Annexe n°2: Conditions de Gauss-Markov
TEST DE NORMALITE DES ERREURS
. quietly reg consult assurance dspc umed prim sec,robust
. predict l,resid
. sktest l
Skewness/Kurtosis tests for Normality
joint
Variable | Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2
+
l | 1.000 0.708 0.14 0.9325
Jacques Bera
. reg consult assurance dspc umed prim sec,robust
Linear regression Number of obs = 64
F( 5, 58) = 18.32
Prob > F = 0.0000
R-squared = 0.6765
Root MSE = 110.31
---
| Robust
consult | Coef. Std. Err. t P>|t| [95% Conf. Interval]
+ ---
assurance | 15.98919 3.523631 4.54 0.000 8.935876 23.04251
dspc | -.1682786 .0668738 -2.52 0.015 -.302141 -.0344162
![](Analyse-de-lincidence-du-Seguro-Popular-et-de-son-impact-sur-lutilisation-des-services-de-sante-a88.png)
4.94 0.000 256.9893 606.8234
1.21 0.232 -20.08993 81.22013
0.75 0.454 -45.96563 101.4678
-0.47 0.638 -4426.574 2735.212
umed |
|
431.9063
|
87.38348
|
prim |
|
30.5651
|
25.30578
|
sec |
|
27.75108
|
36.82673
|
_cons |
|
-845.681
|
1788.91
|
---
. predict res,resid
. su res,detail
Residuals
1% 5%
|
Percentiles -246.2142 -163.7113
|
Smallest -246.2142 -214.6897
|
|
|
10%
|
-140.9988
|
-183.2607
|
Obs
|
64
|
25%
|
-72.91444
|
-163.7113
|
Sum of Wgt.
|
64
|
50%
|
0
|
|
Mean
|
0
|
|
|
Largest
|
Std. Dev.
|
105.8464
|
75%
|
72.91444
|
163.7113
|
|
|
90%
|
140.9988
|
183.2607
|
Variance
|
11203.47
|
95%
|
163.7113
|
214.6897
|
Skewness
|
0
|
99%
|
246.2142
|
246.2142
|
Kurtosis
|
2.642944
|
***JB=64/6[(0.128)/4]=0.341 qui est inferieur à 5.99 donc
on accepte l'hypothese nulle H0 de normalité des residus***
label var res "residus"
. graph7 res,xlabel ylabel bin(7) normal freq
TEST DE FORME FONCTIONNELLE (RAMSEY RESET)
![](Analyse-de-lincidence-du-Seguro-Popular-et-de-son-impact-sur-lutilisation-des-services-de-sante-a89.png)
Analyse de l'incidence du Seguro Popular et de son impact sur
l'utilisation des services de santé au Mexique
2009
. quietly reg consult assurance dspc umed prim sec,robust
. ovtest
Ramsey RESET test using powers of the fitted values of consult
Ho: model has no omitted variables
F(3, 55) = 1.35
Prob > F = 0.2680
reg consult
|
assurance dspc umed prim sec
|
|
|
Source
|
| SS
|
df
|
MS
|
Number of obs
|
= 64
|
|
+
|
|
|
F( 5, 58)
|
= 24.25
|
Model
|
| 1475761.07
|
5
|
295152.215
|
Prob > F
|
= 0.0000
|
Residual
|
| 705818.516
|
58
|
12169.2848
|
R-squared
|
= 0.6765
|
|
+
|
|
|
Adj R-squared
|
= 0.6486
|
Total
|
| 2181579.59
|
63
|
34628.2475
|
Root MSE
|
= 110.31
|
---
consult |
|
Coef. Std.
|
Err.
|
t
|
P>|t| [95% Conf.
|
Interval]
|
---
|
+
|
|
|
|
|
|
assurance
|
| 15.98919
|
3.80252
|
4.20
|
0.000
|
8.377619
|
23.60076
|
dspc
|
| -.1682786
|
.0856318
|
-1.97
|
0.054
|
-.3396893
|
.0031321
|
umed
|
| 431.9063
|
81.82656
|
5.28
|
0.000
|
268.1127
|
595.7
|
prim
|
| 30.5651
|
28.67511
|
1.07
|
0.291
|
-26.83437
|
87.96457
|
sec
|
| 27.75108
|
48.72145
|
0.57
|
0.571
|
-69.77549
|
125.2777
|
_cons
|
| -845.681
|
2160.785
|
-0.39
|
0.697
|
-5170.962
|
3479.6
|
---
![](Analyse-de-lincidence-du-Seguro-Popular-et-de-son-impact-sur-lutilisation-des-services-de-sante-a90.png)
. predict n
(option xb assumed; fitted values)
. gen n1=n^2 . gen n2=n^3 . gen
n3=n^4
reg consult
Source |
+
|
assurance dspc umed prim sec
SS df MS
|
Model
|
|
|
1591354.42
|
8
|
198919.303
|
Residual
|
|
|
590225.167
|
55
|
10731.3667
|
+
|
|
|
|
|
Total
|
|
|
2181579.59
|
63
|
34628.2475
|
|
|
|
|
|
Consult |
|
|
Coef. Std.
