WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Contrainte Psycho-Physiques et Electrophysiologiques sur le codage de la stimulation électrique chez les sujets porteurs d'un implant cochléaire

( Télécharger le fichier original )
par Stéphane GALLEGO
Université Lyon I - Doctorat 1999
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

cl Stabilité des PEAEP au cours du temps d'implantation

Des résultats obtenus en psychophysique ont montré de grosses modifications des seuils d'inconforts et dynamiques en fonction du temps d'implantation, ce qui sous-entend une plasticité du système auditif. Des travaux chez l'animal ont montré par les PEAEP (Miller et al, 1995a,b) et/ou les CAP (de Sauvage et al, 1997) des modifications électrophysiologiques au niveau des seuils d'apparition et de l'amplitude des réponses.

Nous avons voulu étudier, les possibles modifications des latences des PEAEP en fonction du temps chez une population de 9 implantés cochléaires Digisonic. En effet une modification des amplitudes en fonction de l'intensité de stimulation ne ferait que refléter l'évolution des dynamiques ; par contre des modifications de latences sous-entendraient des modifications au niveau du temps de conduction ainsi que du temps de traitement par le système auditif de l'information.

Les résultats présentés figure 99 décrivent les modifications des latences des PEAEP à un an d'intervalle. Chaque valeur représente une moyenne d'une trentaine de PEAEP. Aucune différence statistique n'a été trouvée pour les latences des ondes III et V. Une étude plus rigoureuse prenant les sujets implantés cochléaires de JO jusqu'à J600 serait peut être plus démonstrative. En tout cas, cette pré-étude n'a pas montré de changements très flagrants des caractéristiques des PEAEP, ce qui nous a encouragé à développer la technique de recueil de PEAEP avant l'implant par une stimulation extra- cochléaire.

Un couplage entre l'étude des modifications psychophysiques (tonie/sonie) et l'étude des caractéristiques des PEAEP semble néanmoins très prometteur.

Figure 99 : Latences des ondes III et V des PEAEP et durée d'implantation chez 9 sujets implantés.

dl Faisabilité en préimplantation

L'utilisation des PEAEP avant l'implantation paraît aussi intéressante celà soulève des problèmes

supplémentaires. La mise place d'une technique et d'un protocole adapté semble nécessaire.

Article 16 :

ELECTRICALLY AUDITORY BRAINSTEM RESPONSES IN COCHLEAR IMPLANT ASSESSMENT :
POSSIBILITY AND INTEREST

S. Gallégo, E. Truy, C Berger Vachon, L. Collet
Article soumis

L'étude consiste à étudier la faisabilité du recueil de potentiels évoqués auditifs électriques précoces (PEAEP) avec une électrode temporaire de stimulation. Dans un premier temps l'étude de la littérature a permis de confirmer la faisabilité physiologique et technique des PEAEP lors d'une stimulation électrique de la fenêtre ronde ou du promontoire. Il a ainsi été possible de définir un protocole d'enregistrement des PEAEP (position des électrodes de stimulation et de recueil, paramètres d'acquisition, traitement numérique post-acquisition). Pour finir, des résultats préliminaires sur 9 cas ont été décrits. L'optimisation de la technique a permis d'obtenir des PEAEP dans 78 % des cas.

Malgré les contraintes techniques et physiologiques, les PEAEP peuvent être enregistrés avec une électrode temporaire sur la fenêtre ronde. Le positionnement, le choix des électrodes de recueil et de stimulation ainsi que le traitement numérique post-acquisition sont très important pour obtenir des PEAEP pré-implantation. Cette technique ne peut être actuellement que consultative car elle n'est fiable que dans 78 % des cas. Les résultats obtenus nous encouragent cependant à la développer et à l'étendre à une stimulation du promontoire au lieu de la fenêtre ronde. L'enjeu est en effet important, l'utilisation de cette méthode donnerait des éléments objectifs qui appuieraient une décision d'implantation, aideraient à choisir le côté à implanter et permettraient de faire une estimation des performances du sujet après l'implantation.

