WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Rendement et volatilité en présence de noise traders

( Télécharger le fichier original )
par Ilef Ben Hadj Ayed
Faculté des Sciences Economiques et de Gestion de Mahdia - mastère de recherche en finance  2012
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Annexe 10 : la stationnarité de la variable D_ARMS1( )

Null Hypothesis: D_ARMS1 has a unit root

 

Exogenous: Constant

 
 

Lag Length: 1 (Automatic - based on SIC, maxlag=18)

 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-15.05929

 0.0000

Test critical values:

1% level

 

-3.442746

 
 

5% level

 

-2.866900

 
 

10% level

 

-2.569686

 
 
 
 
 
 
 
 
 
 
 

*MacKinnon (1996) one-sided p-values.

 

Annexe 11 : la stationnarité de la variable DARMS2 ( )

Null Hypothesis: D_ARMS2 has a unit root

 

Exogenous: Constant

 
 

Lag Length: 0 (Automatic - based on SIC, maxlag=18)

 
 
 
 
 
 
 
 
 
 
 
 
 

t-Statistic

  Prob.*

 
 
 
 
 
 
 
 
 
 

Augmented Dickey-Fuller test statistic

-23.59193

 0.0000

Test critical values:

1% level

 

-3.442722

 
 

5% level

 

-2.866889

 
 

10% level

 

-2.569680

 
 
 
 
 
 
 
 
 
 
 

*MacKinnon (1996) one-sided p-values.

 

Annexe 12 : estimation du modèle de base avant l'introduction les variables de sentiment

Dependent Variable: R

 
 

Method: ML - ARCH (Marquardt) - Normal distribution

Date: 06/13/12 Time: 18:27

 
 

Sample: 1 520

 
 
 

Included observations: 520

 
 

Convergence achieved after 42 iterations

 

Presample variance: backcast (parameter = 0.7)

GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1)

 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

z-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 

@SQRT(GARCH)

3.798726

0.448970

8.460970

0.0000

C

-0.110163

0.010965

-10.04716

0.0000

 
 
 
 
 
 
 
 
 
 
 

Variance Equation

 
 
 
 
 
 
 
 
 
 
 
 

C

7.26E-07

1.79E-06

0.406206

0.6846

RESID(-1)^2

0.026470

0.004159

6.364097

0.0000

GARCH(-1)

0.974994

0.004881

199.7345

0.0000

 
 
 
 
 
 
 
 
 
 

R-squared

0.283947

    Mean dependent var

-0.017887

Adjusted R-squared

0.282564

    S.D. dependent var

0.026763

S.E. of regression

0.022669

    Akaike info criterion

-4.748160

Sum squared resid

0.266185

    Schwarz criterion

-4.707257

Log likelihood

1239.522

    Hannan-Quinn criter.

-4.732137

Durbin-Watson stat

1.787865

 
 
 
 
 
 
 
 
 
 
 
 
 


annexe 13 : estimation du modèle avec la variable dsent

Dependent Variable: R

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Method: ML - ARCH (Marquardt) - Generalized error distribution (GED)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Date: 06/13/12 Time: 18:41

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sample: 1 520

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Included observations: 520

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Convergence achieved after 73 iterations

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Presample variance: backcast (parameter = 0.7)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GED parameter fixed at 1.5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GARCH = C(4) + C(5)*RESID(-1)^2 + C(6)*GARCH(-1) + C(7)*DT_DSENT2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        + C(8)*DT1_DSENT2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable

Coefficient

Std. Error

z-Statistic

Prob.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

@SQRT(GARCH)

3.575849

0.342221

10.44896

0.0000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C

-0.098380

0.008214

-11.97737

0.0000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DSENT

0.001987

0.000212

9.383172

0.0000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variance Equation

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C

-1.01E-06

1.21E-06

-0.838263

0.4019

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RESID(-1)^2

0.020858

0.003144

6.633284

0.0000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GARCH(-1)

0.978774

0.004057

241.2722

0.0000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DT_DSENT2

-7.75E-08

3.89E-08

-1.993871

0.0462

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DT1_DSENT2

6.67E-07

1.47E-07

4.522635

0.0000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R-squared

0.433196

    Mean dependent var

-0.017887

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Adjusted R-squared

0.431003

    S.D. dependent var

0.026763

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

S.E. of regression

0.020188

    Akaike info criterion

-5.010931

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sum squared resid

0.210703

    Schwarz criterion

-4.945487

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Log likelihood

1310.842

    Hannan-Quinn criter.

-4.985294

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Durbin-Watson stat

1.701980

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Le doute est le commencement de la sagesse"   Aristote