|
Err.
|
t
|
.
n1 n2 n3
Number of obs
|
=
|
64
|
F( 8, 55)
|
=
|
18.54
|
Prob > F
|
=
|
0.0000
|
R-squared
|
=
|
0.7295
|
Adj R-squared
|
=
|
0.6901
|
Root MSE
|
=
|
103.59
|
---
P>|t| [95% Conf. Interval]
---
|
|
|
|
|
|
|
assurance |
|
-1484.908
|
7107.014
|
-0.21
|
0.835
|
-15727.68
|
12757.87
|
dspc |
|
15.66445
|
74.79871
|
0.21
|
0.835
|
-134.2355
|
165.5644
|
umed |
|
-40035.64
|
191975.9
|
-0.21
|
0.836
|
-424764
|
344692.7
|
prim |
|
-2822.219
|
13585.53
|
-0.21
|
0.836
|
-30048.22
|
24403.78
|
sec |
|
-2571.639
|
12334.96
|
-0.21
|
0.836
|
-27291.46
|
22148.18
|
n1 |
|
.0365265
|
.258383
|
0.14
|
0.888
|
-.4812846
|
.5543376
|
n2 |
|
-4.79e-06
|
.0000665
|
-0.07
|
0.943
|
-.0001381
|
.0001285
|
n3 |
|
2.05e-11
|
6.40e-09
|
0.00
|
0.997
|
-1.28e-08
|
1.28e-08
|
_cons |
|
158017.5
|
661512.7
|
0.24
|
0.812
|
-1167684
|
1483718
|
TEST D'HETEROSCEDASTICITE
. reg consult assurance dspc umed prim sec
![](Analyse-de-lincidence-du-Seguro-Popular-et-de-son-impact-sur-lutilisation-des-services-de-sante-a91.png)
Source | SS df MS Number of obs = 64
+ F( 5, 58) = 24.25
295152.215
|
Prob > F
|
=
|
0.0000
|
12169.2848
|
R-squared
|
=
|
0.6765
|
|
Adj R-squared
|
=
|
0.6486
|
34628.2475
|
Root MSE
|
=
|
110.31
|
Model | 1475761.07 5
Residual | 705818.516 58
+
Total | 2181579.59 63
---
consult | Coef. Std. Err. t P>|t| [95% Conf.
Interval]
---
|
+
|
|
|
|
|
|
assurance
|
| 15.98919
|
3.80252
|
4.20
|
0.000
|
8.377619
|
23.60076
|
dspc
|
| -.1682786
|
.0856318
|
-1.97
|
0.054
|
-.3396893
|
.0031321
|
umed
|
| 431.9063
|
81.82656
|
5.28
|
0.000
|
268.1127
|
595.7
|
prim
|
| 30.5651
|
28.67511
|
1.07
|
0.291
|
-26.83437
|
87.96457
|
sec
|
| 27.75108
|
48.72145
|
0.57
|
0.571
|
-69.77549
|
125.2777
|
_cons
|
| -845.681
|
2160.785
|
-0.39
|
0.697
|
-5170.962
|
3479.6
|
---
. predict l,resid
. gen assc=assurance^2
. gen dspcc=dspc^2
. gen umedc=umed^2
. gen primc=prim^2
. gen secc=sec^2
. gen lc=l^2
. gen m1=assurance*dspc . gen m2=assurance*umed . gen
m3=assurance*prim
![](Analyse-de-lincidence-du-Seguro-Popular-et-de-son-impact-sur-lutilisation-des-services-de-sante-a92.png)
. gen m4=assurance*sec . gen m5=dspc*umed
. gen m6=dspc*prim
. gen m7=dspc*sec
. gen m8=umed*prim
. gen m9=umed*sec . gen m10=prim*sec
. reg lc assurance dspc umed prim sec assc dspcc umedc primc secc
m1 m2
m3 m4 m5
> m6 m7 m8 m9 m10
Source | SS df MS
+
Model | 3.9329e+09 20 196647470
Residual | 8.8558e+09 43 205949367
+
Total | 1.2789e+10 63 202996384
Number of obs
|
=
|
64
|
F( 20, 43)
|
=
|
0.95
|
Prob > F
|
=
|
0.5289
|
R-squared
|
=
|
0.3075
|
Adj R-squared
|
=
|
0.0145
|
Root MSE
|
=
|
14351
|
---
lc | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---
|
+
|
|
|
|
|
|
assurance
|
| -63905.25
|
153166.9
|
-0.42
|
0.679
|
-372795.7
|
244985.2
|
dspc
|
| 12708.64
|
5602.225
|
2.27
|
0.028
|
1410.676
|
24006.6
|
umed
|
| 658941.9
|
4205224
|
0.16
|
0.876
|
-7821701
|
9139585
|
prim
|
| 3830256
