WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Contribution à  l'optimisation d'un comportement collectif pour un groupe de robots autonomes


par Amine BENDAHMANE
Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf - Doctorat en informatique - Intelligence Artificielle 2023
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

BIBLIOGRAPHIE

[1] Nur Aira ABD RAHMAN et al. « A coverage path planning approach for autonomous radiation mapping with a mobile robot ». In : International Journal of Advanced Robotic Systems 19.4 (2022), p. 17298806221116483.

[2] Laith ABUALIGAH et al. « Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer ». In : Expert Systems with Applications 191 (2022), p. 116158.

[3] Laith ABUALIGAH et al. « The arithmetic optimization algorithm ». In : Computer methods in applied mechanics and engineering 376 (2021), p. 113609.

[4] Afsoon AFZAL et al. « A study on the challenges of using robotics simulators for testing ». In : arXiv preprint arXiv:2004.07368 (2020).

[5] Jeffrey O AGUSHAKA, Absalom E EZUGWU et Laith ABUALIGAH. « Dwarf mongoose optimization algorithm ». In : Computer methods in applied mechanics and engineering 391 (2022), p. 114570.

[6] Somaye AHMADI, H. KEBRIAEI et Hadi MORADI. « Constrained coverage path planning: evolutionary and classical approaches ». In : Robotica 36 (fév. 2018), p. 1-21. DOI : 10.1017/S0263574718000139.

[7] Mohammad AL KHAWALDAH et Andreas NUCHTER. « Enhanced frontier-based exploration for indoor environment with multiple robots ». In : Advanced Robotics 29 (avr. 2015). DOI : 10.1080/01691864.2015.1015443.

[8] Sankalap ARORA et Priyanka ANAND. « Binary butterfly optimization approaches for feature selection ». In : Expert Systems with Applications 116 (2019), p. 147-160.

[9] Sankalap ARORA et Satvir SINGH. « An improved butterfly optimization algorithm for global optimization ». In : Advanced Science, Engineering and Medicine 8.9 (2016), p. 711-717.

[10] Sankalap ARORA et Satvir SINGH. « Butterfly algorithm with levy flights for global optimization ». In : 2015 International conference on signal processing, computing and control (ISPCC). IEEE. 2015, p. 220-224.

[11] Sankalap ARORA et Satvir SINGH. « Butterfly optimization algorithm: a novel approach for global optimization ». In : Soft Computing 23.3 (2019), p. 715-734.

[12] Sankalap ARORA, Satvir SINGH et Kaan YETILMEZSOY. « A modified butterfly optimization algorithm for mechanical design optimization problems ». In : Journal of the Brazilian Society of Mechanical Sciences and Engineering 40.1 (2018), p. 1-17.

[13] Adel Saad ASSIRI. « On the performance improvement of Butterfly Optimization approaches for global optimization and Feature Selection ». In : Plos one 16.1 (2021), e0242612.

[14] Mahdi AZIZI. « Atomic orbital search: A novel metaheuristic algorithm ». In : Applied Mathematical Modelling 93 (2021), p. 657-683.

[15] Antoine BAUTIN, Olivier SIMONIN et François CHARPILLET. « MinPos : A Novel Frontier Allocation Algorithm for Multi-robot Exploration ». In : oct. 2012, p. 496-508. ISBN : 978-3-642-33514-3. DOI : 10.1007/978-3-642-33515-0_49.

135

Bibliographie

[16] Amine BENDAHMANE et Redouane TLEMSANI. « Unknown area exploration for robots with energy constraints using a modified Butterfly Optimization Algorithm ». In : Soft Computing 27 (2023), p. 3785-3804. DOI : 10.1007/s00500-022-07530w.

[17] James BERGSTRA et Yoshua BENGIO. « Random search for hyper-parameter optimization. » In : Journal of machine learning research 13.2 (2012).

[18] James BERGSTRA, Dan YAMINS, David D COx et al. « Hyperopt: A python library for optimizing the hyperparameters of machine learning algorithms ». In : Proceedings of the 12th Python in science conference. T. 13. Citeseer. 2013, p. 20.

[19] Francesco BISCANI et Dario IZZO. « A parallel global multiobjective framework for optimization: pagmo ». In : Journal of Open Source Software 5.53 (2020), p. 2338. DOI : 10.21105/joss.02338.

[20] Johann BORENSTEIN, Yoram KOREN et al. « The vector field histogram-fast obstacle avoidance for mobile robots ». In : IEEE transactions on robotics and automation 7.3 (1991), p. 278-288.

