WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Contribution à  l'optimisation d'un comportement collectif pour un groupe de robots autonomes


par Amine BENDAHMANE
Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf - Doctorat en informatique - Intelligence Artificielle 2023
  

précédent sommaire

Extinction Rebellion

BIBLIOGRAPHIE

[1] Nur Aira ABD RAHMAN et al. « A coverage path planning approach for autonomous radiation mapping with a mobile robot ». In : International Journal of Advanced Robotic Systems 19.4 (2022), p. 17298806221116483.

[2] Laith ABUALIGAH et al. « Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer ». In : Expert Systems with Applications 191 (2022), p. 116158.

[3] Laith ABUALIGAH et al. « The arithmetic optimization algorithm ». In : Computer methods in applied mechanics and engineering 376 (2021), p. 113609.

[4] Afsoon AFZAL et al. « A study on the challenges of using robotics simulators for testing ». In : arXiv preprint arXiv:2004.07368 (2020).

[5] Jeffrey O AGUSHAKA, Absalom E EZUGWU et Laith ABUALIGAH. « Dwarf mongoose optimization algorithm ». In : Computer methods in applied mechanics and engineering 391 (2022), p. 114570.

[6] Somaye AHMADI, H. KEBRIAEI et Hadi MORADI. « Constrained coverage path planning: evolutionary and classical approaches ». In : Robotica 36 (fév. 2018), p. 1-21. DOI : 10.1017/S0263574718000139.

[7] Mohammad AL KHAWALDAH et Andreas NUCHTER. « Enhanced frontier-based exploration for indoor environment with multiple robots ». In : Advanced Robotics 29 (avr. 2015). DOI : 10.1080/01691864.2015.1015443.

[8] Sankalap ARORA et Priyanka ANAND. « Binary butterfly optimization approaches for feature selection ». In : Expert Systems with Applications 116 (2019), p. 147-160.

[9] Sankalap ARORA et Satvir SINGH. « An improved butterfly optimization algorithm for global optimization ». In : Advanced Science, Engineering and Medicine 8.9 (2016), p. 711-717.

[10] Sankalap ARORA et Satvir SINGH. « Butterfly algorithm with levy flights for global optimization ». In : 2015 International conference on signal processing, computing and control (ISPCC). IEEE. 2015, p. 220-224.

[11] Sankalap ARORA et Satvir SINGH. « Butterfly optimization algorithm: a novel approach for global optimization ». In : Soft Computing 23.3 (2019), p. 715-734.

[12] Sankalap ARORA, Satvir SINGH et Kaan YETILMEZSOY. « A modified butterfly optimization algorithm for mechanical design optimization problems ». In : Journal of the Brazilian Society of Mechanical Sciences and Engineering 40.1 (2018), p. 1-17.

[13] Adel Saad ASSIRI. « On the performance improvement of Butterfly Optimization approaches for global optimization and Feature Selection ». In : Plos one 16.1 (2021), e0242612.

[14] Mahdi AZIZI. « Atomic orbital search: A novel metaheuristic algorithm ». In : Applied Mathematical Modelling 93 (2021), p. 657-683.

[15] Antoine BAUTIN, Olivier SIMONIN et François CHARPILLET. « MinPos : A Novel Frontier Allocation Algorithm for Multi-robot Exploration ». In : oct. 2012, p. 496-508. ISBN : 978-3-642-33514-3. DOI : 10.1007/978-3-642-33515-0_49.

135

Bibliographie

[16] Amine BENDAHMANE et Redouane TLEMSANI. « Unknown area exploration for robots with energy constraints using a modified Butterfly Optimization Algorithm ». In : Soft Computing 27 (2023), p. 3785-3804. DOI : 10.1007/s00500-022-07530w.

[17] James BERGSTRA et Yoshua BENGIO. « Random search for hyper-parameter optimization. » In : Journal of machine learning research 13.2 (2012).

[18] James BERGSTRA, Dan YAMINS, David D COx et al. « Hyperopt: A python library for optimizing the hyperparameters of machine learning algorithms ». In : Proceedings of the 12th Python in science conference. T. 13. Citeseer. 2013, p. 20.

[19] Francesco BISCANI et Dario IZZO. « A parallel global multiobjective framework for optimization: pagmo ». In : Journal of Open Source Software 5.53 (2020), p. 2338. DOI : 10.21105/joss.02338.