ELECTRICALLY AUDITORY BRAINSTEM RESPONSES IN COCHLEAR IMPLANT
ASSESSMENT : POSSIBILITY AND INTEREST.

S. Gallégo, E. Truy, C. Berger-Vachon, L. Collet
UPRESA- CNRS 5020 & MXM laboratory

ABSTRACT : The present study is the feasibility of recording electrically auditory brainstem responses (EABR) with a temporary stimulating electrode. Preliminary study of the literature confirmed the physiological and technical feasibility of EABR with electro-stimulation of the round window or of the promontorium. This enabled a EABR recording design to be drawn up: stimulating and recording electrode positions, recording parameters and post-recording and data processing. Finally, preliminary results for 9 cases are described. Optimising the technique enabled EABRs to be recorded in 78 % of cases.

Key words: EABR, prior implantation test, Cochlear Implant. INTRODUCTION

Developments in signal processing and encoding strategy for the various cochlear implant (CI) now enable very good clinical results to be obtained. The percentage of `star patients' (able to communicate by telephone using only auditory information) is steadily growing. Even so, Cl subject performances remain variable and are not totally predictable or accounted for.

It is generally accepted that Cl bearers' pre-implantation performance can be assessed in terms of parameters such as length of sensory deprivation, aetiology of defect, language level, lip-reading performance, psycho-physical performance, IQ, motivation, family back ground, ... Measuring auditory remains (neurone population) is also a key-factor for Cl prognosis. There at present few tests of auditory system functioning. Lusted et al (1984), Shannon (1983) and Pfingst et al (1980, 1984) have shown threshold and comfort levels and dynamics in implanted subjects to be closely dependent upon aetiology and spiral ganglion neurone population.

The commonest means of assessing the remaining neurone population is by measuring threshold and comfort levels using electrical stimulation of the round window or of the promontorium by a temporary electrode (House et al, 1976; Shipp et al, 1991). This test is, however, unreliable and open to criticism, in that only positive results can be validated. Response failure or defective levels are not necessarily indicative of an auditory system defect, but could simply be due to faulty stimulation electrode positioning or poor electrical diffusion in the physiological environment of the cochlea. Moreover, the test is hard to conduct in children or in poorly conditioned adult subjects, requiring as it does considerable patient participation.

Error in predicting Cl performance are partly due to the lack of objective measurements of the state of the auditory system. Electrophysiology (i.e., evoked potentials could provide a means of objectifying measurement so as to better quantify neurone population and the functional state of the auditory system.

The present study used electrical stimulation of the cochlea by a temporary electrode on the promontorium or the round window to study the technical and physiological feasibility and the usefulness of pre-implantation EABR recording.

Interest of pre-implantation EABR recording

There are several studies in the literature which wouid encourage the idea of using pre-implantation EABRs as a means of predicting post-implantation performance. Certain authors (Wesber and Wesber, 1979; Chouard et al, 1983) have reported correlation between duration of deafness and auditory system neurone population. Acoustic stimulation studies (Otte et al, 1978; Schmidt et al, 1985) have correlated deaf subjects' hearing loss to spiral ganglion cell number. Pauler et al (1986) found a correlation between intelligibility and spiral ganglion neurone population. Measuring auditory system neurone density wouid thus allow an estimation of performance.

Studies in animais (Hall et al, 1990) and in humans (Smith et al, 1983; Brighwell et al, 1985) have shown correlation between spiral ganglion neurone population and ABR amplitude under electrical stimulation (EABR). Other authors (Gallégo et al, 1997) have correlated recognition without lip-reading in Cl-bearers to certain EABR parameters (wave Ill and V latency interval). EABR thus do enable estimation of auditory system neurone population and Cl-bearers' performance..

Systematic pre-implantation EABR recording would thus enable measurement of auditory system functionaiity, estimation of its neurone population, and prediction of performance with Cl. This could heip in decision to implant, choice of implant-side, type of implant (mono- or multi-channel) and of implant encoding strategy (slow or fast stimulation).