[21] Ersin BÜYÜK. « Pareto-based multiobjective particle swarm optimization: examples in geophysical modeling ». In : Optimisation Algorithms and Swarm Intelligence. In-techOpen, 2021.

[22] Byoung-Suk CHOI et al. « A hierarchical algorithm for indoor mobile robot localization using RFID sensor fusion ». In : IEEE Transactions on industrial electronics 58.6 (2011), p. 2226-2235.

[23] Howie CHOSET et Philippe PIGNON. « Coverage path planning: The boustrophedon cellular decomposition ». In : Field and service robotics. Springer. 1998, p. 203-209.

[24] Alberto COLORNI, Marco DORIGO, Vittorio MANIEZZO et al. « Distributed optimization by ant colonies ». In : Proceedings of the first European conference on artificial life. T. 142. Paris, France. 1991, p. 134-142.

[25] Nichael Lynn CRAMER. « A representation for the Adaptive Generation of Simple Sequential Programs ». In : Proceedings of an International Conference on Genetic Algorithms and the Applications. Sous la dir. de John J. GREFENSTETTE. Carnegie-Mellon University, Pittsburgh, USA, juin 1985, p. 183-187.

[26] Marija DAKULOVIc, Sanja HORVATIc et Ivan PETROVIé. « Complete Coverage D* Algorithm for Path Planning of a Floor-Cleaning Mobile Robot ». In : IFAC Proceedings Volumes 44.1 (2011). 18th IFAC World Congress, p. 5950-5955. ISSN : 1474-6670. DOI : https://doi.org/10.3182/20110828-6-IT-1002.03400.

[27] Andrew DAVENPORT et al. « GENET: A connectionist architecture for solving constraint satisfaction problems by iterative improvement ». In : AAAI. 1994, p. 325-330.

[28] Susana Estefany DE LEÔN-ALDACO, Hugo CALLEJA et Jesús Aguayo ALQuICIRA. « Me-taheuristic optimization methods applied to power converters: A review ». In : IEEE Transactions on Power Electronics 30.12 (2015), p. 6791-6803.

[29] Sihao DENG et al. « Application of external axis in robot-assisted thermal spraying ». In : Journal of thermal spray technology 21 (2012), p. 1203-1215.

136

Bibliographie

[30] Berat DoðAN et Tamer ÖLMEZ. « A new metaheuristic for numerical function optimization: Vortex Search algorithm ». In : Information sciences 293 (2015), p. 125-145.

[31] Alexey DosovITsKIY et al. « CARLA: An open urban driving simulator ». In : Conference on robot learning. PMLR. 2017, p. 1-16.

[32] Akif DURDU et al. « Convolutional Neural Networks Based Active SLAM and Exploration ». In : Avrupa Bilim ve Teknoloji Dergisi 22 (2021), p. 342-346.

[33] Hugh DuRRANT-WHYTE et al. « Field and service applications-an autonomous straddle carrier for movement of shipping containers-from research to operational autonomous systems ». In : IEEE Robotics & Automation Magazine 14.3 (2007), p. 14-23.

[34] Alberto ELFEs. « Using occupancy grids for mobile robot perception and navigation ». In : Computer 22.6 (1989), p. 46-57.

[35] Yuqi FAN et al. « A self-adaption butterfly optimization algorithm for numerical optimization problems ». In : IEEE Access 8 (2020), p. 88026-88041.

[36] J.D. FARMER, N. PACKARD et A. PERELsoN. « The immune system, adaptation and machine learning ». In : Physica D 2 (1986), 187-204.

[37] Diego FERIGo et al. « Gym-ignition: Reproducible robotic simulations for reinforcement learning ». In : 2020 IEEE/SICE International Symposium on System Integration (SII). IEEE. 2020, p. 885-890.

[38] Simon FoNG, Suash DEB et Ankit CHAuDHARY. « A review of metaheuristics in robotics ». In : Computers & Electrical Engineering 43 (2015), p. 278-291.

[39] Miguel GARCíA et al. « Voronoi-Based Space Partitioning for Coordinated Multi-Robot Exploration ». In : JoPha: Journal of Pysical Agents, ISSN 1888-0258, Vol. 1, N°. 1, 2007, pags. 37-44 1 (jan. 2007). DoI: 10.14198/JoPha.2007.1.1.05.