[20] Johann BORENSTEIN, Yoram KOREN et al. « The vector field histogram-fast obstacle avoidance for mobile robots ». In : IEEE transactions on robotics and automation 7.3 (1991), p. 278-288.

[21] Ersin BÜYÜK. « Pareto-based multiobjective particle swarm optimization: examples in geophysical modeling ». In : Optimisation Algorithms and Swarm Intelligence. In-techOpen, 2021.

[22] Byoung-Suk CHOI et al. « A hierarchical algorithm for indoor mobile robot localization using RFID sensor fusion ». In : IEEE Transactions on industrial electronics 58.6 (2011), p. 2226-2235.

[23] Howie CHOSET et Philippe PIGNON. « Coverage path planning: The boustrophedon cellular decomposition ». In : Field and service robotics. Springer. 1998, p. 203-209.

[24] Alberto COLORNI, Marco DORIGO, Vittorio MANIEZZO et al. « Distributed optimization by ant colonies ». In : Proceedings of the first European conference on artificial life. T. 142. Paris, France. 1991, p. 134-142.

[25] Nichael Lynn CRAMER. « A representation for the Adaptive Generation of Simple Sequential Programs ». In : Proceedings of an International Conference on Genetic Algorithms and the Applications. Sous la dir. de John J. GREFENSTETTE. Carnegie-Mellon University, Pittsburgh, USA, juin 1985, p. 183-187.

[26] Marija DAKULOVIc, Sanja HORVATIc et Ivan PETROVIé. « Complete Coverage D* Algorithm for Path Planning of a Floor-Cleaning Mobile Robot ». In : IFAC Proceedings Volumes 44.1 (2011). 18th IFAC World Congress, p. 5950-5955. ISSN : 1474-6670. DOI : https://doi.org/10.3182/20110828-6-IT-1002.03400.

[27] Andrew DAVENPORT et al. « GENET: A connectionist architecture for solving constraint satisfaction problems by iterative improvement ». In : AAAI. 1994, p. 325-330.

[28] Susana Estefany DE LEÔN-ALDACO, Hugo CALLEJA et Jesús Aguayo ALQuICIRA. « Me-taheuristic optimization methods applied to power converters: A review ». In : IEEE Transactions on Power Electronics 30.12 (2015), p. 6791-6803.

[29] Sihao DENG et al. « Application of external axis in robot-assisted thermal spraying ». In : Journal of thermal spray technology 21 (2012), p. 1203-1215.

136

Bibliographie

[30] Berat DoðAN et Tamer ÖLMEZ. « A new metaheuristic for numerical function optimization: Vortex Search algorithm ». In : Information sciences 293 (2015), p. 125-145.

[31] Alexey DosovITsKIY et al. « CARLA: An open urban driving simulator ». In : Conference on robot learning. PMLR. 2017, p. 1-16.

[32] Akif DURDU et al. « Convolutional Neural Networks Based Active SLAM and Exploration ». In : Avrupa Bilim ve Teknoloji Dergisi 22 (2021), p. 342-346.

[33] Hugh DuRRANT-WHYTE et al. « Field and service applications-an autonomous straddle carrier for movement of shipping containers-from research to operational autonomous systems ». In : IEEE Robotics & Automation Magazine 14.3 (2007), p. 14-23.

[34] Alberto ELFEs. « Using occupancy grids for mobile robot perception and navigation ». In : Computer 22.6 (1989), p. 46-57.

[35] Yuqi FAN et al. « A self-adaption butterfly optimization algorithm for numerical optimization problems ». In : IEEE Access 8 (2020), p. 88026-88041.

[36] J.D. FARMER, N. PACKARD et A. PERELsoN. « The immune system, adaptation and machine learning ». In : Physica D 2 (1986), 187-204.

[37] Diego FERIGo et al. « Gym-ignition: Reproducible robotic simulations for reinforcement learning ». In : 2020 IEEE/SICE International Symposium on System Integration (SII). IEEE. 2020, p. 885-890.

[38] Simon FoNG, Suash DEB et Ankit CHAuDHARY. « A review of metaheuristics in robotics ». In : Computers & Electrical Engineering 43 (2015), p. 278-291.

[39] Miguel GARCíA et al. « Voronoi-Based Space Partitioning for Coordinated Multi-Robot Exploration ». In : JoPha: Journal of Pysical Agents, ISSN 1888-0258, Vol. 1, N°. 1, 2007, pags. 37-44 1 (jan. 2007). DoI: 10.14198/JoPha.2007.1.1.05.

