WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Solution du problème de valeurs aux limites géodésique théorie de Stokes-Helmert

( Télécharger le fichier original )
par Nesrine ZEKKOUR
Centre des techniques spatiales  - Magister en techniques spatiales et applications 2008
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

BIBLIOGRAPHIE

AARIZOU M., 1995; " Détermination précise du géoïde par voie gravimétrique ", Thèse de magister. C.N.T.S.

CRUZ JY., 1986; "Ellipsoidal corrections to potential coefficients obtained from

gravityanomaly data on the ellipsoid", Report No. 371, Departement of GeodeticScience and Accad. Sci. Torino, 46.1962.

DUQUENNE H., 2005; " Le géoïde et les méthodes locales de sa détermination" Ecolefrancophone sur le géoïde.IGN.

ELLMANN A., 2005; " SHGEO Software package ver. 2.0, Reference manual I, II & III" Fredericton, New Brunswick, Canada.

ELLMANN A., VANIÇEK P., 2006; "UNB application of Stokes-Helmert's approach to geoid computation".

HECK B., 1992; "A revision of Helmert's second method of condensation in the

geoid andGeodesy", 70:117-126 Geodesy72: 101-106, No.26. HEISKANEN W., MORITZ H., 1967; "Physical geodesy". San Francisco. HOTINE M., 1969; "Mathematical Geodesy". ESSA Monograph 2, US. Dep. of

Commerce.

MARTINEC Z., 1993; "Effect of laterally variations of topographical masses in view

of improving geoid model accuracy over Canada. Final Report of contract DSS No.23244-2-4356, Geodetic Survey of Canada, Ottawa.

MARTINEC Z., GRAFAREND EW., 1997b; "Solution to the Stokes boundary-

value problem on geoid and ellipsoid of revolution". Manuscripta Geodaetica, No.19, Springer.

MARTINEC Z., MATYSKA C., 1997; "On the solvability of the Stokes pseudo-

boundary-value problem for geoid determination". Journal of Geodesy 71: 103-112.

MARTINEC Z., VANÍÇEK P., 1994a; "Direct topographical effect of Helmert's

condensation for a spherical approximation of the geoid". Manuscripta Geodaetica, No.19. Springer

MARTINEC Z., VANÍÇEK P., 1994b; "The indirect effect of topography in the

Stokes-Helmert technique for a spherical approximation of the geoid". Manuscripta Geodaetica, No.19: 213-219.

MOLODENSKY M. S., 1960; "Methods for Study of the External Gravitational Field and Figure of the Earth". pp 248.

MORITZ H., 1980; "Advanced Physical Geodesy". Herbert, Abacus press, Tunbridge wells, Kent, U.K.

NOVÁK P., 2000; "Evaluation of gravity data for the Stokes-Helmert solution to the

geodetic boundary-value problem". Ph.d. dissertation, Department of Geodesy and Geomatics Engineering Technical Report No. 207, university of New Brunswick, Fredericton, New Brunswick, Canada, 133 pp.

PIZZETI P., 1911; "quasi-geoid determination". Presented at 7th I.A.G. symposium" Geodesy and Physics of the Earth", No. 112, Potsdam, October 1992.

RABEHI N., 2004; "Troncature du noyau intégral de Stokes" Mémoire de Magister C.N.T.S.

RAPP R. H., 1984; "The determination of height degree potential coefficient

expansions from the combination of satellite and terrestrial gravity information". Report OSU No. 361, Columbus, Ohio, December 1984.

RAPP R. H., 1986; "Global geopotential solutions" . Lecture Notes in Earth Sciences, Vol. 7.

RITTER S., 1998; "The null field method for the ellipsoidal Stokes problem". Journal of Geodesy.

SONA G., 1995; "Numerical problems in the computation of ellipsoidal harmonics". J of Geodesy.

STOKES GG., 1849; "On the variation of gravity on the surface of the Earth".

Transactions of the Cambridge Philosophical Society 8: 672-695
Surveying, OSU Stokes's formula. Journal of Geodesy 74 (2): 223-231

SUJAN B., 2003; "Terrain Effects on Geoid Determination" Departement of

Geomatics Engineering. UCGE Reports, No.20181. Calagary, Alberta, Canada.

SUN W., VANIÇEK P., 1995; "Downward continuation of Helmert's gravity disturbance." IUGG General Assembly, Boulder, Colo., July 1995. SUN, W., VANIÇEK P., (1998). "On some problems of the downward continuation

of the 5'x 5' mean Helmert gravity disturbance". Journal of Geodesy, Vol. 72. Springer.

TENSER R., VANIÇEK P., NOVAK P., 2003; "Far-zone contribution to

topographical effects in the Stokes-Helmert method of the Geoid determination". Journal of geodesy, 47: 467-480.

TORGE W., 1982; "The present state of relative gravimetry". In: Proc. Gen. Meeting of the IAG, 319-324, Tokyo.

TORGE W., 1989; "Gravimetry", De Gruyter (Ed.), Berlin, 465 p.

VANIÇEK P., SUN W., ONG P., MARTINEC Z., NAJAFI M., VAJDA P., HORST B., 1996; "Downward Continuation of Helmert's gravity" Journal of

Geodesy 71: 21-34

VANIÇEK P., HUANG J., NOVAK P., PAGIATAKIS S.D., VÉRONNEAU M., MARTINEC Z., FEATHERZONE W.E., 1999; "Determination of the boundary

values for the Stokes-Helmert problem". J. Geodesy, 73: 180-192. VANIÇEK P., MARTINEC Z., 1994; "The Stokes-Helmert scheme for the

evaluation of a precise geoid".

VANIÇEK P., NOVÀK P., 1999; "Comparison between planar and spherical models of topography" CGU Annual Meeting, Banff, May 9-12, 1999 vol.2.

VANÍÇEK P., SJÖBERG L.E., 1989; "Kernel modification in generalized Stokes's

technique for geoid determination." Paper presented at the General Meeting of IAG Edinburgh, Scotland, Aug. 3-12, Sea Surface Topography and the Geoid (Eds. H. Sünkel and T. Baker), Springer, 1990.

VANIÇEK P., SUN W., ONG P., MARTINEC Z., NAJAFI M., VAJDA P., HORST B., 1996; "Downward continuation of Helmert's gravity". Journal of

Geodesy, Vol. 71, Springer.

WANG YM., RAPP RH., 1990; "Terrain effects on geoid undulation computations".

Manuscripta geodetica 15:23-29 W.E., 1999: Determination of the boundary values for the Stokes-Helmert problem, Journal of Geodesy, Vol.73, Springer.

WICHIENCHAROEN C., 1982; "The indirect effects on the computation of geoid

undulations" Dept. of Geod. Sci. Report No.336, Ohio State University, Columbs. Washington.

YANG H., 2005; "Early results towards the Canadian Geoid in the three-space

scenario" Geodesy and Geomatics Engineering UNB. Technical Report, No.229.

YU JH., CAO HS., 1996; "Ellipsoid harmonic series and the original Stokes problem

with the boundary of the reference ellipsoid ". Journal of Geodesy 70: 431-439.

ZHILING F., 2000; "Refinements of Geodetic Boundary Value Problem Solutions" Mai 2000.

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Le doute est le commencement de la sagesse"   Aristote