WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Les déteminants des investissements directs étrangers dans les pays de l'Afrique subsaharienne

( Télécharger le fichier original )
par Junior BUKASA LUABEYA
Université de Kinshasa - licencié 2015
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

REFERENCES BIBLIOGRAPHIQUES

1. Ouvrages

ANDREFF V, Les multinationales globales, Ed. La Découverte, Paris, 1996, 125 p.

Frank, I, Multinationales et développement, Masson, Paris, 1981.

Hugonnier, B, Investissements directs, coopération internationale et FMN, Oxford, 1984, 304P.

SHOMBA KINYAMBA, Méthodologie de la recherche scientifique, Ed. PUK, Kinshasa, 2012, P. 38

2. Articles

ASIEDU, E, On the Determinants of Foreign Direct Investment to Developing Countries: Is Africa Different? in World Development vo1 .30, No. 1, Kansas, 2002, pp 107-119.

Aharoni, Y, "The foreign investment decision process." In International Executive, vol. 8, Fall 1996, p13-14.

Barrel R et Holland D, "foreign direct investment and restructuring" in central Europe. Economics of transition, 2000, P.504-517.

Caves, R, « International corporation, the industrial economy of foreign direct investment » in Economica, Vol. 37, Paris, 1983, Pp.843-847.

CHAKRABARTI A, "The Determinants of Foreign Direct Investment", in Sensitivity Analyses of Cross-Country Regressions, Kyklos, vol. 54, 2001, pp 89-1 14.

Dunning, J, "An overview of relations with national governments", in new Political Economy, vol. 2, 1998, P280-284.

Jacquemot, P, "Les firmes multinationales : une introduction économique", in Economica, Paris, 1991. Pp. 477-478.

Krugman P et Obstfeld M, "Economie international", in Ouvertures Economique, Paris 1996, 13P.

LUCAS, R, "Why doesn't capital flow from rich to poor countries", in American Economic Review, vol. 80, n° 2, 1990, pp. 92-96.

Mayer, T et Mucchielli, J, "La localisation à l'étranger des entreprises multinationales" in économie et statistique, N° 326-327, 1999, Pp.159-176.

Michalet, C, "La séduction des nations ou comment attirer les investissements", in Economica Paris, 1999, P 105-110.

Noorbakhsh F et Paloni A, "human capital and FDI inflows to developing contriez:new empirical evidence", in world development, N° 29, 2001, pp.1594-1595.

Steiner G.A, "The nature and signification of multinational corporate planning", in Multinational corporate planning, vol. 25, N°3, New York, 1983, Pp.1-17.

Wilhelms et Witter, "Foreign Direct Investment and it's Determinants" in Developping Countries, Washington, 1998. Pp.171-182.

3. Rapports

CNUCED, Les investissements étrangers directs et le développement, Rapport sur l'investissement dans le monde, Vue d'ensemble, Nation Unies, Genève, 2002, 96p.

CNUDED, le développement économique en Afrique, Rapport, Genève, 2001, 85P.

CNUCED, Le développement économique en Afrique catalyser l'investissement pour une croissance transformatrice en Afrique. Rapport, Genève, 2014, 122P.

OCDE, Définition de référence détaillée des investissements directs, Paris, 1983, 80P.

OMC, Rapport annuel, Genève, 2013, 148P.

FMI, Promouvoir une économie Mondiale plus sûre et plus stable, Rapport annuel, Washington, 2013, 84P.

4. Mémoires et T.F.C

NJOUM, N, l'analyse des déterminants de l'investissement direct étranger au Cameroun, mémoire DEA, Université de Douala, FASEG, 2009. 92P

Thioye, k, les déterminants des investissements directs étrangers : analyse du cas de Sénégal, mémoire D.A, Université Cheikh Anta Diop, FASEG, 2009, 105P

5. Sites internet

www.wikipedia.com

www.countrydata.com/datasets

6. Autres documents

Cameroun, Charte des Investissements en République du Cameroun, Loi N° 2002/004 du 19 Avril 2002, p.12.