[40] Fred GLovER. « Future paths for integer programming and links to artificial intelligence ». In : Computers & operations research 13.5 (1986), p. 533-549.

[41] David E. GoLDBERG. Genetic Algorithms in Search, Optimization, and Machine Learning. New York: Addison-Wesley, 1989.

[42] Nir GREsHLER et al. « Cooperative multi-agent path finding: beyond path planning and collision avoidance ». In: 2021 International Symposium on Multi-Robot and Multi-Agent Systems (MRS). IEEE. 2021, p. 20-28.

[43] Faiza GuL, Suleman MIR et Imran MIR. « Coordinated multi-robot exploration: Hybrid stochastic optimization approach ». In : AIAA SCITECH2022 Forum. 2022, p. 1414.

[44] Yanju Guo, Xianjie LIu et Lei CHEN. « Improved butterfly optimisation algorithm based on guiding weight and population restart ». In : Journal of Experimental & Theoretical Artificial Intelligence 33.1 (2021), p. 127-145.

[45] Nikolaus HANsEN, Sibylle MüLLER et Petros KouMouTsAKos. « Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) ». In : Evolutionary computation 11 (fév. 2003), p. 1-18. DoI : 10. 1162/106365603321828970.

[46] Peter E. HART, Nils J. NILssoN et Bertram RAPHAEL. « A Formal Basis for the Heuristic Determination of Minimum Cost Paths ». In : IEEE Transactions on Systems Science and Cybernetics 4.2 (1968), p. 100-107. DoI : 10.1109/TSSC.1968.300136.

137

Bibliographie

[47] Dirk HOLz et al. « Evaluating the Efficiency of Frontier-based Exploration Strategies ». In : t. 1. Juill. 2010, p. 1 -8.

[48] Erno HORVATH, Claudiu POzNA et Radu-Emil PRECUP. « Robot coverage path planning based on iterative structured orientation ». In : Acta Polytechnica Hungarica 15.2 (2018), p. 231-249.

[49] Luca IOCCHI, Luca MARCHETTI et Daniele NARDI. « Multi-robot patrolling with coordinated behaviours in realistic environments ». In : 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 2011, p. 2796-2801.

[50] Nick JAKOBI, Phil HUSBANDS et Inman HARVEY. « Noise and the reality gap: The use of simulation in evolutionary robotics ». In : Advances in Artificial Life: Third European Conference on Artificial Life Granada, Spain, June 4-6, 1995 Proceedings 3. Springer. 1995, p. 704-720.

[51] Seyed Mohammad Jafar JALALI et al. « Evolving artificial neural networks using butterfly optimization algorithm for data classification ». In : International conference on neural information processing. Springer. 2019, p. 596-607.

[52] Albina KAMALOVA, Ki Dong KIM et Suk Gyu LEE. « Waypoint Mobile Robot Exploration Based on Biologically Inspired Algorithms ». In : IEEE Access 8 (2020), p. 190342190355.

[53] Albina KAMALOVA et al. « Multi-Robot Exploration Based on Multi-Objective Grey Wolf Optimizer ». In : Applied Sciences 9 (juill. 2019), p. 2931. DOI : 10 . 3390/ app9142931.

[54] Pierre KANCIR. « Méthodologie de conception de système multi-robots: De la simulation à la démonstration ». Thèse de doct. Université de Bretagne Sud, 2018.

[55] Dervis KARABOGA. « An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report - TR06 ». In : Technical Report, Erciyes University (jan. 2005).

[56] Géza KATONA, Balázs LÉNART et János JUHASz. « Parallel ant colony algorithm for shortest path problem ». In : Periodica Polytechnica Civil Engineering 63.1 (2019), p. 243-254.

[57] Ali KAVEH et Taha BAKHSHPOORI. « Metaheuristics: outlines, MATLAB codes and examples ». In : (2019).

[58] J. KENNEDY et R. EBERHART. « Particle swarm optimization ». In : Proceedings of ICNN'95 - International Conference on Neural Networks. T. 4. 1995, 1942-1948 vol.4. DOI : 10.1109/ICNN.1995.488968.

[59] Scott KIRKPATRICK, C Daniel GELATT JR et Mario P VECCHI. « Optimization by simulated annealing ». In : science 220.4598 (1983), p. 671-680.

[60] Nathan KOENIG et Andrew HOWARD. « Design and use paradigms for gazebo, an open-source multi-robot simulator ». In : 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566). T. 3. IEEE. 2004, p. 21492154.

