Chapter 3
Existence and Uniqueness of the
Solutions of SDE with
Two-Parameter Fractional
Brownian Motion
Next for K > 0 we define the closed sets
C[a,b],H(K) = {? ? C[a,b],H : I?1[a,b],H = K},
and for ?i ? C[ai,bi],ái,
{CT,á1,á2,00(K, ?1, ?2) = x ?
CT,á1,á2,00 : x(a1, .) = ?1, x(., a2) = ?2,
1x1T,á1,á2 = K,
sup
a1<t1<b1
< }
|x(., t2 ) | [a1 ,b1], K
al - .
|x(t1, .)|[a2,b2],á2 = K, sup
a2<t2<b2
By using the Hölder spaces of functions we obtain the
following local contraction property of an integral operator between such
spaces, which is useful in the next existence and uniqueness result.
Proposition 3.1. Let â1, â2 ? (1/2, 1] and
á1, á2 be such that âi > ái > 1 -
âi.Let g ? CR2,â1,â2 and b, ó : R ? R be
such that b is bounded and Lipschitz and ó ?
C2b(R) with ó" Lipschitz. Then for
every K > 0 and ai, bi ? R,ai < bi, i = 1, 2, there exists
å0 > 0 independent of ai, bi, such that
,ái(K) the operator
for every ?i ? C[ai,ai+å0]
F : C[a1,a1+å0]x[a2,a2+å0],á1,á2,00(2K,
?1, ?2) ?
C[a1,a1+å0]x[a2,a2+å0],á1,á2,00(2K,?1,?2)
defined by
Z sJ t sf t
(F x)st = ?1(s) + ?2(t) + b(xu,v)dudv +
ó(x u,v)dg(u, v),
a2 a1a2
Existence and Uniqueness of the Solutions of SDE with
26 Two-Parameter Fractional Brownian Motion
is a contraction.
Proof. Clearly we have
~ ~ Z .ja2b(xu,v)dudv T,á1,á2,8 =
kb18(b1 - a1)1-á1(b2 - a2)1-á2
(3.1)
× [(b1 - a1)á1(b2 -
a2)á2 + 1] .
By using (2.18) it follows
~ Z .
~Z.
~~
a1 a2
|
~ ~
ó(xu,v)dg(u, v) =
Iló(x)11T,á1,á2,811g1IT,â1,â2
T,á1,á2
|
×(b1 - a1)â1?á1(b2 -
a2)â2?á2 [(b1 - a1)á1(b2 -
a2)á2 + 1] . (3.2)
Next
ó(x) ([s1, t1] × [s2, t2]) = (xt1,t2 - xt1,s2)
- -(xs1 ,t2 xs1,s2)
(ëxt1,t2 + (1 - ë)xt1,s2) dë + (1 - ë)xs1,s2)
dë
1
J0
1
Z0
Then
1
1
ó (x) ([s1,t1] × [s2, t2]) = (xt1,t2 - xt1,s2 -
x s1,t2 + xs1,s2) I ó' (ëxt1,t2 + (1 -
ë)xt1,s2dë)
+(x:(1ëx
,t2 s2 s1,s2) [óf
(ëxt1,t2 + (1 - ë)xt1,s2)
-ó
+ (1 - ë)xs1,s2)] dë.
(3.3)
Then (3.3) implies
{
|ó(x)([s1,t1] × [s2,t2])| 1,
110110011x1IT,aá2 + Iló'IlL11x(s1,
.)1[a2,b2],á2
1
×
o
[ë t2) II [a1,b1],á1 + (1 - ë) Mx(.,
s2)1[a1,b1],á1 ] dë} (t1 -s1)á1(t2 -
and hence, if x ? CT,á1,á2,8(K, ?1, ?2), then
Ió(x)1T,á1,á2 = K (Mól8 +
1ó11L) . (3.4)
Existence and Uniqueness of the Solutions of SDE with
Two-Parameter Fractional Brownian Motion 27
From (3.2),(3.2) and (3.4) it follows that
Fx E C[a1,b1]x[a1,b1],á1,á2,00
if x E C[a1,b1]x[a1,b1],á1,á2,00 and
also for å1 > 0 enough small,
Fx E
C[a1,a1+å1]x[a2,a2+å1],á1,á2,00(2K, p1, p2) if x E
C[a1,a1+å1]x[a2,a2+å1],á1,á2,00(2K, p1, p2).