Les annexes

Liste des pays incluent dans la base de donnée

Afrique du Sud

RDC

Angola

République centre Africain

Bénin

République du Congo

Botswana

République-Unie de Tanzanie

Burkina Faso

Rwanda

Burundi

Sao Tomé-et-Principe

Cameroun

Sénégal

Cap-Vert

Seychelles

Comores

Sierra Leone

Côte d'Ivoire

Soudan

Djibouti

Swaziland

Érythrée

Tchad

Éthiopie

Togo

Gabon

Zambie

Gambie

Zimbabwe

Ghana

 

Guinée équatoriale

 

Guinée

 

Guinée-Bissau

 

Kenya

 

Lesotho

 

Libéria

 

Madagascar

 

Malawi

 

Mali

 

Maurice

 

Mauritanie

 

Mozambique

 

Namibie

 

Niger

 

Nigéria61(*)

 

Ouganda

 
 

OLS

 

inear regression

 

Number of obs = 821

 

 

F( 12, 38) = 25.19

 

 

Prob > F = 0.0000

 

 

R-squared = 0.6238

 

 

Root MSE = 22.395

 

 

 

 

(Std. Err. adjusted for

39 clusters in codepays)

 

 

 

 

Robust

 

ide Coef.

Std. Err. t P>t

[95% Conf. Interval]

 

 

 

lpib -1.401

0.1128 -1.63 0.112

-541.6056 58.84115

limport 30.0245

4.367352 6.87 0.000

21.18325 38.86574

lexport 1.362801

2.424391 0.56 0.577

-3.545123 6.270725

lnitel 2.321523

1.831957 1.27 0.213

-1.38708 6.030125

lmm 1.202611

4.298331 0.28 0.781

-7.498905 9.904127

lpop -9.907027

3.829811 -2.59 0.014

-17.66007 -2.153979

retinv -11.47346

21.45102 -0.53 0.596

-54.89878 31.95187

indcos -.0026469

.0049445 -0.54 0.596

-.0126565 .0073628

demo -.4776019

1.980685 -0.24 0.811

-4.48729 3.532086

govstab -.0289583

.8997132 -0.03 0.974

-1.850333 1.792416

riskpol .1445049

.2234443 0.65 0.522

-.3078344 .5968442

burocat -7.433475

2.030813 -3.66 0.001

-11.54464 -3.32231

_cons -110.8328

154.0616 -0.72 0.476

-422.7143 201.0487

 

FE

Fixed-effects (within) regression

Number of obs = 821

Group variable: codepays

Number of groups = 39

 

 

R-sq: within = 0.4366

Obs per group: min = 2

between = 0.4600

avg = 21.1

overall = 0.4000

max = 32

 

 

 

F(12,770) = 49.72

corr(u_i, Xb) = -0.8421

Prob > F = 0.0000

 

 

 

 

ide Coef. Std. Err.

t P>t [95% Conf. Interval]

 

 

lpib 3.001 68.10828

1.82 0.070 -10.01591 257.384

limport 11.47292 2.434832

4.71 0.000 6.693228 16.25262

lexport 8.747063 1.691164

5.17 0.000 5.427224 12.0669

lnitel .084371 .8503128

0.10 0.921 -1.584835 1.753577

lmm 8.865285 2.36629

3.75 0.000 4.220141 13.51043

lpop 24.29556 4.974423

4.88 0.000 14.53052 34.0606

retinv 38.41897 10.60572

3.62 0.000 17.59941 59.23853

indcos -.0089937 .0032237

-2.79 0.005 -.015322 -.0026654

demo 1.323906 .7878808

1.68 0.093 -.2227429 2.870555

govstab .9062485 .3760463

2.41 0.016 .1680509 1.644446

riskpol -.0630488 .0985027

-0.64 0.522 -.2564144 .1303168

burocat .4714035 .9883417

0.48 0.634 -1.46876 2.411567

_cons -572.7193 66.92455

-8.56 0.000 -704.0955 -441.3431

 

 

sigma_u 45.100325

 

sigma_e 15.990033

 

rho .88833522 (fraction

of variance due to u_i)

 

 

F test that all u_i=0: F(38, 770)

= 21.44 Prob > F = 0.0000

 

RE

 

Random-effects GLS regression

Number of obs =

821

Group variable: codepays

Number of groups =

39

 

 

 

R-sq: within = 0.4120

Obs per group: min =

2

between = 0.6363

avg =

21.1

overall = 0.5633

max =

32

 

 

 

 

Wald chi2(12) =

607.56

corr(u_i, X) = 0 (assumed)

Prob > chi2 =

0.0000

 

 

 

 

 

 

ide Coef. Std. Err.

z P>z [95% Conf.