[61] Guocheng LI et al. « An improved butterfly optimization algorithm for engineering design problems using the cross-entropy method ». In : Symmetry 11.8 (2019), p. 1049.

138

Bibliographie

[62] Matteo LUPERTO et al. « Robot exploration of indoor environments using incomplete and inaccurate prior knowledge ». In : Robotics and Autonomous Systems 133 (2020), p. 103622.

[63] Ellips MASEHIAN et MR AMIN-NASERI. « A voronoi diagram-visibility graph-potential field compound algorithm for robot path planning ». In : Journal of Robotic Systems 21.6 (2004), p. 275-300.

[64] Ashkan MEMARI, Robiah AHMAD et Abd Rahman Abdul RAHIM. « Metaheuristic algorithms: guidelines for implementation ». In : Journal of Soft Computing and Decision Support Systems 4.6 (2017), p. 1-6.

[65] PE MERGOS et Anastasios SEXTOS. Multi-objective optimum selection ofground motion records with genetic algorithms. IEEE, juin 2018.

[66] Seyedali MIRJALILI, Seyed Mohammad MIRJALILI et Andrew LEWIS. « Grey Wolf Optimizer ». In : Advances in Engineering Software 69 (2014), p. 46-61. ISSN : 0965-9978. DOI : https://doi.org/10.1016/j.advengsoft.2013.12.007.

[67] Himanshu MITTAL et al. « Gravitational search algorithm: A comprehensive analysis of recent variants ». In : Multimedia Tools and Applications 80 (2021), p. 7581-7608.

[68] Sing Yee NG et Nur Syazreen AHMAD. « A Bug-Inspired Algorithm for Obstacle Avoidance of a Nonholonomic Wheeled Mobile Robot with Constraints ». In : Intelligent Computing. Sous la dir. de Kohei ARAI, Rahul BHATIA et Supriya KAPOOR. Cham : Springer International Publishing, 2019, p. 1235-1246.

[69] G PAVAI et TV GEETHA. « A survey on crossover operators ». In : ACM Computing Surveys (CSUR) 49.4 (2016), p. 1-43.

[70] Hindriyanto Dwi PURNOMO et Hui-Ming WEE. « Soccer game optimization with substitute players ». In : Journal of computational and applied mathematics 283 (2015), p. 79-90.

[71] Esmat RASHEDI, Hossein NEZAMABADI-POUR et Saeid SARYAZDI. « GSA: a gravitational search algorithm ». In : Information sciences 179.13 (2009), p. 2232-2248.

[72] Eric ROHMER, Surya PN SINGH et Marc FREESE. « V-REP: A versatile and scalable robot simulation framework ». In : 2013 IEEE/RSJ international conference on intelligent robots and systems. IEEE. 2013, p. 1321-1326.

[73] Ali El ROMEH et Seyedali MIRJALILI. « Multi-Robot Exploration of Unknown Space Using Combined Meta-Heuristic Salp Swarm Algorithm and Deterministic Coordinated Multi-Robot Exploration ». In : Sensors 23.4 (2023), p. 2156.

[74] Sajad SAEEDI et al. « Occupancy grid map merging for multiple robot simultaneous localization and mapping ». In : International Journal ofRobotics and Automation 30.2 (2015), p. 149-157.

[75] Jeffrey R SAMPSON. Adaptation in natural and artificial systems (John H. Holland). 1976.

[76] Sushmita SHARMA et al. « MPBOA-A novel hybrid butterfly optimization algorithm with symbiosis organisms search for global optimization and image segmentation ». In : Multimedia Tools and Applications 80.8 (2021), p. 12035-12076.

139

Bibliographie

[77] Zongyuan SHEN, James P. WiLsoN et Shalabh GUPTA. « E*+: An Online Coverage Path Planning Algorithm for Energy-constrained Autonomous Vehicles ». In : Global Oceans2020:Singapore- U.S. GulfCoast. 2020,p. 1-6. Doi: 10.1109/IEEECONF38699. 2020.9389353.

[78] Rakesh SHREsTHA et al. « Learned map prediction for enhanced mobile robot exploration ». In : 2019 International Conference on Robotics and Automation (ICRA). IEEE. 2019, p. 1197-1204.

[79] Junnan SoNG et Shalabh GUPTA. « c*: An Online Coverage Path Planning Algorithm ». In : IEEE Transactions on Robotics 34 (fév. 2018), p. 526-533. Doi: 10.1109/ TRO.2017.2780259.