Next we have
[ó(x) - ó(y)] ([s1, t1] x [s2, t2])
Existence and Uniqueness of the Solutions of SDE with
28 Two-Parameter Fractional Brownian Motion
1
01
,
-(xt1,s2 - yt1,s2) I ó' (ëxt1 s2 + (1 -
ë)yt1,s2) dë
I 1
- (xs1,t2 - ys1,t2) a
I (ë - ë)ys1,t2) dë
o 1 ol (Axx,: t2
82 + (1
+(xs1,s2 - ys1,s2) j + (1 - ë)ys1,s2) dë
1
= (x - y) ([s1,t1] × [s2, t2]) I óf
(ëxt1,t2 + (1 - ë)yt1,t2) dë
o
= (xt1 ,t2 - yt1 ,t2 ) 1 óf
(ëxt1,t2 + (1 - ë)yt1,t2) dë
1
+(xt1,s2
[ó' (ëxt1 ,t2
- yt1,s2) I
- ó' (ëx t1,s2 + (1 - ë)yt1 ,t2)
+ (1 - ë[ó) y, t(1ë, sx2d
t)1] , t2 ë
1
(1 - ë)yt1,t2)
+(xs1,t2 - ys1,t2) I
+ (1 - ë[
)uy,s(1 A, t x2 )], ,
dë
t 2+
- ó' (ëxs1,t2 0
1
- (xs1,s2 - ys1,s2) i + (1 - ë)yt1,t2)
0
- ó' (ëxs1,s2 + (1 - ë)ys1,s2)] dë
1
= (x - y) ([s1, t1] × [s2, t2]) j óf
(ëxt1,t2 + (1 - ë)yt1,t2) dë
+ [(xs1,t2 - ys1,t2) - (xs1,s2 - ys1,s2)]
1
0
× 10 [a'(ëxt1,t2 + (1 .-, (ë) Y :22 )
- a' (ëxs1,t2 + (1 - ë)ys1,t2)] dë
+ +(óx:(1ë,sx2 s1,sy2 s1,s2) 11
[0 ëx ti, + (1 - ë)ys1,s2) -
ó' (ëxt1,s2 + (1 - ë)yt1,s2)] dë
+ (1 - ë)yt1,t2) - ó' (ëxs1,t2 + (1
- ë)ys1,t2)
1
= (x - y) ([s1,t1] × [s2, t2]) I a' (ëxt1,t2 + (1 -
ë)yt1,t2) dë
0
+ [(xs1,t2 - ys1,t2) - (xs1,s2 - ys1,s2)] 1
× jo [óf (ëxt1,t2 + (1 -
ë)yt1,t2) - óf (ëxs1,t2 + (1 - ë)ys1,t2)]
dë
1
+(xs1,s2 - ys1,s2) [A(xt1,t2 - X81,t2 ) I + (1 - ë)(yt1,t2
- ys1,t2)]
1
0
× /
0 ó00 (u (ëxt1 ,t2 + (1 - ë)yt1,t2 ) + (1 - u)
(ëxs1,t2 + (1 - ë)ys1,t2))dudë
1
- (xs1,s2 [A(xt1,82 - x81,82) Y81,82) I + (1 - A)(yt1,s2 -
ys1,s2)]
1
o
×
+ (1 - ë)ys1,s2)) dudë
1
o ó00 (u (ëxt1,s2 + (1 - ë)yt1,s2) +
(1 - u) (ëxs1,s2
Existence and Uniqueness of the Solutions of SDE with
Two-Parameter Fractional Brownian Motion 29
Therefore
[ó(x) - ó(y)] ([s1,t1] × [s2, t2])
1
= (x - y) ([s1, t1] × [s2, t2]) f óf
(ëxt1,t2 (1 - ë)yt1,t2) dë
+ [(xs1,t2 - ys1,t2) - (xs1,s2 - ys1,s2)]
Z 1
×
[óf (ëxt1,t2 + (1 - ë)yt1,t2) -
ó0 (ëxs1,t2 + (1 - ë)ys1,t2)] dë
0 1
+(xs1,s2 - ys1,s2) [ëx ([s1,t1]× [s2, t2]) + (1 -
ë)y ([s1, t1] × [s2, t2])]
1 0
× ó00 (u (ëxt1,t2 + (1 -
ë)yt1,t2) + (1 - u)(ëxs1,t2 + (1 -
ë)ys1,t2))dudë
0 1
+ (xs1 ,s2 ys1,s2 ) f ,s2 xs1,s2) ( 1 - (yt1,s2 ys1,s2)]
0
1
× 0 [ó" (u (ëxt1,t2 + (1 -
ë)yt1 ,t2 ) + (1 - u) (ëxs1,t2 + (1 - ë)ys1,t2))
-ó" (u (ëxt1,s2 + (1 - ë)yt1,s2) +
(1 - u) (ëxs1,s2 + (1 - ë)ys1,s2))]dudë.
