University of Saïda Faculty of Sciences and
Technology Department of Mathematics & Computer machine Probability
& Applications
Memory of Master
Equations Differentials Stochastics
Involving Fractional Brownian Motion
Two-parameter
HAMADA.I
Si tu veux courir, cours un kilomètre, si tu
veux changer ta vie, cours un marathon Emil Zatopek1.
Contents
1 Element of Fractional Brownian Motion 5
1.1 Fractional Brownian Motion 5
1.1.1 Self-similarity 5
1.1.2 Hölder Continuity 6
1.1.3 Path Differentiability 7
1.1.4 The Fractional Brownian Motion is not a
SemimartingaleforH=61 2 7 1.1.5 Fractional Integrals and
Fractional Derivatives of Func-
tions 8
1.2 Two-parameter Fractional Brownian Motion 9
1.2.1 The Main Definition 9
1.2.2 Fractional Integrals and Fractional Derivatives of Two-
parameter Functions 10
1.2.3 Hölder Properties of Two-parameter fbm 12
2 Stochastic Integration with Respect to Two-parameter Fractional
Brownian Motion 15
2.1 Pathwise Integration in Two-parameter Besov Spaces 15
2.2 Some Additional Properties 23
3 Existence and Uniqueness of the Solutions of SDE with
Two-Parameter Fractional Brownian Motion 25
4 CONTENTS
Chapter 1
Element of Fractional Brownian
Motion
1.1 Fractional Brownian Motion
Definition 1.1.0.1. The (two-sided, normalized) fractional
Brownian motion (fBm) with Hurst index H E (0, 1) is a Gaussian process
BH = {BH t , t E R} on (Ù, F, P), having the
properties:
1. BH 0 = 0,
2. EBH t = 0; t E R,
1 (|t|2H + |s|2H - |t - s|2H) ;
t, s E R,
3. EBH t BH s = 2
1.1.1 Self-similarity
Definition 1.1.1.1. We say that an Rd-valued random
process X = (Xt)t=0 is self-similar or satisfies the property of
self-similarity if for every a > 0 there exist b > 0 such that:
law (Xat, t = 0) = law (bXt, t = 0) (1.1)
Note that (1.1) means that two process Xat and bXt
have the same finite-dimensional distribution functions, i.e., for every choice
t1, ..., tn E R,
P (Xat0 = x0, ..., Xatn = xn) =
P(bXt0 = x0, ..., bXtn = xn) For every x0,
..., xn E R.
Definition 1.1.1. A stochastic process X = {Xt, t E R} is called
b-selfsimilar if
{Xat,t E R} d ={abXt,t E R} in
the sense of finite-dimensional distributions.
1.1.2 Hölder Continuity
We recall that according to the Kolmogorov criterion [3], a
process X = (Xt)t?R admits a continuous modification if there exist constants
á = 1, â > 0 and k > 0 such that
E [|X(t) - X(s)|á] = k|t -
s|1+â
for all s,t E R.
Theorem 1.1.2.1. Let H E (0, 1). The fractional brownian
motion BH admits a version whose sample paths are almost surely
Hölder continuous of order strictly less than H.
Proof. We recall that a function f : R -? R is Hölder
continuous of order á, 0 < á = 1 and write f E
Cá(R), if there exists M > 0 such that
|f(t) - f(s)| = M|t - s|á,
For every s, t E R. For any á > 0 we have
E ~|BH t - BH t |á] = E [|BH 1 |á] |t -
s|áH;
Hence, by the Kolmogorov criterion we get that the sample
paths of BH are almost everywhere Hölder continuous of order
strictly less than H. Moreover, by [4] we have
lim
t-+0+
|
sup
|
~~BH ~ (t)
|
= CH
|
tHs/log log t-1
|
with probability one, where CH is a suitable constant. Hence
BH can not have sample paths with Hölder continuity's order
greater than H.
1.1.3 Path Differentiability
By[5] we also obtain that the process BH is not mean
square differentiable and it does not have differentiable sample paths.
Proposition 1.1.3.1. Let H E (0, 1). The fractional brownian
motion sample path BH(.) is not differentiable. In fact, for every
t0 E [0, 8)
~~~~
sup
lim
t--+t0
~~~~ = 8
BH(t) - BH(t0)
t - t0
With probability one.
1.1.4 The Fractional Brownian Motion is not a
Semi-martingale for H =6 1 2
The fact that the fractional brownian motion is not a
semimartingale for H =61 2 has been proved by several authors. In
order to verity BH is not a semimartingale for H =6
1 2, it is sufficient to compute the p-variation of
BH.
Definition 1.1.4.1. Let (X(t))tE[0,T ] be a stochastic process
and consider a partition ð = {0 = t0 < t1 < ... < tn =
T}. Put
8p(X,ð) := Xn |X(ti) -
X(ti_1)|p
i=1
(i - 1
~~BH - BH
Ti Ti
Yn,p = TipH_1 Xn
i=1
.
The p-variation of X over the interval [0, T] is defined as
Vp(X, [0, T]) := sup
ð
|
8p(X, ð),
|
where ð is a partition of [0, T]. The index of p-variation of
a process is defined as
I(X, [0, T]) := inf {p > 0; Vp(X, [0, T]) <
8}.
We claim that
I(BH, [0, T ]) = 1H .
In fact, consider for p > 0,
81.1.5 Fractional Integrals and Fractional Derivatives of
Functions
Since BH has the self-similarity properity, the
sequenceYn,p, m ? N has the same distribution as
eYn,p = m-1 Xn
~~BH(i) - BH(i - 1) ~~p
i=1
And by the Ergodic theorem [6] the sequence eYn,p
converges almost surely and in L1 to E [~~BH(1) ~~p] as n
tends to infinity. It follows that
Vn,p =
|
Xn i=1
|
~( i "1 ~'\~~~~ p
(i - 1
~~BH - BH
m m
|
converges in probability respectly to 0 if pH > 1 and to
infinity if pH < 1 as
1
n tends to infinity. Thus we can conclure that I(BH,
[0, T]) = H . Since for
every semimartingale X, the index I(X, [0, T]) must belong to [0,
1]?{2}, the
1
fractional brownian motion BH can not be a
semimartingale unless H = 2.
