BIBLIOGRAPHIE
AARIZOU M., 1995; " Détermination
précise du géoïde par voie gravimétrique ",
Thèse de magister. C.N.T.S.
CRUZ JY., 1986; "Ellipsoidal corrections to
potential coefficients obtained from
gravityanomaly data on the ellipsoid", Report No. 371,
Departement of GeodeticScience and Accad. Sci. Torino, 46.1962.
DUQUENNE H., 2005; " Le géoïde et
les méthodes locales de sa détermination" Ecolefrancophone sur le
géoïde.IGN.
ELLMANN A., 2005; " SHGEO Software package ver.
2.0, Reference manual I, II & III" Fredericton, New Brunswick, Canada.
ELLMANN A., VANIÇEK P., 2006; "UNB
application of Stokes-Helmert's approach to geoid computation".
HECK B., 1992; "A revision of Helmert's second
method of condensation in the
geoid andGeodesy", 70:117-126 Geodesy72: 101-106,
No.26. HEISKANEN W., MORITZ H., 1967; "Physical geodesy". San
Francisco. HOTINE M., 1969; "Mathematical Geodesy". ESSA
Monograph 2, US. Dep. of
Commerce.
MARTINEC Z., 1993; "Effect of laterally
variations of topographical masses in view
of improving geoid model accuracy over Canada. Final Report of
contract DSS No.23244-2-4356, Geodetic Survey of Canada, Ottawa.
MARTINEC Z., GRAFAREND EW., 1997b; "Solution to
the Stokes boundary-
value problem on geoid and ellipsoid of revolution". Manuscripta
Geodaetica, No.19, Springer.
MARTINEC Z., MATYSKA C., 1997; "On the
solvability of the Stokes pseudo-
boundary-value problem for geoid determination". Journal of
Geodesy 71: 103-112.
MARTINEC Z., VANÍÇEK P., 1994a;
"Direct topographical effect of Helmert's
condensation for a spherical approximation of the geoid".
Manuscripta Geodaetica, No.19. Springer
MARTINEC Z., VANÍÇEK P., 1994b;
"The indirect effect of topography in the
Stokes-Helmert technique for a spherical approximation of the
geoid". Manuscripta Geodaetica, No.19: 213-219.
MOLODENSKY M. S., 1960; "Methods for Study of
the External Gravitational Field and Figure of the Earth". pp 248.
MORITZ H., 1980; "Advanced Physical Geodesy".
Herbert, Abacus press, Tunbridge wells, Kent, U.K.
NOVÁK P., 2000; "Evaluation of gravity
data for the Stokes-Helmert solution to the
geodetic boundary-value problem". Ph.d. dissertation,
Department of Geodesy and Geomatics Engineering Technical Report No. 207,
university of New Brunswick, Fredericton, New Brunswick, Canada, 133 pp.
PIZZETI P., 1911; "quasi-geoid determination".
Presented at 7th I.A.G. symposium" Geodesy and Physics of the Earth", No. 112,
Potsdam, October 1992.
RABEHI N., 2004; "Troncature du noyau
intégral de Stokes" Mémoire de Magister C.N.T.S.
RAPP R. H., 1984; "The determination of height
degree potential coefficient
expansions from the combination of satellite and terrestrial
gravity information". Report OSU No. 361, Columbus, Ohio, December 1984.
RAPP R. H., 1986; "Global geopotential
solutions" . Lecture Notes in Earth Sciences, Vol. 7.
RITTER S., 1998; "The null field method for the
ellipsoidal Stokes problem". Journal of Geodesy.
SONA G., 1995; "Numerical problems in the
computation of ellipsoidal harmonics". J of Geodesy.
STOKES GG., 1849; "On the variation of gravity
on the surface of the Earth".
Transactions of the Cambridge Philosophical Society 8:
672-695 Surveying, OSU Stokes's formula. Journal of Geodesy 74 (2):
223-231
SUJAN B., 2003; "Terrain Effects on Geoid
Determination" Departement of
Geomatics Engineering. UCGE Reports, No.20181. Calagary, Alberta,
Canada.
SUN W., VANIÇEK P., 1995; "Downward
continuation of Helmert's gravity disturbance." IUGG General Assembly, Boulder,
Colo., July 1995. SUN, W., VANIÇEK P., (1998). "On some
problems of the downward continuation
of the 5'x 5' mean Helmert gravity disturbance". Journal of
Geodesy, Vol. 72. Springer.
TENSER R., VANIÇEK P., NOVAK P., 2003;
"Far-zone contribution to
topographical effects in the Stokes-Helmert method of the Geoid
determination". Journal of geodesy, 47: 467-480.
TORGE W., 1982; "The present state of relative
gravimetry". In: Proc. Gen. Meeting of the IAG, 319-324, Tokyo.
TORGE W., 1989; "Gravimetry", De Gruyter (Ed.),
Berlin, 465 p.
VANIÇEK P., SUN W., ONG P., MARTINEC Z., NAJAFI
M., VAJDA P., HORST B., 1996; "Downward Continuation of Helmert's
gravity" Journal of
Geodesy 71: 21-34
VANIÇEK P., HUANG J., NOVAK P., PAGIATAKIS S.D.,
VÉRONNEAU M., MARTINEC Z., FEATHERZONE W.E., 1999;
"Determination of the boundary
values for the Stokes-Helmert problem". J. Geodesy, 73: 180-192.
VANIÇEK P., MARTINEC Z., 1994; "The Stokes-Helmert
scheme for the
evaluation of a precise geoid".
VANIÇEK P., NOVÀK P., 1999;
"Comparison between planar and spherical models of topography" CGU Annual
Meeting, Banff, May 9-12, 1999 vol.2.
VANÍÇEK P., SJÖBERG L.E.,
1989; "Kernel modification in generalized Stokes's
technique for geoid determination." Paper presented at the
General Meeting of IAG Edinburgh, Scotland, Aug. 3-12, Sea Surface Topography
and the Geoid (Eds. H. Sünkel and T. Baker), Springer, 1990.
VANIÇEK P., SUN W., ONG P., MARTINEC Z., NAJAFI
M., VAJDA P., HORST B., 1996; "Downward continuation of Helmert's
gravity". Journal of
Geodesy, Vol. 71, Springer.
WANG YM., RAPP RH., 1990; "Terrain effects on
geoid undulation computations".
Manuscripta geodetica 15:23-29 W.E., 1999: Determination of
the boundary values for the Stokes-Helmert problem, Journal of Geodesy, Vol.73,
Springer.
WICHIENCHAROEN C., 1982; "The indirect effects
on the computation of geoid
undulations" Dept. of Geod. Sci. Report No.336, Ohio State
University, Columbs. Washington.
YANG H., 2005; "Early results towards the
Canadian Geoid in the three-space
scenario" Geodesy and Geomatics Engineering UNB. Technical
Report, No.229.
YU JH., CAO HS., 1996; "Ellipsoid harmonic
series and the original Stokes problem
with the boundary of the reference ellipsoid ". Journal of
Geodesy 70: 431-439.
ZHILING F., 2000; "Refinements of Geodetic
Boundary Value Problem Solutions" Mai 2000.
|