[40] Fred GLovER. « Future paths for integer programming and links to artificial intelligence ». In : Computers & operations research 13.5 (1986), p. 533-549.

[41] David E. GoLDBERG. Genetic Algorithms in Search, Optimization, and Machine Learning. New York: Addison-Wesley, 1989.

[42] Nir GREsHLER et al. « Cooperative multi-agent path finding: beyond path planning and collision avoidance ». In: 2021 International Symposium on Multi-Robot and Multi-Agent Systems (MRS). IEEE. 2021, p. 20-28.

[43] Faiza GuL, Suleman MIR et Imran MIR. « Coordinated multi-robot exploration: Hybrid stochastic optimization approach ». In : AIAA SCITECH2022 Forum. 2022, p. 1414.

[44] Yanju Guo, Xianjie LIu et Lei CHEN. « Improved butterfly optimisation algorithm based on guiding weight and population restart ». In : Journal of Experimental & Theoretical Artificial Intelligence 33.1 (2021), p. 127-145.

[45] Nikolaus HANsEN, Sibylle MüLLER et Petros KouMouTsAKos. « Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) ». In : Evolutionary computation 11 (fév. 2003), p. 1-18. DoI : 10. 1162/106365603321828970.

[46] Peter E. HART, Nils J. NILssoN et Bertram RAPHAEL. « A Formal Basis for the Heuristic Determination of Minimum Cost Paths ». In : IEEE Transactions on Systems Science and Cybernetics 4.2 (1968), p. 100-107. DoI : 10.1109/TSSC.1968.300136.

137

Bibliographie

[47] Dirk HOLz et al. « Evaluating the Efficiency of Frontier-based Exploration Strategies ». In : t. 1. Juill. 2010, p. 1 -8.

[48] Erno HORVATH, Claudiu POzNA et Radu-Emil PRECUP. « Robot coverage path planning based on iterative structured orientation ». In : Acta Polytechnica Hungarica 15.2 (2018), p. 231-249.

[49] Luca IOCCHI, Luca MARCHETTI et Daniele NARDI. « Multi-robot patrolling with coordinated behaviours in realistic environments ». In : 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 2011, p. 2796-2801.

[50] Nick JAKOBI, Phil HUSBANDS et Inman HARVEY. « Noise and the reality gap: The use of simulation in evolutionary robotics ». In : Advances in Artificial Life: Third European Conference on Artificial Life Granada, Spain, June 4-6, 1995 Proceedings 3. Springer. 1995, p. 704-720.

[51] Seyed Mohammad Jafar JALALI et al. « Evolving artificial neural networks using butterfly optimization algorithm for data classification ». In : International conference on neural information processing. Springer. 2019, p. 596-607.

[52] Albina KAMALOVA, Ki Dong KIM et Suk Gyu LEE. « Waypoint Mobile Robot Exploration Based on Biologically Inspired Algorithms ». In : IEEE Access 8 (2020), p. 190342190355.

[53] Albina KAMALOVA et al. « Multi-Robot Exploration Based on Multi-Objective Grey Wolf Optimizer ». In : Applied Sciences 9 (juill. 2019), p. 2931. DOI : 10 . 3390/ app9142931.

[54] Pierre KANCIR. « Méthodologie de conception de système multi-robots: De la simulation à la démonstration ». Thèse de doct. Université de Bretagne Sud, 2018.

[55] Dervis KARABOGA. « An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report - TR06 ». In : Technical Report, Erciyes University (jan. 2005).

[56] Géza KATONA, Balázs LÉNART et János JUHASz. « Parallel ant colony algorithm for shortest path problem ». In : Periodica Polytechnica Civil Engineering 63.1 (2019), p. 243-254.

[57] Ali KAVEH et Taha BAKHSHPOORI. « Metaheuristics: outlines, MATLAB codes and examples ». In : (2019).

[58] J. KENNEDY et R. EBERHART. « Particle swarm optimization ». In : Proceedings of ICNN'95 - International Conference on Neural Networks. T. 4. 1995, 1942-1948 vol.4. DOI : 10.1109/ICNN.1995.488968.

[59] Scott KIRKPATRICK, C Daniel GELATT JR et Mario P VECCHI. « Optimization by simulated annealing ». In : science 220.4598 (1983), p. 671-680.

[60] Nathan KOENIG et Andrew HOWARD. « Design and use paradigms for gazebo, an open-source multi-robot simulator ». In : 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566). T. 3. IEEE. 2004, p. 21492154.