1.1.5 Fractional Integrals and Fractional Derivatives of
Functions
Let á > 0 (and in most cases below á < 1
though this is not obligatory). Define the Riemann-Liouville left- and
right-sided fractional integrals on (a, b) of order á by
Z x
1
(Iá a+f)(x) := f(t)(x -
t)á-1dt,
['(á) a
and
Z b
1
(Iá b-f)(x) := f(t)(t -
x)á-1dt,
['(á) x
respectively.
We say that the function f ? D(Iá a+(b-))
(the symbol D(.) denotes the domain of the corresponding operator), if the
respective integrals converge for almost all (a.a.) x ? (a, b) (with respect to
(w.r.t.) Lebesgue measure).
The Riemann-Liouville fractional integrals on R are defined as
(Iá +f)(x) :=
|
Z x
1 f(t)(x - t)á-1dt,
['(á) -8
|
and
J 8
1
(Iá -f)(x) := f(t)(t -
x)á-1dt,
['(á) x
respectively.
Z x
1 d
f(t)(x - t)-ádt,
F(1 - á) dx -8
The Riemann-Liouville fractional derivatives of f of order
á on R are defined by
(I+ - f)(x) = (Dá+f)(x) :=
and
(I?á
-f)(x) = (Dá -f)(x)
:=
|
-1
|
d 8
dx f (t)(t - x)?á dt,
x
|
F(1 - á)
|
respectively.
For f ? Iá#177;(Lp(R)) with p > 1
the Riemann-Liouville derivatives coincide with the Marchaud fractional
derivatives
Z
( 15-7f)(x) := F(1 1 á) (f(x) - f(x - y)) R+
and
Z
( iiáf)(x) := F(1 1 á) (f(x) -
f(x+ y)) R+
respectively.
1.2 Two-parameter Fractional Brownian Motion
1.2.1 The Main Definition
For technical simplicity we consider two-parameter fbm (fbm
field) {BHt , t ? R2+}, where t =
(t1, t2). We suppose that s = t if s = (s1, s2), t = (t1, t2) and si = ti, i =
1, 2.
Definition 1.2.1. The two-parameter process
{BHt ,t ? R2+} is called a
(normalized) two-parameter fBm with Hurst index H = (H1, H2) ? (0,
1)2, if it satisfies the assumptions:
(a) BH is a Gaussian field, Bt = 0 for t ?
?R2+;
(b) EBti = 0, EBti BH = 1 11 s
4
i=1,2
|
(ti 2Hi + s2Hi i - |ti -si |2Hi)
|
Evidently, such a process has the modification with continuous
trajectoires, and we will always consider such a modification. Moreover,
consider "two-parameter" increments:ÄsBHt
:= BHt - BHs1t2 - BHt1s2 + BHs for
s = t. Then they are stationary. Note, that for any fixed ti > 0
the process BH
(ti,.)
will be the fbm with Hurst index Hj, i = 1, 2, j = 3 - i,
evidently, nonnormalized.
1.2.2 Fractional Integrals and Fractional Derivatives of
10 Two-parameter Functions
1.2.2 Fractional Integrals and Fractional Derivatives of
Two-parameter Functions
For á = (á1, á2) denote (á) =
(á1)1(á2)
Definition 1.2.2. [2] Let f ? T := [a, b] := 11 [ai, bi], a =
(a1, a2), b =
i=1,2
(b1, b2). Forward and backward Reimann-Liouville fractional
integrals of orders 0 < ái < 1 are defined as
(I aá_r12 f)(x) :=
(á) 1,, f (u) ,x] ?(x, u, 1 - á) du,
and
Z (Ir2 f)(x) := (á)
f
u () ?(x, u du, 1 -- a) du,
+ E
i=1,2,j=3--i
|
ái
|
áj
|
xi f (x) - f (ui, x j)
% du
i i),
ai (xi -- Ui)l#177;a
|
xj - aj
|
correspondingly, where [a, x] = 11 [ai, xi], [x, b] = 11 [xi,
bi], du = du1du2,
i=1,2 i=1,2
?(u,x, á) =| u1 - x1 |á1| u2 -
x2 |á2 ,u, x ? [a, b].
Definition 1.2.3. Forward and backward fractional Liouville
derivatives of orders 0 < ái < 1 are defined as
2
(Da
á1+ a a2 f)(x) := 1-1(1
a) \ du 8x1?x2 I [a ,] ?(x f (u) u, á)
and
(Dbá1á2
l f
x
\
A )
:= (1 - á)
?x1?x2 f[x ,b] ? (x u, á) x ? [a, b]
f(u)
Definition 1.2.4. Forward fractional Marchaud derivatives of
orders 0 < ái < 1 are defined as
15r
( 2 f)(x) :=(1 - á) f (x) +
á1á2 Äu f (x)du
?(x, u,á)i[a,x] 40(x, u, 1 + á)
1.2.2 Fractional Integrals and Fractional Derivatives of
Two-parameter Functions 11
Let 1 = p = 8, the classes I+
á1á2(Lp(T)) := ~f|f =
Iaá_ri2?, ? ? Lp(T)},
I- á1á2(Lp(T)) := {f|f =
IbJá2?, ? ? Lp(T)}
Further we denote Dá1á2
a+ :=I-(á1á2)
a+ . Of course, we can introduce the notion
of fractional integrals and fractional derivatives on
R2+. For exemple, the Riemann-Liouville fractional
integrals and derivatives on R2+ are defined by the
formulas
(Iá1á2 f)(x) := (á) L8,x]
?(xf(ut) á) dt,
Z
(I11á2 f)(x) := (á) f(ut)
á) dt, ?(x [x,8) 2
(I_Vá1á2) f)(x) =
(DTá2 f)(x) := (1 - á) O x1Oxe (t) dt,
x2 (-8,x] ?(x,t, á)
and
O2 f f(t)
(I-(á1á2)f)(x)
(Dá1á2f)(x)
:= (1 - á) Ox1Ox2 i[x,8)?(x,t, á)dt,
0 < ái < 1. Evidently, all these operators can be
expanded into the product of the form Iá1á2 += Iá1
+ ? Iá2
+ , and so on. In what follows we shall consider only the case Hi
? (1/2, 1). Define the operator
YM#177; 1 H2 f :=
i=1,2
|
4) Iá1á2 #177; f.
|
Definition 1.2.5. A random field {Xt,t ?
