RÉFÉRENCES BIBLIOGRAPHIQUES
[1] Jason McKenzie Leland. Numerical optimization of a phase
change heat sink. MSME Thesis, Portland State University, (2002).
[2] M. Dreyer, New Thermal Cooling Addresses the Shrinking
Electronics Issue, Equipments Protection Magazine, (4), 12-15, (2006).
[3] R. R. Tummala, Fundamentals of Micro Systems Packaging,
McGraw Hill, (2001).
[4] S. C. Lin and C. L. Huang, The study of a small centrifugal
fan for notebook computer. Journal of the Chinese Society of Mechanical
Engineers, 22 (5), 421-431, (2001).
[5] F. P. Incropera, Liquid cooling of electronics devices by
single phase convection, Wiley series in Thermal Management of Microelectronics
and Electronics Systems, Wiley Inter Science Publications, (1999).
[6] J. Davalath,Y. Bayazitoglu, Forced convection cooling across
rectangular blocks, ASME J. Heat transfer (109), 321-328, (1987)
[7] B. W. Webb,S. Ramadhyani, Conjugate heat transfer in a
channel with staggered ribs, Int. J. Heat and Mass Transfer, (28),1679-1687,
(1985).
[8] H.W. Wu, S.W. Perng, Turbulent Flow and Heat Transfer
Enhancement of Mixed Convection over Heated Blocks in a Channel, International
Journal for Numerical Methods in Heat and Fluid Flow, 15 (2), 205 - 225,
(2005).
[9] T.J. Young, K. Vafai, Convective cooling of heated obstacle
in a channel, International Journal of Heat and Mass Transfer, 3131 - 3148,
(1998).
[10] Y.L. Tsay, J.C. Cheng, Analysis of Convective Heat
Transfer Characteristics for a Channel Containing Short Multi-Boards Mounted
with Heat Generating Blocks, International Journal of Heat and Mass Transfer,
2511- 2524, (2007).
[11] M. Najam, A. Amahmid, M. Hasnaoui et M. El Alami,
Unsteady mixed convection in a horizontal channel with rectangular blocks
periodically distributed on its lower wall, International Journal of Heat and
fluid Flow, (24), 726-735, (2003).
[12] C.K. Lee and S.A. Abdel-Moneim, Computational Analysis
of Heat Transfer in Turbulent Flow Past a Horizontal Surface with
Two-Dimensional Ribs, International Comm. Heat and Mass Transfer, 28(2),
161-170, (2001).
[13] D.D. Luo, C.W. Leung, T.L. Chan and W.O. Wong,
Simulation of Turbulent Flow And Forced Convection in a Triangular Duct with
Internal Ribbed Surfaces, Numerical Heat Transfer, Part A, (48), 447 - 459,
(2005).
[14] R.N. Mathews, C. Balaji, Numerical Simulation of
Conjugate, Turbulent Mixed Convection Heat Transfer in Vertical Channel with
Discrete Heat Sources, International Comm. Heat and Mass Transfer, (33), 908 -
916, (2006).
[15] C. Perret, I. Fandino, C.Schaeffer, J.Boussey,
S.Räe, Conception et optimisation d'un micro refroidisseur en cuivre pour
composants électroniques, European Journal of Electrical Engineering,
4(34), 255-272, (2001).
[16] Y. Harnane et R. Bessaih, Etude numérique de
l'écoulement de la convection mixte turbulente dans un canal vertical
muni de blocs chauffés - Revue des Energies Renouvelables CISM'08 Oum El
Bouaghi, 165 - 174, (2008).
[17] J. Vareilles, C. Muresan, S. G-Julien, C. Menezo, Etude
numérique des transferts de chaleur et de masse en convection naturelle
dans un canal vertical soumis a des perturbations thermiques
périodiquement reparties sur ses parois, 12ème
Journées Internationales de Thermique,Albi, France (2007).
[18] M. El Alami, M.Najam, E. Semma, A. Oubarra, F. Penot,
Electronic components cooling by natural convection in horizontal channel with
slots, Energy Conversion and Management, (4), 2762-2772, (2005).
[19] F. Corvaro et M. Paroncini, The Natural Convective Heat
Transfer in a Partially Divided Enclosure: A Study on the Influence of the
Source Position, Journal of Thermodynamics, Article ID: 792370,10 pages,
doi:10.1155/2009/792370, (2009).
[20] S. Sivasankaran, Buoyant convection in a cavity with
discrete heat sources and internal heat generating, International Journal of
Applied Mathematics and Mechanics, 2(2), 63-74, (2006).
[21] G. Desrayaud, A. Fichera, G. Lauriat, Natural convection
air cooling of a substrate mounted protruding heat sources in a stack of
parallel boards, International Journal of Heat and Fluid Flow,(28) 469-482,
(2007).