|
1320961
|
2.90
|
0.006
|
1166285
|
6494227
|
sec
|
| 5057261
|
2034583
|
2.49
|
0.017
|
954133.5
|
9160389
|
assc
|
| -157.8679
|
200.9934
|
-0.79
|
0.437
|
-563.2098
|
247.4739
|
dspcc
|
| -.2588577
|
.1555726
|
-1.66
|
0.103
|
-.5725997
|
.0548842
|
umedc
|
| -15548.77
|
100339.8
|
-0.15
|
0.878
|
-217903.3
|
186805.8
|
primc
|
| -27233.15
|
9707.94
|
-2.81
|
0.008
|
-46811.08
|
-7655.221
|
secc
|
| -46833.25
|
26170.13
|
-1.79
|
0.081
|
-99610.33
|
5943.842
|
![](Analyse-de-lincidence-du-Seguro-Popular-et-de-son-impact-sur-lutilisation-des-services-de-sante-a93.png)
0.34 0.739 -14.42261 20.17337
1.31 0.198 -6843.359 32093.94
0.11 0.910 -3994.02 4473.155
0.45 0.654 -5309.912 8376.94
-0.64 0.526 -549.4181 285.0415
-2.17 0.036 -352.8566 -12.56346
-2.02 0.050 -431.4458 -.4926688
0.10 0.918 -100031.6 110912.7
-0.50 0.621 -258081.9 155909.4
-2.82 0.007 -115902.7 -19253.79
-2.84 0.007 -2.37e+08 -4.00e+07
m1 |
|
2.87538
|
8.577405
|
m2 |
|
12625.29
|
9653.755
|
m3 |
|
239.5673
|
2099.273
|
m4 |
|
1533.514
|
3393.391
|
m5 |
|
-132.1883
|
206.8882
|
m6 |
|
-182.71
|
84.36913
|
m7 |
|
-215.9692
|
106.8465
|
m8 |
|
5440.542
|
52299.59
|
m9 |
|
-51086.29
|
102641.2
|
m10 |
|
-67578.24
|
23962.23
|
_ cons |
|
-1.38e+08
|
4.88e+07
|
reg consult assurance dspc umed prim sec,robust
Number of obs
|
=
|
64
|
F( 5, 58)
|
=
|
18.32
|
Prob > F
|
=
|
0.0000
|
R-squared
|
=
|
0.6765
|
Root MSE
|
=
|
110.31
|
Linear regression
| Robust
consult |
---
|
Coef.
+
|
Std. Err.
|
t
|
P>|t|
|
[95% Conf.
|
Interval]
|
assurance
|
| 15.98919
|
3.523631
|
4.54
|
0.000
|
8.935876
|
23.04251
|
dspc
|
| -.1682786
|
.0668738
|
-2.52
|
0.015
|
-.302141
|
-.0344162
|
umed
|
| 431.9063
|
87.38348
|
4.94
|
0.000
|
256.9893
|
606.8234
|
prim
|
| 30.5651
|
25.30578
|
1.21
|
0.232
|
-20.08993
|
81.22013
|
sec
|
| 27.75108
|
36.82673
|
0.75
|
0.454
|
-45.96563
|
101.4678
|
_cons
|
| -845.681
|
1788.91
|
-0.47
|
0.638
|
-4426.574
|
2735.212
|
TEST D'AUTOCORRELATION
. predict h,resid
![](Analyse-de-lincidence-du-Seguro-Popular-et-de-son-impact-sur-lutilisation-des-services-de-sante-a94.png)
. gen he=h[_n-1]
(1 missing value generated)
=
|
63
|
=
|
1.53
|
=
|
0.1844
|
=
|
0.1411
|
=
|
0.0490
|
=
|
102.24
|
.reg h he assurance dspc umed prim sec
Source | SS df MS Number of obs
+ F( 6, 56)
Model | 96124.6983 6 16020.783 Prob > F
Residual | 585314.075 56 10452.0371 R-squared
+ Adj R-squared
Total | 681438.773 62 10990.948 Root MSE
---
h | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---
|
+
|
|
|
|
|
|
he
|
| -.3740779
|
.1242449
|
-3.01
|
0.004
|
-.6229704
|
-.1251855
|
assurance
|
| -.5785915
|
3.5672
|
-0.16
|
0.872
|
-7.724553
|
6.567369
|
dspc
|
| .0293717
|
.0799206
|
0.37
|
0.715
|
-.1307286
|
.1894719
|
umed
|
| -4.586678
|
76.13426
|
-0.06
|
0.952
|
-157.1019
|
147.9286
|
prim
|
| 5.387261
|
26.67895
|
0.20
|
0.841
|
-48.05709
|
58.83162
|
sec
|
| 7.705531
|
45.32575
|
0.17
|
0.866
|
-83.09286