R2+} is a field with
independent increments if its increments {ÄsiXti, i = 1, n}
for any family of disjoint
rectangles {(si, ti], i = 1, n} are independent.
Definition 1.2.6. The random field {Wt,t ?
R2+} is called the Wiener field if W = 0 on
OR2+. W is the field with the independent increments
and
E(ÄsWt)2 = area((s,t]) = II
(ti - si).
i=1,2
Let we have a probability space (Ù,F, P) with
two-parameter filtration {Ft, t ? R2+} on it. It means
that Fs ? Ft ? F for s < t. Denote F* s:=
ó{Fu, s = u}.
Definition 1.2.7. An adapted random field {Xt,Ft,t ?
R2+} is a strong martingale if X vanishes on
?R2+, E|Xt| < 8 for all t ? R2+
and for any s < t E(ÄsXt|F*
s) = 0.
Evidently, any random field with constant expectation and
independent increments is a strong martingale, in particular, the Wiener field
is a strong martingale.
Definition 1.2.8. Let
~ f ? L21H2 := f : R2 -->R : J
((M51H2f)(t))2dt < 8}
R
2
Then we denote I f (t)dBr1 H2 as .1 (M-
H1H2 f)(t)dWt for the underlying R2 R2
Wiener process W.
1.2.3 Hölder Properties of Two-parameter fbm
We fix á = (á1, á2), ái ? (0,1] and
let T = [a1, b1] × [a2, b2]. Let f the Riemann-Liouville fractional
integral of order á i.e
1
,
(Iáa+f)(x1, x2) = f(t1
t2)dt1dt2, x1x2) ? T
(á1)(á2) a1 a2 (x1 t1)1-á1 (x2 -
t2)1-á2
x1
I
x2
The space Ëá,p =
(Iáa+)(Lp(T)) is called the Liouville
space (or Besov space) and it becomes separable Banach space with respect to
the norm IIáa+fIá,p = If1p
Proposition 1.2.3.1. [7] For every á, â
Iá a+Iâ a+=
Iá+â
a+ ,
If f ? C2b (T) and f = 0 on ?1T = ([a1,b1]
× {b1}) ? ({a1} × [a2,b2])then the function
1 1x1 r2 a2f (t1, t2) dt1dt2
+f (x1, x2) =
(1 - á1)(1 - á2) L1 Ja2
?t1?t2 (x1 - t1)á1(x2 - t2)á2
(1.2)
is the unique function from L8(T) such that
Iáa+Dáa+f
= f.
For a rectangle D = [s1, t1] × [s2, t2] ? T we define the
increment on D of the function f : T ? IR by
f(D) = f(t1, t2) - f(t1, s2) - f(s1, t2) + f(s1,
s2).
We denote by C[ai,bi],ái the space of all
ái-Hölder functions on [ai, bi] and
kfk[ai,bi],ái = sup
u6=v,ai<u,v<bi
|
|f(u) - f(v)|
(u - v)ái .
|
Also, we denote by CT,á1,á2 the space of
all (á1, á2)-Hölder functions on T, i.e., f ?
CT,á1,á2 if f is continuous,
kf(a1, .)1[a2,b2],á2 < 8, 1f(., a2)I[a1,b1],á1
< 8
and
|f([u1, v1] × [u2, v2])|
< 8.
|u1 - v1|á1|u2 - v2|á2
1fkT,á1,á2 = sup
ui6=vi
Proposition 1.2.3.2. [8] Let 0 < â1 < á1,0
< â2 < á2 and p = 1. Then we have the continuous
inclusions Ëá,p ? Ëâ,p,
Ëá,p ?
Cá1_p-1,á2_p-1, Câ1,â2 ?
Ëã,p if áip > 1, âi > ãi > 0
ici il faut tout d'abord définir la fonction
généralisé
Proposition 1.2.3.3. [8] Assume that f, g are
C1([a, b])-function with f(a) = 0. Let á, â ?
(0,1] be such that á+â > 1 and let ä := {a = t0 < ...
< tn = b} be a partition of [a, b] with the norm
1ä1 = max (tj+1 - tj). Then for every
j
0 < å < á + â - 1 the following
estimates hold:
~~~~
|
fb
f(t)dg(t)~~~~ = C(á,
â)1fk[a,b],álgk[a,b],â(b - a)1+å, (1.3)
a
|
If b
~
f (t)dg(t) - E f(ti)[g(ti+1) - g(ti)]~= C(á,
â)1f1[a,b],á1g1[a,b],â(b-a)å.
~
i
(1.4)
14 1.2.3 Hölder Properties of Two-parameter fbm
Chapter 2
Stochastic Integration with
Respect to Two-parameter
Fractional Brownian Motion
2.1 Pathwise Integration in Two-parameter Besov
Spaces
The next result gives an estimate of the Stieltjes integral
for smooth functions in terms of Hölder norms and represents the essential
step for extending the Stieltjes integral to Hölder functions of two
variables.
