -1.74168 -.9792416

vmr | (dropped)

gdppc | .0008388 .0014134 0.59 0.554 -.0019531 .0036307

pol_hiv | .3582408 .2420676 1.48 0.141 -.1199123 .8363939

r_resid | -2.246375 1.374993 -1.63 0.104 -4.962381 .4696315

_cons | 315.1202 14.83378 21.24 0.000 285.8192 344.4211

------------------------------------------------------------------------------

. *test de la validité des instruments

Instrumental variables (2SLS) regression

Source | SS df MS Number of obs = 164

-------------+------------------------------ F( 6, 157) = 26.02

Model | 242659.399 6 40443.2332 Prob > F = 0.0000

Residual | 274383.552 157 1747.66594 R-squared = 0.4693

-------------+------------------------------ Adj R-squared = 0.4490

Total | 517042.951 163 3172.04265 Root MSE = 41.805

------------------------------------------------------------------------------

im | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hiv | 2.838934 1.657293 1.71 0.089 -.4345333 6.112402

roug | -.9051552 .2777392 -3.26 0.001 -1.453743 -.3565677

motheduc | -1.305785 .3365818 -3.88 0.000 -1.970598 -.6409724

acoucsis | -1.360461 .2478415 -5.49 0.000 -1.849995 -.8709269

gdppc | .0008388 .0015474 0.54 0.589 -.0022175 .0038952

inst_hiv | .3582408 .3820488 0.94 0.350 -.3963779 1.112859

_cons | 315.1202 19.60188 16.08 0.000 276.4027 353.8376

------------------------------------------------------------------------------

Instrumented: hiv

Instruments: roug motheduc acoucsis gdppc pol_hiv muslim

------------------------------------------------------------------------------

Linear regression Number of obs = 164

F( 7, 156) = 4.94

Prob > F = 0.0000

R-squared = 0.1184

Root MSE = 39.378

------------------------------------------------------------------------------

| Robust

epsilon | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hiv | -2.246375 .3961061 -5.67 0.000 -3.028798 -1.463951

roug | .2789725 .1824796 1.53 0.128 -.0814771 .6394221

motheduc | .1981991 .2780586 0.71 0.477 -.3510466 .7474448

acoucsis | .1859444 .2136245 0.87 0.385 -.2360254 .6079142

gdppc | .0002254 .00141 0.16 0.873 -.0025597 .0030105

inst_hiv | -.0398909 .2364988 -0.17 0.866 -.5070441 .4272622

muslim | -.1594938 .0976252 -1.63 0.104 -.3523317 .0333441

vmr | (dropped)

_cons | -11.25139 12.20875 -0.92 0.358 -35.36717 12.8644

------------------------------------------------------------------------------

. *prise en compte des variables muettes régionales

Linear regression Number of obs = 168

F( 10, 157) = 37.38

Prob > F = 0.0000

R-squared = 0.6539

Root MSE = 36.269

------------------------------------------------------------------------------

| Robust

im | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hiv | 1.252978 .3862217 3.24 0.001 .4901176 2.015839

roug | -.5128926 .1726685 -2.97 0.003 -.8539455 -.1718397

motheduc | -1.077929 .2407526 -4.48 0.000 -1.553461 -.6023969

acoucsis | -1.248732 .2066431 -6.04 0.000 -1.656891 -.840573

gdppc | .0004584 .00164 0.28 0.780 -.0027809 .0036977

water | -.2164926 .1871605 -1.16 0.249 -.5861701 .1531848

inst_hiv | -.0017336 .2349717 -0.01 0.994 -.4658473 .46238

west_afr | 46.79417 7.859004 5.95 0.000 31.27116 62.31719

east_afr | (dropped)

central_afr | 36.99559 9.076654 4.08 0.000 19.06748 54.9237

southern_afr | 31.68599 9.474774 3.34 0.001 12.97152 50.40046

_cons | 269.3585 13.57728 19.84 0.000 242.5408 296.1762

------------------------------------------------------------------------------

Linear regression Number of obs = 168

F( 7, 160) = 38.07

Prob > F = 0.0000

R-squared = 0.5794

Root MSE = 39.604

------------------------------------------------------------------------------

| Robust

im | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

hiv | 1.136047 .3416004 3.33 0.001 .4614199 1.810674

roug | -.7300074 .1727496 -4.23 0.000 -1.071171 -.3888439

motheduc | -.9940563 .2556647 -3.89 0.000 -1.498969 -.4891437

acoucsis | -1.304065 .2093723 -6.23 0.000 -1.717554 -.8905749

gdppc | .0004228 .0016705 0.25 0.801 -.0028764 .0037219

inst_hiv | .2402728 .2358977 1.02 0.310 -.2256019 .7061476

war | 2.102814 10.73026 0.20 0.845 -19.08839 23.29402

_cons | 302.304 12.23743 24.70 0.000 278.1363 326.4718

------------------------------------------------------------------------------

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Aux âmes bien nées, la valeur n'attend point le nombre des années"   Corneille