(3.5)
If x, y ?
C[a1,a1+å1]×[a2,a2+å1],á1,á2,8(K, ?1, ?2), then
(3.5) yields
|ó(x) - ó(y)|T,á1,á2 = C (K,
1ó118, mótkL,
,óffIL) Ilx - yIT,á1,á2. (3.6)
From (3.1), (3.2) and (3.6) it follows that there exists å2
> 0 enough small, independent of ai, bi, such that
1Fx -
Fyk[a1,a1+å2]×[a2,a2+å2],á1,á2,8 = 11x -
y1[a1,a1+å2]×[a2,a2+å2],á1,á2,8, (3.7)
for some 0 < d < 1, and hence, denoting å0 =
min(å1, å2), we obtain that
F :
C[a1,a1+å0]×[a2,a2+å0],á1,á2,8(2K, ?1, ?2) ?
C[a1,a1+å0]×[a2,a2+å0],á1,á2,8(2K, ?1, ?2)
is a contraction.
An existence and uniqueness result for ordinary differential
equations with Hölder continuous forcing is obtained in [12]. The global
solution is constructed, first in small time interval, when the contraction
principle can be applied, by using estimates in terms of Hölder norms. For
the two-parameter case we have the following result.
Theorem 3.1. Let â1, â2 ? (1/2, 1] and á1,
á2 be such that âi > ái > 1- âi. Let g ?
CR2,â1,â2 and b, ó : R ? R be such that b is
bounded and Lipschitz and ó ? C2 b (R) with ó00
Lipschitz. Then for every a1 < b1, a2 < b2 and
Existence and Uniqueness of the Solutions of SDE with
30 Two-Parameter Fractional Brownian Motion
? ? C[ai,bi],ái with ?1(a1) = ?2(a2), the equation
Z sxs,t = ?1(s) + ?2(t) - ?1 (a1) + it
b(xu,v)dudv
a2
(3.8)
s ft
+ ó(xu,v)dg(u, v), (s, t) ? T,
a1 a1
has a unique solution in CT,á1,á2,00.
Proof. Let K > 0 be such that ?i ? C[ai,bi],ái(K).
Then from Proposition 3.1 we obtain the existence of the solution x of (3.8) on
the rectangle [a1, a1 + å0]×[a2, a2+å0], å0 independent
of ai, bi (but dependent on K). If a1+å0 < b1, let n0 be the biggest
integer such that n0å < b1. Then x ? CT,á1,á2,00(2K) and
inductively we obtain the existence of the solution on
[a1 + å0, a1 + 2å0] × [a2, a2 + å0], ...,
[a1 + n0å0, b1] × [a2, a2 + å0], and then on
[a1, a1 + å0] × [a2 + å0, a2 + 2å0], ...,
[a1 + n0å0, b1] × [a2 + å0, a2 + 2å0],
and continuing again by induction we obtain the existence on T
. Let now x1, x2 be two solutions of (3.8). In particular, there is K > 0
such that x1, x2 ? CT,á1,á2,00(K). From (3.7) we deduce the
existence of å0 > 0 (which does not depend on ai, bi) and 0 < d
< 1 such that
1x1 -x21[a1,a1+å0]x[a2,a2+å0] = dlx1 -
x21[a1,a1+å0]x[a2,a2+å0],
and therefore x1 = x2 on [a1, a1 + å0] × [a2, a2 +
å0].Inductively (see the existence part) we obtain that x1 = x2 on T.
|
|