Proposition 2.1.1. Let ái + âi > 1, ái,
âi ? (0, 1], f, g ? C2(T) and let 0 < åi
< ái + âi - 1. Then
i
~~~~
b1lb2 f (t1,t2)dg(t1,t2) a1 L
(2.1)
= C(ái, âi)kgkT,â1,â2
{1f1T,á1,á2(b1 - a1)á1+â1(b2
-a2)á2+â2 +1f(., a2) [a1,b1],á1(b1 -
a1)1+å1(b2 - a2)â2
+1f(a1, .) [a2,b2],á2(b1 - a1)â1(b2 -
a2)1+å2 + |f(a1, a2)| (b1 - a1)â1(b2 -
a2)â2}
Moreover, for every partition Ä = (si, tj)i,j, a1
= s1 < ... < sn1 = b1, a2 = t1 < ... < tn2 = b2,
1Ä1 = max(si+1 - si) + max(tj+1 - tj) , we have
i j
b1
f
b2 n1-1n2-
1
f(
74
,u2)dg(u1,u2) -
E E f(si, tj)g ([sisi+1] × [tj, tj+1])
fa1 a2 i=1
j
=1
(2.2)
+ ~kgkT,â1,â2 + kg(a1,
.)k[a2,b2],â2kÄká1~ = C(ái,
âi)kfkT,á1,á2
~kgkT,â1,â2kÄká1+â1+á2+â2?2
+ (1g1T,â1,â2 + kg(.,
a2)1[a1,b1],â11Älá2)] .
Proof. Assume first that f = 0 on ?1T and define
h(t1, t2) = g(b1 - t1, b2 - t2) - g(b1 - a1, b2 - t2)
-g(b1 - t1, b2 - a2) + g(b1 - a1, b2 - a2). (2.3)
Then
Z b1 Z b2 f(t1, t2)?2g(t1,
t2) dt1dt2 = ?2(f * h)(b1, b2) . ?t1?t2 ?t1, ?t2
a1 a2
Choose åi > 0, 0 < á0i
< ái, 0 < â0 i < âi with
á0i + â0 i = 1 + åi. By proposition
the function f1 = Daá+' f, h1 =
Daâ+' h are in L8 and
satisfy
Iá0 = f , Iaâ+" h1
= h. (2.4)
Then by proposition, 2.3 and 2.4 we have
Z b1 Z b2 Z b1 Z b2 f(t1,
t2)?2g(t1, t2)
f(t1, t2)dg(t1, t2) = dt1dt2
?t1?t2
a1 a2 a1 a2
?2(f * h)(b1, b2)
=
?2
h i
Iá0
a+f1 * Iâ0
a+h1 (b1, b2)
?t1?t2
=
?t1?t2
?2 hi
Iá0+â0
= a+ (f1 * h1) (b1, b2)
?t1?t2
?2 ~I1
= a+Iåa+(f1 * h1)] (b1,
b2)
?t1?t2 ?2
= Iå a+(f1 * h1)(b1, b2),
?t1?t2
= Ia(+ 1,1), å=
such that Ia1+ Iå1,å2
a+
and then
~Z
kf1 * h1k8
(b1 - a1)1+å1(b2 -
a2)1+å2
= å1å2(å1)(å2) kf1k8kh1k8.
~Z b2 b1 ~~~~ = (b1 -
a1)å1(b2 - a2)å2 ~~ f(t1, t2)dg(t1, t2)
å1å2(å1)(å2) a1 a2
Next, the integration by parts for functions of two variables
(see[9]) yields
f1(x1, x2) = (1 - á'o(1 -
á'2) fa x
, " (1 - t1 )á 4 (x2 - t2)á4
1
r
2df ([t1,x1]× [t2,x2])
1 f ([t1,x1] × [t2, x2]) lim (1 ?
áo(1 ? t%?x% (x1 - t1)á4 (x2 -
t2)á4
lirn
x1 f ([t1, x1] [t2, x2]),
- dt1 t2?x2 fa1 (x1 t1)á1 (x2 -
t2)á2
x2 f ([t1, x1] × [t2, x2]) dt
lim
-
t1?x1 L2 (x1 t1)á4 (x2 - t2)á2 2
f2 f ([t1,x1] × [t2, x2])
a1 a2 (xi - t1)á4+1(x2 -
t2)á2+1
, dt1dt2}
+ác.á02
,0
á1u2 ix2 f ([t1,x1] × [t2,
x2])
t, d dt (1 - áo(1 -
ja2x1-t1)á4+1(x2 t2)á2+1
i 2,
so that
kf1k8 =
|
,0
á1u2
(1 ? ác)(1 ? T,á1,á2
|
(2.6)
x1 fx2
× (x1 - t1 -á4-1 (x2 -
t2)á2-á4-1dt1dt2
a2
= - a1)á1-á4(b2 -
a2)á2-á4.
Similary
- a1)â1-âc(b2 -
a2)â2-â. (2.7)
By using (2.6) and (2.7) in (2.5) we obtain (2.1) if f = 0 on
?1T. If f is not necessarily null on ?1T then we define
f(t1,t2) = f ([a1,× [a2, t2])
Then f = 0 on ?1T and f, f have the same increments. Then we
have
J b1 1b2
a2 f (t1,t2)?2 g(t1 t2)
?t1?t 2 dt1dt2
Z b1 Z b2 Z b1 Z b2
f(t1, t2)?2g(t1, t2) f(a1,
t2)?2g(t1, t2)
= dt1dt2 + dt1dt2
?t1?t2 ?t1?t2
a1 a2 a1 a2
+ fa1 a2
b1
f
b
2
f(t1, a2)?2g(t1,
?t1?t2
t2) dt1dt2 + f (a1, a2)g(([a1,b1]× [a2, b2]))
,,
= I2 b2 f (t1,t2)?2 g(t1, t2)
dt1dt2 + b2 f(a1, t2) r?g(b1 t2) ?g(a1 ?t2
?t2
t2) 1 dt2
a1 ?t1?t2
a2
a
?g(t1,b2) ? g(t1, a2)1 dt1 + f (a1,
a2)g(([a1,b1]×[a2, b2])
f21 b1 f(t1a2) [ ?t1
4
k=1
(2.8)
From the previous reasoning we have
ja1 b1 la:2 f (t1, t2)
?2g(t1 , t2)
dt1dt2
?t1?t2
=
C(ái,âi)kfkT,á1,á2kgkT,â1,â2(b1 -
a1)á1+â1(b2 - a2)á2+â2.