[61] Guocheng LI et al. « An improved butterfly optimization algorithm for engineering design problems using the cross-entropy method ». In : Symmetry 11.8 (2019), p. 1049.

138

Bibliographie

[62] Matteo LUPERTO et al. « Robot exploration of indoor environments using incomplete and inaccurate prior knowledge ». In : Robotics and Autonomous Systems 133 (2020), p. 103622.

[63] Ellips MASEHIAN et MR AMIN-NASERI. « A voronoi diagram-visibility graph-potential field compound algorithm for robot path planning ». In : Journal of Robotic Systems 21.6 (2004), p. 275-300.

[64] Ashkan MEMARI, Robiah AHMAD et Abd Rahman Abdul RAHIM. « Metaheuristic algorithms: guidelines for implementation ». In : Journal of Soft Computing and Decision Support Systems 4.6 (2017), p. 1-6.

[65] PE MERGOS et Anastasios SEXTOS. Multi-objective optimum selection ofground motion records with genetic algorithms. IEEE, juin 2018.

[66] Seyedali MIRJALILI, Seyed Mohammad MIRJALILI et Andrew LEWIS. « Grey Wolf Optimizer ». In : Advances in Engineering Software 69 (2014), p. 46-61. ISSN : 0965-9978. DOI : https://doi.org/10.1016/j.advengsoft.2013.12.007.

[67] Himanshu MITTAL et al. « Gravitational search algorithm: A comprehensive analysis of recent variants ». In : Multimedia Tools and Applications 80 (2021), p. 7581-7608.

[68] Sing Yee NG et Nur Syazreen AHMAD. « A Bug-Inspired Algorithm for Obstacle Avoidance of a Nonholonomic Wheeled Mobile Robot with Constraints ». In : Intelligent Computing. Sous la dir. de Kohei ARAI, Rahul BHATIA et Supriya KAPOOR. Cham : Springer International Publishing, 2019, p. 1235-1246.

[69] G PAVAI et TV GEETHA. « A survey on crossover operators ». In : ACM Computing Surveys (CSUR) 49.4 (2016), p. 1-43.

[70] Hindriyanto Dwi PURNOMO et Hui-Ming WEE. « Soccer game optimization with substitute players ». In : Journal of computational and applied mathematics 283 (2015), p. 79-90.

[71] Esmat RASHEDI, Hossein NEZAMABADI-POUR et Saeid SARYAZDI. « GSA: a gravitational search algorithm ». In : Information sciences 179.13 (2009), p. 2232-2248.

[72] Eric ROHMER, Surya PN SINGH et Marc FREESE. « V-REP: A versatile and scalable robot simulation framework ». In : 2013 IEEE/RSJ international conference on intelligent robots and systems. IEEE. 2013, p. 1321-1326.

[73] Ali El ROMEH et Seyedali MIRJALILI. « Multi-Robot Exploration of Unknown Space Using Combined Meta-Heuristic Salp Swarm Algorithm and Deterministic Coordinated Multi-Robot Exploration ». In : Sensors 23.4 (2023), p. 2156.

[74] Sajad SAEEDI et al. « Occupancy grid map merging for multiple robot simultaneous localization and mapping ». In : International Journal ofRobotics and Automation 30.2 (2015), p. 149-157.

[75] Jeffrey R SAMPSON. Adaptation in natural and artificial systems (John H. Holland). 1976.

[76] Sushmita SHARMA et al. « MPBOA-A novel hybrid butterfly optimization algorithm with symbiosis organisms search for global optimization and image segmentation ». In : Multimedia Tools and Applications 80.8 (2021), p. 12035-12076.

139

Bibliographie

[77] Zongyuan SHEN, James P. WiLsoN et Shalabh GUPTA. « E*+: An Online Coverage Path Planning Algorithm for Energy-constrained Autonomous Vehicles ». In : Global Oceans2020:Singapore- U.S. GulfCoast. 2020,p. 1-6. Doi: 10.1109/IEEECONF38699. 2020.9389353.

[78] Rakesh SHREsTHA et al. « Learned map prediction for enhanced mobile robot exploration ». In : 2019 International Conference on Robotics and Automation (ICRA). IEEE. 2019, p. 1197-1204.

[79] Junnan SoNG et Shalabh GUPTA. « c*: An Online Coverage Path Planning Algorithm ». In : IEEE Transactions on Robotics 34 (fév. 2018), p. 526-533. Doi: 10.1109/ TRO.2017.2780259.