Physiological and technical constraints

Electrical stimulation to the base of the cochlea through an extra-cochlear temporary electrode can produce auditory sensations. The stimulating electrode may be placed either on the promontorium or on the round window, and the techniques in the two cases are not the same. For positioning on the promontorium , a transtympanic electrode is slipped through, without any need of anaesthetic. Round window positioning requires lifting the tympanum and a local anaesthetic. According to the literature (Shipp et al, 1991), perceptual threshold measurements and test reliability are better with a round window design; ciinical and ethical problems, however, arise, given the need for surgery and local anaesthesia. EABR recording using a promontory stimulating electrode has the advantage of being less invasive, even if technically less simple to make (the electric currents are weaker and better focussed on the cochlea with round-window stimulation). Developing EABR recording techniques using a temporary stimulating electrode therefore needs to start off from round-window stimulation to end up if possible with promontorium design.

Does electrical stimulation of the base of the cochlea generate EABR?

EABRs can be recorded from ail the Cl electrode, even the most basal (Gallégo et al, 1996, 1997). Thus very basal stimulation can indeed generate EABRs (even if the number of cochiear neurones thus excited is less than for more apical stimulation). This increases the difficulty of recording, by increasing adaptation (the smaller the number of excited neurones the greater their adaptation) and decreasing the signalto-noise ratio). With Cl, EABR intensity is always below comfort level threshold (Abbas and Brown, 1988; Shallop et al, 1991; Gallégo et al, 1997), which makes recording possible without anaesthetic.

Extracochlear evoked responses

With temporary electrodes, electrical stimulates diffuses widely in the tissue. Nonauditory responses can thus easily overlay EABRs. Fifer et al (1990) have described myogenic responses, producing fairly high amplitude waves with 5-7 ms latency, which badly disturb EABR recording, masking as they do wave V.

Gyo et al (1980) and Honert and Stypulkowski (1986) have also demonstrated the possibility of vestibular responses during the first milliseconds, although the latencies and amplitudes of these waves in human have not been accurately determined. Electrical stimulation can further activate the facial and buco-pharyngeal nerves, disturbing recording by saturating the entry amplifier of the acquisition system.

Subjects

Nine subjects took part in the present study (2 children, 7 adults). All had presented for conventional pre-implantation electrical testing. AIl had profound or total bilateral deafness. Testing took place without anaesthetic for 5 of adults and under general anaesthetic for 4 subjects (2 children, 2 adults).

TECHNICAL SET-UP

Positioning of stimulating and recording electrodes

To limit stimulus artefact, electrical diffusion in the physiological environment needs to be kept to a minimum. One way doing this is to localise stimulation by bringing the two stimulating electrodes as close as possible (the positive on the round window, the negative behind the ear on the petrosal). To limit extracochlear stimulation (myogenic, vestibular, buco-pharyngeal and facial nerve), the positive electrode is small, to focus on the cochlea, and the negative one large, to diffuse the current outside the cochlea, reducing charge per area. The current thus flows horizontally. To reduce stimulus artefact, recording electrodes are placed perpendicularly to the current flowline: positive on the forehead, negative on the chin (see fig. 1). The earth is placed on the contralateral earlobe.

Figure 1: Synopsis of stimulating and recording electrode positions. The axis formed by the stimulating electrodes was perpendicular to that formed by the recording electrodes (AB perpendicular to CD). The stimulation axis (AB) projects across the middle of the recording segment (CD).

I deally, if the distances between the stimulus and the positive and negative
recording electrodes are equivalent (AD=AC), and if the angle between the recording

and the stimulating electrodes is 90°, then the stimulus artefact cancels out in the recording.

Stimulator

The electrical stimulator was a prototype (Digistim+ system) developed by the MXM company, which can send two phase pulsed stimulation controlled for current, pulse duration and frequency, and can synchronise the EABR recording system.

Recording parameters

The system recorded EABRs over 10 ms at a sampling frequency of 50 kHz. Fullscale sensitivity was +1- 50 iiV. The analogic input filter was 0.2-8,000 Hz. Each recording corresponded to an averaging of 512 sweeps, was safeguarded then transferred onto a PC for post-recording digital analysis.