(2.9)
Next by using (1.3) we have
~~Z b2 ~?g(b1, t2) ~
|J2| =
- ?g(a1, t2) ~~~~
~~ [f(a1, t2) - f(a1, a2)] dt2
?t2 ?t2
a2
+ |f(a1, a2)g ([a1, b1] × [a2, b2])|
= C(ái, âi) kf(a1, .)1[a2,b2],á2kg(b1,.) -
g(a1, .)k[a2,b2],â2 (b2 - a2)1+å2
+ |f(a1, a2)| 1g1T,â1,â2(b1 -
a1)â1(b2 - a2)â2,
so that
11 J2 11= C(ái, âi)11g1IT,â1,â2 {
If(a1, .)1[a2,b2],á2 (b1 - a1)â1(b2 -
a2)1+å2 + | f (a1, a2)| (b1 - a1)â1(b2 -
a2)â2 1.
(2.10)
Similarly
n11J311 = C(ái,
âi)1g1T,â1,â2 If(., a2)1[a1,b1],á1
(b1 - a1)1+å1(b2 - a2)â2 +|f(a1, a2)| (b1 -
a1)â1 (b2 - a2)â2}.
(2.11)
Replacing (2.10) and (2.11) in (2.8) we obtain (2.2). Next we
have
a1 (12
IÄ f (u1,u2)dg(u1, u2) - E f (si,tj)g ([sisi+1] ×
= Ib1 b2
f
=E
[f(u1, u2) - f(si,tj)] dg(u1, u2)
i,j
=E
i,j
isi+1 itj+1
+E
+E
jsi+1 itj+1
jsi+1 itj+1
[f(u1,u2) - f(u1, tj) - f(si,u2) + f(si,tj)] dg(u1, u2)
[f(u1, tj) - f(si,tj)] dg(u1, u2)
i,j t ·
isi+1 itj+1
8i 3 [f(si, u2) - f(si,tj)] dg(u1, u2)
= Ä + I,26,
(2.12)
From (2.1) it follows that
|I1Ä| =
C1f11T,á1,á2110T,â1,â2E
i,j
|
(si+1 - si)á1+â1(tj+1 -
tj)á2+â2
|
(2.13)
|
|
I2Ä =E
i
Z b1
,j Xtj)1 (u1, tj) [? g(u1,
tj+1) ?g(u1,du1
?u1 ?u1
a1 j
1si+1 ftj+1
Jsi[f (u1,tj) f (si, tj)]
3
?u1?u2
?2g(u1, u2) du1 du2
t ·
i,j [f(u1, tj) - f (si,tj)]
[?g(u?1u,t1 j+1)
?g(u1,tj)1 du1
?u1
1s i +1
C11fkT,á1,á2kgkT,â1,â2MÄ1á1+â1+á2+â2-2.
Next define
f1(u1, u2) = f(u1, u2) - f(si, u2) ifu1 ? [si, si+1).
Then (1.3),(1.4) imply
b1
I1 = C 11g(ui ) 11
fl (U1, -) 11 [a2,b2],á2 [a2 ,b2],â2 du1. (2.14)
a1
Since u1 ? [si, si+1) we have
If1(u1,.)1[a2,b2],á2 = 1f1T,á1,á2 (u1 -
si)á1 = 1f1T,á1,á2 IÄIá1
and
Mg(u1,.)1[a2,b2],â2 = (b1 - a1)â1
kg1T,â1,â2 + 1g(a1, .)1[a2,b2],â2 (2.15)
It follows by replacing in (2.14) that
11I2Ä11 =
C111f11T,á1,á211Ällá1
(11g11T,â1,â2 + 11g(a1,.)11[a2,b2],â2) . (2.16)
Similarly
11I3Ä11 (11g4,â1,â2 +
11g(.,a2)11[a1,b1],â1) . (2.17)
Finally using (2.13),(2.16) and (2.17) in (2.12) we (2.2).
Next we define CT,á1,á2,8 the space
CT,á1,á2 endowed with the norm
1x1T,á1,á2,8 = 1x1T,á1,á2+ sup
a1=t1=b1
|
1x(t1, .)I[a2,b2],á2+ sup
a2=t2=b2
|
kx(.,t2) [a1,b1],á1+1x T,á1,á2.
|
|
f (u, v)dg(u, v) f - a1)â1(b2 -
a2)â2.
~
.fb1 b2
a
2
The space
(CT,á1,á2,8,1.1T,á1,á2,8) is a Banach
space.
The convergence of Riemann-Stieltjes sums to the integral for
Hölder functions of one variable in shown in [[8],[10],[11]]. The
corresponding result for functions of two variables is given in the next
theorem.
Theorem 2.1.1. Let T0 = [a1 - å0, b1 + å0] ×
[a2 - å0, b2 + å0], å0 > 0, and let á1,
á2, â1, â2 ? (0, 1] be such that ái + âi >
1. If f ? CT0,á1,á2, g ? CT0,â1,â2, then there exists
a unique real number fb2
a
1
a
2
every sequence of partitions Än =
(sni ,tnj ), a1 = s0 < ... <
sk(n) = b1, a2 = t0 < ... < tk(n) = b2, with
1Än1 ? 0, the Riemann-Stieltjes sums
f(u,v)dg(u,v) such that for
Sog= E
i
|
X(EsTi i,s7+1 ] × Etrj
i,t7+1])
j
|
|
b2
converge to f
f(u,v)dg(u,v). Moreover, the following estimate holds:
a
1
a
2
Proof. It is enough to prove that for every ä > 0
there exist ç > 0 such that for every two partitions (Äi)i=1,2,
ai = ui0 < ... < uim(i) = bi with kÄik <
ç we have
~~~Sf,g
Ä1- Sf,g ~~~ = ä. (2.19)
Ä-2
Let J ? C8(R2) be such that J = 0, J(x)
= 0 if 114 = 1 and Iand define
R2
Jå(x) = å-2J (x).