[80] Rainer SToRN et Kenneth PRiCE. « Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces ». In : Journal of global optimization 11.4 (1997), p. 341.

[81] Daniel Perea STROM, Igor BoGosLAVsKYi et Cyrill STACHNiss. « Robust exploration and homing for autonomous robots ». In : Robotics and Autonomous Systems 90 (2017), p. 125-135.

[82] Lei TAi et Ming LiU. « A robot exploration strategy based on q-learning network ». In : 2016 IEEE international conference on real-time computing and robotics (RCAR). IEEE. 2016, p. 57-62.

[83] Mohammad TUBisHAT et al. « Dynamic butterfly optimization algorithm for feature selection ». In : IEEE Access 8 (2020), p. 194303-194314.

[84] Zhongmin WANG, Qifang LUo et Yongquan ZHoU. « Hybrid metaheuristic algorithm using butterfly and flower pollination base on mutualism mechanism for global optimization problems ». In : Engineering with Computers 37.4 (2021), p. 3665-3698.

[85] David H WoLPERT et William G MACREADY. « No free lunch theorems for optimization ». In : IEEE transactions on evolutionary computation 1.1 (1997), p. 67-82.

[86] Benjie XiAo et al. « Ant colony optimisation algorithm-based multi-robot exploration ». In : International Journal of Modelling, Identification and Control 18.1 (2013), p. 41-46.

[87] Lei XiE et al. « Tuna swarm optimization: a novel swarm-based metaheuristic algorithm for global optimization ». In : Computational intelligence and Neuroscience 2021 (2021).

[88] Anupam YADAV et al. « AEFA: Artificial electric field algorithm for global optimization ». In : Swarm and Evolutionary Computation 48 (2019), p. 93-108.

[89] Brian YAMAUCHi. « A frontier-based approach for autonomous exploration ». In : Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA'97. 'Towards New Computational Principles for Robotics and Au-tomation'. 1997, p. 146-151. Doi : 10.1109/CIRA.1997.613851.

[90] Brian YAMAUCHi. « Frontier-based exploration using multiple robots ». In : jan. 1998, p. 47-53. isBN : 0-89791-983-1. Doi: 10.1145/280765.280773.

[91] Xin-She YANG. « A new metaheuristic bat-inspired algorithm ». In : Nature inspired cooperative strategies for optimization (NICSO 2010) (2010), p. 65-74.

140

Bibliographie

[92] Xin-She YANG. « Flower pollination algorithm for global optimization ». In : International conference on unconventional computing and natural computation. Springer. 2012, p. 240-249.

[93] Xin-She YANG. Nature-inspired metaheuristic algorithms. Luniver press, 2010.

[94] Zuozhong YIN et al. « A Delivery robot cloud platform based on microservice ». In : Journal of Robotics 2021 (2021), p. 1-10.

[95] Chao Yu et al. « Asynchronous Multi-Agent Reinforcement Learning for Efficient Real-Time Multi-Robot Cooperative Exploration ». In : arXiv preprint arXiv:2301.03398 (2023).

[96] Mengjian ZHANG et al. « A Chaotic Hybrid Butterfly Optimization Algorithm with Particle Swarm Optimization for High-Dimensional Optimization Problems ». In : Symmetry 12.11 (2020), p. 1800.

[97] Xiangyang ZHI, Xuming HE et Sören SCHWERTFEGER. « Learning autonomous exploration and mapping with semantic vision ». In : Proceedings of the 2019 International Conference on Image, Video and Signal Processing. 2019, p. 8-15.

[98] Yi ZHOu et al. « A PSO-inspired Multi-Robot Map Exploration Algorithm Using Frontier-Based Strategy ». In : International Journal of System Dynamics Applications, 2 (avr. 2013), p. 1-13. DOI : 10.4018/ijsda.2013040101.

[99] Mohammad ZOuNEMAT-KERMANI, Amin MAHDAVI-MEYMAND et Reinhard HINKELMANN. « Nature-inspired algorithms in sanitary engineering: modelling sediment transport in sewer pipes ». In : Soft Computing 25.8 (2021), p. 6373-6390.

précédent sommaire






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"La première panacée d'une nation mal gouvernée est l'inflation monétaire, la seconde, c'est la guerre. Tous deux apportent une prospérité temporaire, tous deux apportent une ruine permanente. Mais tous deux sont le refuge des opportunistes politiques et économiques"   Hemingway