Post-recording digital analysis

Post-recording digital filtering is a good way of enhancing EABR curves, although conventional post-recording digital filters do not work well as they also filter stimulus artefact effects. The digital filter used here is specially adapted to auditory system functioning and electrical stimulation requirements (Gallégo et al, submitted). The frequencies in each wave have been shown to grow lower as wave latency lengthens. The idea of the filter is to vary the transfer function according to the latency. Simulations have shown this digital filtering to be able to reveal a EABR with a signal-to-noise ratio of --36dB (noise some 60-foid stronger than signal); hence it can also reduce non-auditory waves and stimulus artefact derivatives.

Results and discussion

Figure 2 shows a typical case, with the EABR overlain by a myogenic response. The wave V amplitude (around 4 ms) was much lower than the myogenic wave's (around 6 ms). In this case, a needle electrode had been used as negative stimulating electrode: focussing the current between the round window and petrosal bone, it encouraged extracochlear myogenic stimulation.

o

9 10

Figure 2: Example of EABR with a myogenic response. Wave V latency is 4.05 ms. Myogenic wave
latency is around 6 10 ms.

Figure 3 gives an example of EABRs recorded from a non-anaesthetised adult
subject when electrode positions and recording parameters have been optimised.
Waves III and V are easily identifiable. The EABR wave forms and latencies are very

similar to those found after implantation. 1.0

0.5

0.0

>

-0.5

N

-"C:7 = :'-' -1.0

Q

E

< -L5

- 2.0

- 2.5 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 5 0

Latence (ms)

Figure 3: Example of EABR on non-anaesthetised subject. Wave V Iatency is 4.15 ms. Wave III Iatency is 2.35 ms.

Figure 4 is an example of EABRs from a child subject under general anaesthetic just before implantation. Wave V is easily identifiable, but not wave III.

0 1 2 3 4 5 6 7 8

Ti me (ms)

Figure 4: Example of threshold of EABR on general anaesthetised child. Wave V Iatency is 4.00 ms.

Out of 9 subjects tested, EABRs were obtained in only 7 cases (78 % success rate).
Wave was aiways identifiable, but wave III only in 4 cases. Mean of wave V Iatency is

4.15 ms (S.D = 0.30 ms). Mean of wave V Iatency is 2.25 ms (S.D = 0.25 ms). Resuits are approximately the same of Cochlear Implant (Gallégo et al, 1996, 1997).

CONCLUSION

Despite technical and physiological constraints, EABRs can be recorded with a temporary electrode on the round window. Positioning and choice of recording and stimulating electrodes, and post-recording digital processing, are all very important in obtaining pre-implantation EABRs. The technique, with only 78% reliability, is as yet of only consultative value, but the results here nevertheless encourage development and its extension to promontory rather than round window stimulation. The stake is high: being able to use this method would give objective support to indications for implantation, help choose the implant side and enable estimation of subject's' post- implantation performance.

REFERENCES

Abbas PJ, Brown CJ. Electrically evoked brainstem potentials in cochlear implant patients with multi-electrode stimulation. Hear Res 1988; 36:153-62.

Brightwell A, Rothera M, Conway M, Graham J. Evaluation of status of the auditory nerve: psychophysical test and ABR. Eds RA Schindler & MM Merzenich Cochlear Implants Raven Press New York 1985 343-349.

Chouard CH, Josset P, Meyer B, Buche JF. Effect of chronic electrical stimulation of the auditory nerve on development of cochlear nuclei in guinea-pig. Ann OtolLaryngol (Paris) 1983; 100:417-422.

Clark G, Shepherd R, Franz B, Dowell R, Tong Y et al. The histopathology of the human temporary bone and auditory central nervous system following cochlear implantation in patient. Acta Otolaryngol (Stockh) 1988; (suppl 448):1-65.

Fifer RC, Novak MA. Myogenic Influences on the Electrical Auditory Brainstem Response (EABR) in Humans. Laryngoscope 1990; 100:1180-1184.