[22] G. Desrayaud and A. Fichera, Laminar natural convection
in a vertical isothermal channel with symmetric surface-mounted rectangular
ribs, Int. J. Heat and Fluid Flow, (23), 519-529, (2002).
[23] K. M. Kelkar and D. Choudhury, Numerical prediction of
periodically fully developed natural convection in a vertical channel with
surface mounted heat generating blocks, Int. J. Heat and Mass Transfer, (36),
1133-1145, (1993).
[24] J. H. Bae, J. M. Hyun, Time-dependent buoyant convection in
an enclosure with discrete heat sources, International Journal of Thermal
Sciences, (43), 3-11, (2004).
[25] M. D. Kelleher, R. H. Hnock, K. T. Yang, Laminar natural
convection in a rectangular enclosure due to a heated protrusion on one
vertical wall, Part 1: Experimental investigation. Proceeding of the ASME/JSME
Thermal Engineering Joint Conf, (2), 169-177, (1987).
[26] B. L. Turner, R. D. Flack, The experimental measurement
of Natural Convection heat transfer in a rectangular enclosure with
concentrated energy sources, ASME J. Heat transfer, (102), 236-241, (1980).
[27] M. Keyhani, L. Chen and D. R. Pitts, The aspect ratio
effect on natural convection in an
enclosure with discrete heat sources, ASME J. Heat Transfer,
(113),883-891, (1991).
[28] Y. L. Ju and Z. Q. Chen, Numerical simulation of natural
convection in an enclosure with discrete protruding heaters, Numerical Heat
Transfer, 30(2), 207-218, (1996).
[29] A. Bar-Cohen, Thermal Management of Electronics- Energy
Conversion Issues Refrigeration Technologies for Microelectronics, Rohsenow
Symposium - MIT, Cambridge, Mass, May 16th -(2003).
[30] Y. Joshi, Heat Out of Small Packages, Journal of Mechanical
Engineering, (123), 56-58, (2001).
[31] V. Shanmugasundaram, J. R. Brown, K. L. Yerkes, Thermal
management of high heat flux sources using phase change material, a design
optimization, AIAA -2451-2460, (1997).
[32] D. Pal, Y. K. Joshi, Melting in a side heated tall
enclosure by a uniformly dissipating heat sources, International Journal of
Heat and Mass Transfer (44), 375-387, (2001).
[33] M. Faraji, H. El Qarnia, Numerical Optimization of a
Thermal Performance of a Phase Change Material based Heat Sink, International
Journal of Heat and Technology, 26 (2), 17- 24, (2008).
[34] Y. Zhang, Z. Chen, Q. Wang, Q. Wu, Analysis of melting in
an enclosure with discrete heating at a constant rate, Int. J. heat Fluid Flow,
(15),79-82, (1994).
[35] Y. Zhang, A. Bejan, The problem of time-dependent natural
convection melting with conduction in the solid, Int. J. Heat Mass Transfer,
32(12), 2447-2457, (1989).
[36] Y.Zhang, Z. Q. Chen, Analysis of melting in an enclosure
with discrete heating at constant temperature, Proceedings of the Tenth
International Heat Transfer Conference, Brighton, UK, (1994).
[37] B. Binet, M. Lacroix, Melting from heat sources flush
mounted on a conducting vertical wall, Int. J. Num. Methods for Heat and Fluid
Flow, 10(3), 286 -307, (2000).
[38] F. L. Tan, C. P.Tso, Cooling of mobile electronic devices
using phase change materials,
Applied Thermal Engineering, (24), 159-169, (2004).
[39] X. Q. Wang, Ch. Yap, A. S. Mujumdar A parametric study of
phase change material (PCM)-based heat sinks, International Journal of Thermal
Sciences (47), 1055-1068, (2008).
[40] N. Zheng, R. Wirtz, Methodology for designing hybrid
thermal energy storage, Part I: Design methodology, ASME Journal of Electronic
Packaging, (126), 1-7, (2004).
[41] R. Kandasamy, X. -Q. Wang, A. S. Mujumdar, Application of
phase change materials in thermal management of electronics, Applied Thermal
Engineering 34 (7) 801-808, (2007).
[42] Z. Jianhua, C; Zhongqi, L. Dengying, L. Ji, Experimental
study on melting in a rectangular enclosure heated below with discrete heat
sources, Int. J. Thermal Science, (10), 254-259, (2001).
[43] Y. Ju, Z.Chen, Y. Zhou, Experimental Study of melting
heat transfer in an enclosure with three discrete protruding heat sources,
Experimental Heat Transfer (11), 171-186, (1998).
[44] M. Hodes, R. D. Weinstein, S. J. Pence, J. M. Piccini,
L. Manzione, and C. Chen, Transient thermal management of a handset using phase
change material (PCM). ASME Journal of Electronic Packaging, (124), 419-426,
(2002).