[80] Rainer SToRN et Kenneth PRiCE. « Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces ». In : Journal of global optimization 11.4 (1997), p. 341.

[81] Daniel Perea STROM, Igor BoGosLAVsKYi et Cyrill STACHNiss. « Robust exploration and homing for autonomous robots ». In : Robotics and Autonomous Systems 90 (2017), p. 125-135.

[82] Lei TAi et Ming LiU. « A robot exploration strategy based on q-learning network ». In : 2016 IEEE international conference on real-time computing and robotics (RCAR). IEEE. 2016, p. 57-62.

[83] Mohammad TUBisHAT et al. « Dynamic butterfly optimization algorithm for feature selection ». In : IEEE Access 8 (2020), p. 194303-194314.

[84] Zhongmin WANG, Qifang LUo et Yongquan ZHoU. « Hybrid metaheuristic algorithm using butterfly and flower pollination base on mutualism mechanism for global optimization problems ». In : Engineering with Computers 37.4 (2021), p. 3665-3698.

[85] David H WoLPERT et William G MACREADY. « No free lunch theorems for optimization ». In : IEEE transactions on evolutionary computation 1.1 (1997), p. 67-82.

[86] Benjie XiAo et al. « Ant colony optimisation algorithm-based multi-robot exploration ». In : International Journal of Modelling, Identification and Control 18.1 (2013), p. 41-46.

[87] Lei XiE et al. « Tuna swarm optimization: a novel swarm-based metaheuristic algorithm for global optimization ». In : Computational intelligence and Neuroscience 2021 (2021).

[88] Anupam YADAV et al. « AEFA: Artificial electric field algorithm for global optimization ». In : Swarm and Evolutionary Computation 48 (2019), p. 93-108.

[89] Brian YAMAUCHi. « A frontier-based approach for autonomous exploration ». In : Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA'97. 'Towards New Computational Principles for Robotics and Au-tomation'. 1997, p. 146-151. Doi : 10.1109/CIRA.1997.613851.

[90] Brian YAMAUCHi. « Frontier-based exploration using multiple robots ». In : jan. 1998, p. 47-53. isBN : 0-89791-983-1. Doi: 10.1145/280765.280773.

[91] Xin-She YANG. « A new metaheuristic bat-inspired algorithm ». In : Nature inspired cooperative strategies for optimization (NICSO 2010) (2010), p. 65-74.

140

Bibliographie

[92] Xin-She YANG. « Flower pollination algorithm for global optimization ». In : International conference on unconventional computing and natural computation. Springer. 2012, p. 240-249.

[93] Xin-She YANG. Nature-inspired metaheuristic algorithms. Luniver press, 2010.

[94] Zuozhong YIN et al. « A Delivery robot cloud platform based on microservice ». In : Journal of Robotics 2021 (2021), p. 1-10.

[95] Chao Yu et al. « Asynchronous Multi-Agent Reinforcement Learning for Efficient Real-Time Multi-Robot Cooperative Exploration ». In : arXiv preprint arXiv:2301.03398 (2023).

[96] Mengjian ZHANG et al. « A Chaotic Hybrid Butterfly Optimization Algorithm with Particle Swarm Optimization for High-Dimensional Optimization Problems ». In : Symmetry 12.11 (2020), p. 1800.

[97] Xiangyang ZHI, Xuming HE et Sören SCHWERTFEGER. « Learning autonomous exploration and mapping with semantic vision ». In : Proceedings of the 2019 International Conference on Image, Video and Signal Processing. 2019, p. 8-15.

[98] Yi ZHOu et al. « A PSO-inspired Multi-Robot Map Exploration Algorithm Using Frontier-Based Strategy ». In : International Journal of System Dynamics Applications, 2 (avr. 2013), p. 1-13. DOI : 10.4018/ijsda.2013040101.

[99] Mohammad ZOuNEMAT-KERMANI, Amin MAHDAVI-MEYMAND et Reinhard HINKELMANN. « Nature-inspired algorithms in sanitary engineering: modelling sediment transport in sewer pipes ». In : Soft Computing 25.8 (2021), p. 6373-6390.

précédent sommaire






Extinction Rebellion





Changeons ce systeme injuste, Soyez votre propre syndic





"Les esprits médiocres condamnent d'ordinaire tout ce qui passe leur portée"   François de la Rochefoucauld