|
98.50392
|
_cons
|
| -377.8631
|
2011.348
|
-0.19
|
0.852
|
-4407.077
|
3651.351
|
---
TEST D'ENDOGENEITE
dspc umed prim sec,robust
Number of obs F( 5, 58) Prob > F R-squared
|
= = = =
|
64 18.32 0.0000 0.6765
|
. reg consult assurance
Linear regression
Root MSE = 110.31
---
| Robust
![](Analyse-de-lincidence-du-Seguro-Popular-et-de-son-impact-sur-lutilisation-des-services-de-sante-a95.png)
78
Analyse de l'incidence du Seguro Popular et de son impact sur
l'utilisation des services de santé au Mexique
2009
consult | Coef. Std. Err. t P>|t| [95% Conf. Interval]
+
|
|
|
|
|
|
|
assurance |
|
15.98919
|
3.523631
|
4.54
|
0.000
|
8.935876
|
23.04251
|
dspc |
|
-.1682786
|
.0668738
|
-2.52
|
0.015
|
-.302141
|
-.0344162
|
umed |
|
431.9063
|
87.38348
|
4.94
|
0.000
|
256.9893
|
606.8234
|
prim |
|
30.5651
|
25.30578
|
1.21
|
0.232
|
-20.08993
|
81.22013
|
sec |
|
27.75108
|
36.82673
|
0.75
|
0.454
|
-45.96563
|
101.4678
|
_cons |
|
-845.681
|
1788.91
|
-0.47
|
0.638
|
-4426.574
|
2735.212
|
---
. reg sec revmin assurance dspc umed prim,robust
Linear regression Number of obs = 64
F( 5, 58) = 224.04
Prob > F = 0.0000
R-squared = 0.9474
Root MSE = .27428
---
| Robust
sec | Coef. Std. Err. t P>|t| [95% Conf. Interval]
|
+
|
|
|
|
|
|
revmin
|
| .0246799
|
.0075521
|
3.27
|
0.002
|
.0095628
|
.039797
|
assurance
|
| .0144096
|
.0097327
|
1.48
|
0.144
|
-.0050725
|
.0338916
|
dspc
|
| -.0008455
|
.000189
|
-4.47
|
0.000
|
-.0012239
|
-.0004671
|
umed
|
| .4882662
|
.1165126
|
4.19
|
0.000
|
.255041
|
.7214914
|
prim
|
| -.4139183
|
.0497857
|
-8.31
|
0.000
|
-.5135752
|
-.3142614
|
_cons
|
| 38.05473
|
2.324409
|
16.37
|
0.000
|
33.40192
|
42.70754
|
---
---
---
![](Analyse-de-lincidence-du-Seguro-Popular-et-de-son-impact-sur-lutilisation-des-services-de-sante-a96.png)
. predict u,resid
. reg consult assurance dspc umed prim sec u,robust
Linear regression Number of obs = 64
F( 6, 57) = 16.90
Prob > F = 0.0000
R-squared = 0.6867
Root MSE = 109.5
---
| Robust
consult | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---
|
+
|
|
|
|
|
assurance
|
| 14.78966
|
4.029954
|
3.67
|
0.001 6.719815
|
22.8595
|
dspc
|
| -.0366757
|
.1449738
|
-0.25
|
0.801 -.3269808
|
.2536294
|
umed
|
| 333.9981
|
136.0065
|
2.46
|
0.017 61.6497
|
606.3465
|
prim
|
| 104.624
|
71.65284
|
1.46
|
0.150 -38.85836
|
248.1063
|
sec
|
| 185.2295
|
151.9048
|
1.22
|
0.228 -118.9546
|
489.4137
|
u
|
| -185.0229
|
172.6449
|
-1.07
|
0.288 -530.7383
|
160.6924
|
_cons
|
| -7288.883
|
6148.376
|
-1.19
|
0.241 -19600.79
|
5023.028
|
---
Comme le coefficient du résidu n'est pas
significatif on ne peut pas faire la régression par les doubles moindres
carré on fait une régression MCO
![](Analyse-de-lincidence-du-Seguro-Popular-et-de-son-impact-sur-lutilisation-des-services-de-sante-a97.png)
Analyse de l'incidence du Seguro Popular et de son
impact sur l'utilisation des services de santé au Mexique
2009
|