[45] R. Akhilesh, A.Narasimhan, C.Balaji, Method to improve
geometry for heat transfer enhancement in PCM composite heat sinks,
International Journal of Heat and Mass Transfer, 48 (13), 2759-2770, (2005).
[46] A. Abhat, Experimental investigation and analysis of a
honeycomb packed phase change material device, AIAA. 426-437, (1976).
[47] E. M Alawadhi, C. H. Amon, PCM thermal control unit for
portable electronic devices: experimental and numerical studies. IEEE
Transactions on Components and Packaging Technology, (26) 116-25, (2003).
[48] J. O'Conner, R. Weber, Thermal management of electronic
packages using solid-toliquid phase change techniques, International Journal of
Microcircuits and Electronic Packaging (20) 593-601, (1997).
[49] H. Yin, X. Gao, J. Ding, Z. Zhang, Experimental research
on heat transfer mechanism of heat sink with composite phase change materials,
Energy Conversion and Management (49) 1740-1746, (2008).
[50] K. C. Nayak, S. K. Saha, K. Srinivasan, P. Dutta, A
numerical model for heat sinks with phase change materials and thermal
conductivity enhancers, International Journal of Heat and Mass Transfer (49)
1833-1844, (2006).
[51] R. Viswanath, et J Y. Jaluria, A comparison of different
solution methodologies for melting and solidification problems in enclosures,
Numerical Heat Transfer Part B, (24), 77- 105, (1993).
[52] V. R, Voller, M. Cross, N. C. Markatos, An enthalpy method
for convection/diffusion phase change, Int. J. for Num. Meth. Engng, (24),
271-284, (1987).
[53] V. R. Voller, C. Prakash, A fixed grid numerical
modeling methodology for convection diffusion mushy region phase-change
problems, Int. J. Heat Mass Transfer, 30(8), 1709-1719, (1987).
[54] V. R. Voller, An overview of numerical methods for
solving phase change problems, Advances in Numerical Heat Transfer, vol. 1, W.
J. Minkowycz et E. M. Sparrow, Taylor & Francis, (1997).
[55] O. Bertrand, B. Binet, H. Combeau, S. Couturier, Y.
Delannoy, D. Gobin, M. Lacroix, P. Le Quéré, M. Médale, J.
Mencinger, H. Sadat, G. Vieira, Melting driven by natural convection. A
comparison exercise: First results, Int. J. Thermal Sciences, (38), 5-26,
(1999).
[56] S. V.Patankar, «Numerical Heat Transfer and Fluid
Flow», Hemisphere, washington, D. C., (1980).
[57] A Amahmid, Contribution à l'étude
numérique de convection mixte dans deux cavités contigués
semi ouvertes: Application au cellule -patio. Thèse de DES, Physique,
Faculté des Sciences Semlalia, Marrakech, Maroc, (1993).
[58] C. Gau, R. Viskanta, Melting and solidification of a metal
system in a rectangular cavity, Int. J. Heat Mass Transfer,(27), 113-123,
(1984).
[59] T. E. Daubert, R. P. Danner, Physical and thermodynamic
properties of pure chemicals, data compilation, Hemisphere, (1989).
[60] E. Dorre, H.Hubner, Alumina- Processing, properties and
applications, Berlin, Springer- Velarj, (1984).
[61] W.R. Humphries, E.I.Griggs, A Design Handbook for Phase
Change Thermal Control and Energy Storage Devices, NASA Technical Paper 1074,
NASA Scientific and Technical Information Office, (1977).
[62] D. Gobin, Changement d'état solide- liquide:
Évolution temporelle du couplage entre la convection naturelle dans la
phase liquide et la conduction dans la phase solide. Étude
numérique et expérimentale, Thèse de Doctorat
d'état, Université Paris VI, (1984).
[63] S. Hirman, A.Suwono, G. A. Mansoori, Characterization of
alkenes and paraffin waxes for application as phase change energy storage
medium, Energy Sources, (16), 17-128, (1994).
[64] Alloy Digest, Engineering Alloy Digest Inc., Upper
Montclair, NJ, (2004).
[65] S. Krishnan, S. V.Garimella, S. S.Kang, A novel hybrid
heat sink using phase change materials for transient thermal management of
electronics, IEEE Transactions on Components Packaging and Manufacturing
Technology, 28 (2), 281-289, (2005).
[66] Michel Pons, Transition from Single-to Multi-Cell
Natural Convection of Air in Cavities with an Aspect Ratio of 20: A
Thermodynamic Approach, International Journal of Thermodynamics, 11 (2), 71-79,
(2008).
[67 ] Y. Jaluria, E. Papanolaou, «Mixed convection from a
localized heat source in a cavity with conducting walls: A numerical
study» Numerical Heat transfer Part A, vol. 23, pp. 463- 484, (1993)
[68] C. Balaji, H, Herwig, The use of ACFD approach in
problems involving surface radiation and free convection. International
Communication Heat Mass Transfer, (30), 251- 259, (2003).
|
|