Consideer the regularizations of få, gå of
f,g. Recall that å
få(x) =R 2 Jå(x -
y)f (y)dy = f(x - åy)J(y)dy, and for gå
similarly (as usual f,g are extended as 0 on R2 \ T0). It is
well known that få ?f, gå ? g uniformly on
T . Also it is easily seen that
(2.20)
få ? CT,á1,á2, gå ?
CT,â1,â2.
Next we show that if 0 < á0i
< ái, 0 < â0 i < âi, then
få ? f in CT,á0
gå ? g in CT,â0
1,á0 2, 1,â0 2,
få(a1, .) ? f(a1, .) in
C[a2,b2],á02,
gå(a1, .) ? g(a1,.) in
C[a2,b2],â02, (2.21)
få(., a2) ? f(., a2) in
C[a1,b1],á'1,
gå(., a2) ? g(., a2) in
C[a1,b1],â01. (2.22)
We have
(få - f) ([s1, t1] × [s2,
t2])
Z
= J(u, v) {f ([s1 - åu, t1 - åu] × [s2 -
åv, t2 - åv])}
B(0,1)
-f ([s1, t1] × [s2, t2]) dudv,
and then for every å,ä > 0,
sup
si6=ti
|(få - f) ([s1,t1] × [s2, t2])|
2
|s1 - t1|á0 1|s2 - t2|á0
= sup
|
~
~|(få - f) ([s1, t1] ×
[s2, t2])|
2 , |si - ti| > ä, i = 1, 2
|s1 - t1|á0 1|s2 - t2|á0
|
|
~|(få - f) ([s1, t1] ×
[s2, t2])|
+ sup
2 , |s1 - t1| > ä or |s2 - t2| >
ä
|s1 - t1|á0 1|s2 - t2|á0
1
= sup {|f(u1, v1) - f(u2, v2)| , |ui - vi| < å, ui, vi
? T0, i = 1, 2}
äá0 1+á0 2
+CkfkT,á1,á2 max(äá1-á0 1,
äá2-á0 2) ? 0 as å ? 0, ä ? 0.
Similarly one prove(2.21),(2.22).
Next we choose 0 < á0i <
ái, 0 < â0 i < âi with
á'i + â0 i > 1. Then from (2.20),(2.22)
and (2.12) we obtain
~~~~~ + ~~~Sf,g
~Sf,g
Ä1 - Sf,g ~~~ = ~~~Sf,g
Ä1 - Sfå,gå Ä2 -
Sfå,gå ~~~
Ä2 Ä1 Ä2
ib1 fa2 b2 b1 fb2
Qfål,gå
"Ä fådgå +Sk2 gå -
faa
1 1
a
2
+
~~
fådgå ~~
lim
å?
H
0
b1 fb2 b1 fb2
fådgå =
f dg,
1
1
12
2
1
1
I
~~~~~ + ~~~Sf,g = ~Sf,g
Ä1 - Sfå,gå Ä2 -
Sfå,gå ~~~
Ä1 Ä2
~ n 1+á0
2+â0 2-2
+C ~kfåkT,á0 1,á0 2 +
kgåkT,â0 (kÄ1k + kÄ2k)á0 1+â0
1,â0 2
2o
+ (kÄ1k + kÄ2k)á0 1 + (kÄ1k +
kÄ2k)á0
~~~~~ + ~~~Sf,g = ~Sf,g
Ä1 - Sfå,gå Ä2 -
Sfå,gå ~~~
Ä1 Ä2
n
1
+ C1 (kÄ1k + kÄ2k)á0
1+â0 1+á0
2+â0 2-2 + (kÄ1k +
kÄ2k)á0
+ (MÄ1M + 1Ä21)á02/ ? 0, as å
? 0 and then IÄiI ? 0. The previous computation also shows that
2.2 Some Additional Properties 23
2.2 Some Additional Properties
24 2.2 Some Additional Properties
Chapter 3
Existence and Uniqueness of the
Solutions of SDE with
Two-Parameter Fractional
Brownian Motion
Next for K > 0 we define the closed sets
C[a,b],H(K) = {? ? C[a,b],H : I?1[a,b],H = K},
and for ?i ? C[ai,bi],ái,
{CT,á1,á2,00(K, ?1, ?2) = x ?
CT,á1,á2,00 : x(a1, .) = ?1, x(., a2) = ?2,
1x1T,á1,á2 = K,
sup
a1<t1<b1
< }
|x(., t2 ) | [a1 ,b1], K
al - .
|x(t1, .)|[a2,b2],á2 = K, sup
a2<t2<b2
By using the Hölder spaces of functions we obtain the
following local contraction property of an integral operator between such
spaces, which is useful in the next existence and uniqueness result.
Proposition 3.1. Let â1, â2 ? (1/2, 1] and
á1, á2 be such that âi > ái > 1 -
âi.Let g ? CR2,â1,â2 and b, ó : R ? R be
such that b is bounded and Lipschitz and ó ?
C2b(R) with ó" Lipschitz. Then for
every K > 0 and ai, bi ? R,ai < bi, i = 1, 2, there exists
å0 > 0 independent of ai, bi, such that
,ái(K) the operator
for every ?i ? C[ai,ai+å0]
F : C[a1,a1+å0]x[a2,a2+å0],á1,á2,00(2K,
?1, ?2) ?