Interval]

 

 

 

lpib 4.104 67.89727

1.25 0.212 -48.32257

217.8299

limport 18.44901 2.243156

8.22 0.000 14.0525

22.84551

lexport 7.277523 1.526326

4.77 0.000 4.285979

10.26907

lnitel 1.739839 .8181366

2.13 0.033 .136321

3.343358

lmm 8.702029 2.319741

3.75 0.000 4.15542

13.24864

lpop -2.62079 2.476202

-1.06 0.290 -7.474057

2.232477

retinv 34.30522 10.51431

3.26 0.001 13.69756

54.91288

indcos -.008791 .0032775

-2.68 0.007 -.0152148

-.0023673

demo 1.906711 .7897002

2.41 0.016 .3589275

3.454495

govstab 1.075877 .3795641

2.83 0.005 .3319449

1.819809

riskpol -.0343961 .1005491

-0.34 0.732 -.2314687

.1626766

burocat -.8942957 .9926723

-0.90 0.368 -2.839898

1.051306

_cons -404.5051 63.61369

-6.36 0.000 -529.1856

-279.8246

 

 

 

sigma_u 14.650018

 

 

sigma_e 15.990033

 

 

rho .45634939 (fraction

of variance due to u_i)

 

 

MCG4

 

Random-effects GLS regression

Number of obs =

704

Group variable: codepays

Number of groups =

33

 

 

 

R-sq: within = 0.4484

Obs per group: min =

2

between = 0.5802

avg =

21.3

overall = 0.5373

max =

32

 

 

 

 

Wald chi2(12) =

578.21

corr(u_i, X) = 0 (assumed)

Prob > chi2 =

0.0000

 

 

 

 

 

 

ide Coef. Std. Err.

z P>z [95% Conf.

Interval]

 

 

 

lpib 4.181 71.1218

1.33 0.182 -44.51578

234.2766

limport 14.72458 2.359078

6.24 0.000 10.10087

19.34829

lexport 8.910017 1.603746

5.56 0.000 5.766734

12.0533

lnitel 3.343936 .8649087

3.87 0.000 1.648746

5.039126

lmm 12.37481 2.523428

4.90 0.000 7.428976

17.32063

lpop -1.996792 2.66427

-0.75 0.454 -7.218666

3.225082

retinv 36.64255 11.13564

3.29 0.001 14.81708

58.46801

indcos -.1357263 .0357954

-3.79 0.000 -.205884

-.0655687

demo 1.649987 .8148543

2.02 0.043 .0529015

3.247072

govstab .4416789 .4005001

1.10 0.270 -.3432869

1.226645

riskpol -.0490492 .1058377

-0.46 0.643 -.2564874

.1583889

burocat -.2608167 1.030328

-0.25 0.800 -2.280222

1.758589

_cons -373.7066 66.6808

-5.60 0.000 -504.3985

-243.0146

 

 

 

sigma_u 15.740637

 

 

sigma_e 15.485194

 

 

rho .50817994 (fraction

of variance due to u_i)

 

 

MCG AC 5

 

Random-effects GLS regression

Number of obs =

117

Group variable: codepays

Number of groups =

6

 

 

 

R-sq: within = 0.4812

Obs per group: min =

12

between = 0.9971

avg =

19.5

overall = 0.7512

max =

26

 

 

 

 

Wald chi2(12) =

314.03

corr(u_i, X) = 0 (assumed)

Prob > chi2 =

0.0000

 

 

 

 

 

 

ide Coef. Std. Err.

z P>z [95% Conf.

Interval]

 

 

 

lpib -6.101 159.0897

-0.42 0.676 -378.2641

245.3561

limport 32.73475 6.608494

4.95 0.000 19.78233

45.68716

lexport 4.406165 4.244812

1.04 0.299 -3.913513

12.72584

lnitel -5.68182 2.247752

-2.53 0.011 -10.08733

-1.276308

lmm -6.635993 4.870502

-1.36 0.173 -16.182

2.910016

lpop -19.75019 4.976693

-3.97 0.000 -29.50433

-9.996053

retinv 15.37572 22.45681

0.68 0.494 -28.63882

59.39026

indcos .0003692 .0035786

0.10 0.918 -.0066447

.007383

demo 1.8927 2.386964

0.79 0.428 -2.785665

6.571064

govstab 3.003294 .9447061

3.18 0.001 1.151704

4.854884

riskpol -.0141713 .2912729

-0.05 0.961 -.5850558

.5567132

burocat .0922872 3.054052

0.03 0.976 -5.893545

6.078119

_cons -317.7587 145.9832

-2.18 0.030 -603.8806

-31.63688

 

 

 

sigma_u 0

 

 

sigma_e 15.114979

 

 

rho 0 (fraction

of variance due to u_i)

 

* 61 La somalie, le Soudan du sud et l'ile de sainte Helene ne sont mentionnés à cause de l'absence de données.

précédent sommaire






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Des chercheurs qui cherchent on en trouve, des chercheurs qui trouvent, on en cherche !"   Charles de Gaulle