Gallégo S, Micheyl C, Berger-Vachon C, Truy E, Morgon A, Collet L. Ipsilateral ABR with cochlear implant. Acta Otolaryngol (Stockh) 1996; 116:228-233.

Gallégo S, Truy E, Morgon A, Collet L. EABRs and surface potentials with a transcutaneous multielectrode cochlear implant. Acta Otolaryngol (Stockh) 1997; 117:164-168.

Gallégo S, Durrant J, Collet L., Berger-Vachon C. Numeric time-variant filters adapted to the recording of electrically auditory brainstem responses (E-ABR). Submitted.

Gyo K, Yanagihara N. Electrically and acoustically evoked brainstem responses in guinea pig. Acta Otolaryngol (Stockh) 1980; 90:25-31.

Hall RD. Estimation of surviving spiral ganglion cells in the deaf rat using the

electrically evoked auditory brainstem response. Hear Res 1990; 45:123-36.

Honert van den C, Stypulkowski PH. Characterization of the electrically evoked auditory brainstem response (ABR) in cats and humans. Hear Res 1986; 21:109-26. House WF, Berliner K, Crary W, Graham M, Luckey R, Norton N, Selters W, Tobin H, Urban J, Wexler M. Cochlear implants. An Otol Rhinol Laryngol 1976; 85(suppl 27):193

Lusted H, Shelton C, Simmons S. Comparison of electrode sites in electrical stimulation of the cochlea. Laryngoscope 1984; 94:878-882.

Miller CA, Abbas PJ, Brown CJ. Electrically evoked auditory brainstem response to stimulation of different sites in the cochlea. Hear Res 1993 66;130-142.

Pauler M, Schuknecht H, Thornton R. Correlative studies of cochlear neuronal loss with speech discrimination and pure-tone thresholds. Arch Otorhinolaryngol 1986; 243:200-206.

Pfingst B, Telman S, Sutton D. Operating ranges for cochlear implants. Ann Otol Rhinol Laryngol 1980; 89(sup 66):1-4.

Pfingst B. Operating ranges and intensity psychophysics for cochlear implants. Arch Otolaryngol 1984; 110:140-144.

Scmidt J. Cochlear neuronal populations in developmental defects of the inner ear: implications for cochlear implantation. Acta Otolaryngol (Stockh) 1985; 99:14-20. Shailop JK, VanDyke L, Goin DW, Mischke RE. Prediction of behavioral threshold and confort values for Nucleus 22-channel implant patients from electrical auditory brain stem response test results. Ann Otol Rhinol Laryngol 1991; 100:896-898. Shannon RV. Multichannel electrical stimulation of the auditory nerve in man.l. Basic psychophysics. Hear Res 1983; 11:157-189.

Smith L, Simmons FB. Estimating eighth nerve survival by electrical stimulation. Ann Otol Rhinol Laryngol 1983; 92:19-23.

Shipp DB, Nedzelski JM. Round window versus promontory stimulation: assessment fo cochlear implant candidacy. Ann Otol Rhinol Laryngol 1991; 100:889-892. Webster DB, Webster M. Effect of neonatal conductive hearing loss on brain stem nuclei. Ann Otol Rhinol Laryngol 1979; 88:684.

D'autres expériences, faites en collaboration avec l'hôpital Troussaud (Messieurs les docteurs Garabédian et Serfati), utilisant le même protocole ont permis d'obtenir des PEAEP sur 13/15 (soit 87%) des enfants testés avec une stimulation électrique du promontoire par une électrode transtympanique. La figure 100 illustre un des meilleurs cas.

0.211V

t,

1 ms

 

Figure 100 : PEAEP avec une stimulation au promontoire chez un sujet enfant sourd sous anesthésie
générale (avec l'aimable collaboration de l'équipe de Mr Garabédian)

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"I don't believe we shall ever have a good money again before we take the thing out of the hand of governments. We can't take it violently, out of the hands of governments, all we can do is by some sly roundabout way introduce something that they can't stop ..."   Friedrich Hayek (1899-1992) en 1984