C[a1,a1+å0]x[a2,a2+å0],á1,á2,00(2K,?1,?2)
defined by
Z sJ t sf t
(F x)st = ?1(s) + ?2(t) + b(xu,v)dudv +
ó(x u,v)dg(u, v),
a2 a1a2
Existence and Uniqueness of the Solutions of SDE with
26 Two-Parameter Fractional Brownian Motion
is a contraction.
Proof. Clearly we have
~ ~ Z .ja2b(xu,v)dudv T,á1,á2,8 =
kb18(b1 - a1)1-á1(b2 - a2)1-á2
(3.1)
× [(b1 - a1)á1(b2 -
a2)á2 + 1] .
By using (2.18) it follows
~ Z .
~Z.
~~
a1 a2
|
~ ~
ó(xu,v)dg(u, v) =
Iló(x)11T,á1,á2,811g1IT,â1,â2
T,á1,á2
|
×(b1 - a1)â1?á1(b2 -
a2)â2?á2 [(b1 - a1)á1(b2 -
a2)á2 + 1] . (3.2)
Next
ó(x) ([s1, t1] × [s2, t2]) = (xt1,t2 - xt1,s2)
- -(xs1 ,t2 xs1,s2)
(ëxt1,t2 + (1 - ë)xt1,s2) dë + (1 - ë)xs1,s2)
dë
1
J0
1
Z0
Then
1
1
ó (x) ([s1,t1] × [s2, t2]) = (xt1,t2 - xt1,s2 -
x s1,t2 + xs1,s2) I ó' (ëxt1,t2 + (1 -
ë)xt1,s2dë)
+(x:(1ëx
,t2 s2 s1,s2) [óf
(ëxt1,t2 + (1 - ë)xt1,s2)
-ó
+ (1 - ë)xs1,s2)] dë.
(3.3)
Then (3.3) implies
{
|ó(x)([s1,t1] × [s2,t2])| 1,
110110011x1IT,aá2 + Iló'IlL11x(s1,
.)1[a2,b2],á2
1
×
o
[ë t2) II [a1,b1],á1 + (1 - ë) Mx(.,
s2)1[a1,b1],á1 ] dë} (t1 -s1)á1(t2 -
and hence, if x ? CT,á1,á2,8(K, ?1, ?2), then
Ió(x)1T,á1,á2 = K (Mól8 +
1ó11L) . (3.4)
Existence and Uniqueness of the Solutions of SDE with
Two-Parameter Fractional Brownian Motion 27
From (3.2),(3.2) and (3.4) it follows that
Fx E C[a1,b1]x[a1,b1],á1,á2,00
if x E C[a1,b1]x[a1,b1],á1,á2,00 and
also for å1 > 0 enough small,
Fx E
C[a1,a1+å1]x[a2,a2+å1],á1,á2,00(2K, p1, p2) if x E
C[a1,a1+å1]x[a2,a2+å1],á1,á2,00(2K, p1, p2).
Next we have
[ó(x) - ó(y)] ([s1, t1] x [s2, t2])
Existence and Uniqueness of the Solutions of SDE with
28 Two-Parameter Fractional Brownian Motion
1
01
,
-(xt1,s2 - yt1,s2) I ó' (ëxt1 s2 + (1 -
ë)yt1,s2) dë
I 1
- (xs1,t2 - ys1,t2) a
I (ë - ë)ys1,t2) dë
o 1 ol (Axx,: t2
82 + (1
+(xs1,s2 - ys1,s2) j + (1 - ë)ys1,s2) dë
1
= (x - y) ([s1,t1] × [s2, t2]) I óf
(ëxt1,t2 + (1 - ë)yt1,t2) dë
o
= (xt1 ,t2 - yt1 ,t2 ) 1 óf
(ëxt1,t2 + (1 - ë)yt1,t2) dë
1
+(xt1,s2
[ó' (ëxt1 ,t2
- yt1,s2) I
- ó' (ëx t1,s2 + (1 - ë)yt1 ,t2)
+ (1 - ë[ó) y, t(1ë, sx2d
t)1] , t2 ë
1
(1 - ë)yt1,t2)
+(xs1,t2 - ys1,t2) I
+ (1 - ë[
)uy,s(1 A, t x2 )], ,
dë
t 2+
- ó' (ëxs1,t2 0
1
- (xs1,s2 - ys1,s2) i + (1 - ë)yt1,t2)
0
- ó' (ëxs1,s2 + (1 - ë)ys1,s2)] dë
1
= (x - y) ([s1, t1] × [s2, t2]) j óf
(ëxt1,t2 + (1 - ë)yt1,t2) dë
+ [(xs1,t2 - ys1,t2) - (xs1,s2 - ys1,s2)]
1
0
× 10 [a'(ëxt1,t2 + (1 .-, (ë) Y :22 )
- a' (ëxs1,t2 + (1 - ë)ys1,t2)] dë
+ +(óx:(1ë,sx2 s1,sy2 s1,s2) 11
[0 ëx ti, + (1 - ë)ys1,s2) -
ó' (ëxt1,s2 + (1 - ë)yt1,s2)] dë
+ (1 - ë)yt1,t2) - ó' (ëxs1,t2 + (1
- ë)ys1,t2)
1
= (x - y) ([s1,t1] × [s2, t2]) I a' (ëxt1,t2 + (1 -
ë)yt1,t2) dë
0
+ [(xs1,t2 - ys1,t2) - (xs1,s2 - ys1,s2)] 1
× jo [óf (ëxt1,t2 + (1 -
ë)yt1,t2) - óf (ëxs1,t2 + (1 - ë)ys1,t2)]
dë
1
+(xs1,s2 - ys1,s2) [A(xt1,t2 - X81,t2 ) I + (1 - ë)(yt1,t2
- ys1,t2)]
1
0
× /
0 ó00 (u (ëxt1 ,t2 + (1 - ë)yt1,t2 ) + (1 - u)
(ëxs1,t2 + (1 - ë)ys1,t2))dudë
1
- (xs1,s2 [A(xt1,82 - x81,82) Y81,82) I + (1 - A)(yt1,s2 -
ys1,s2)]
1
o
×
+ (1 - ë)ys1,s2)) dudë
1
o ó00 (u (ëxt1,s2 + (1 - ë)yt1,s2) +
(1 - u) (ëxs1,s2
Existence and Uniqueness of the Solutions of SDE with
Two-Parameter Fractional Brownian Motion 29
Therefore
[ó(x) - ó(y)] ([s1,t1] × [s2, t2])
1
= (x - y) ([s1, t1] × [s2, t2]) f óf
(ëxt1,t2 (1 - ë)yt1,t2) dë
+ [(xs1,t2 - ys1,t2) - (xs1,s2 - ys1,s2)]
Z 1
×
[óf (ëxt1,t2 + (1 - ë)yt1,t2) -
ó0 (ëxs1,t2 + (1 - ë)ys1,t2)] dë
0 1
+(xs1,s2 - ys1,s2) [ëx ([s1,t1]× [s2, t2]) + (1 -
ë)y ([s1, t1] × [s2, t2])]
1 0
× ó00 (u (ëxt1,t2 + (1 -
ë)yt1,t2) + (1 - u)(ëxs1,t2 + (1 -
ë)ys1,t2))dudë
0 1
+ (xs1 ,s2 ys1,s2 ) f ,s2 xs1,s2) ( 1 - (yt1,s2 ys1,s2)]
0
1
× 0 [ó" (u (ëxt1,t2 + (1 -
ë)yt1 ,t2 ) + (1 - u) (ëxs1,t2 + (1 - ë)ys1,t2))
-ó" (u (ëxt1,s2 + (1 - ë)yt1,s2) +
(1 - u) (ëxs1,s2 + (1 - ë)ys1,s2))]dudë.
(3.5)
If x, y ?
C[a1,a1+å1]×[a2,a2+å1],á1,á2,8(K, ?1, ?2), then
(3.5) yields
|ó(x) - ó(y)|T,á1,á2 = C (K,
1ó118, mótkL,
,óffIL) Ilx - yIT,á1,á2. (3.6)
From (3.1), (3.2) and (3.6) it follows that there exists å2
> 0 enough small, independent of ai, bi, such that
1Fx -
Fyk[a1,a1+å2]×[a2,a2+å2],á1,á2,8 = 11x -
y1[a1,a1+å2]×[a2,a2+å2],á1,á2,8, (3.7)
for some 0 < d < 1, and hence, denoting å0 =
min(å1, å2), we obtain that
F :
C[a1,a1+å0]×[a2,a2+å0],á1,á2,8(2K, ?1, ?2) ?
C[a1,a1+å0]×[a2,a2+å0],á1,á2,8(2K, ?1, ?2)
is a contraction.
An existence and uniqueness result for ordinary differential
equations with Hölder continuous forcing is obtained in [12]. The global
solution is constructed, first in small time interval, when the contraction
principle can be applied, by using estimates in terms of Hölder norms. For
the two-parameter case we have the following result.
Theorem 3.1. Let â1, â2 ? (1/2, 1] and á1,
á2 be such that âi > ái > 1- âi. Let g ?
CR2,â1,â2 and b, ó : R ? R be such that b is
bounded and Lipschitz and ó ? C2 b (R) with ó00
Lipschitz. Then for every a1 < b1, a2 < b2 and
Existence and Uniqueness of the Solutions of SDE with
30 Two-Parameter Fractional Brownian Motion
? ? C[ai,bi],ái with ?1(a1) = ?2(a2), the equation
Z sxs,t = ?1(s) + ?2(t) - ?1 (a1) + it
b(xu,v)dudv
a2
(3.8)
s ft
+ ó(xu,v)dg(u, v), (s, t) ? T,
a1 a1
has a unique solution in CT,á1,á2,00.
Proof. Let K > 0 be such that ?i ? C[ai,bi],ái(K).
Then from Proposition 3.1 we obtain the existence of the solution x of (3.8) on
the rectangle [a1, a1 + å0]×[a2, a2+å0], å0 independent
of ai, bi (but dependent on K). If a1+å0 < b1, let n0 be the biggest
integer such that n0å < b1. Then x ? CT,á1,á2,00(2K) and
inductively we obtain the existence of the solution on
[a1 + å0, a1 + 2å0] × [a2, a2 + å0], ...,
[a1 + n0å0, b1] × [a2, a2 + å0], and then on
[a1, a1 + å0] × [a2 + å0, a2 + 2å0], ...,
[a1 + n0å0, b1] × [a2 + å0, a2 + 2å0],
and continuing again by induction we obtain the existence on T
. Let now x1, x2 be two solutions of (3.8). In particular, there is K > 0
such that x1, x2 ? CT,á1,á2,00(K). From (3.7) we deduce the
existence of å0 > 0 (which does not depend on ai, bi) and 0 < d
< 1 such that
1x1 -x21[a1,a1+å0]x[a2,a2+å0] = dlx1 -
x21[a1,a1+å0]x[a2,a2+å0],
and therefore x1 = x2 on [a1, a1 + å0] × [a2, a2 +
å0].Inductively (see the existence part) we obtain that x1 = x2 on T.
Bibliography
[1] Bass R.F., LEvin D.A., Harnack inequalities for jump
processes, PoTEnTial Anal., 17 (4) (2002), 375-388.
[2] Bass R.F., Stochastic differential equations driven by
symmetric stable processes, In SéminairE dE ProbabiliTés, XXXVI,
302-313, LEcTurE NoTEs in MaTH., 1801, SprinGEr, BErlin, 2003.
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
|
|