Abstract
The cork oak regeneration is in the Maamora forest is
capricious. Based on the hypothesis that some soils are unsuitable for cork oak
development, thus leading to the replacement of a large portion of the forest
with exotic species. However, soil is not the only factor to consider in
landuse suitability. It is possible some areas might be unsuitable to the cork
oak regeneration but their magnitude is unknown. The aim of this study is to
highlight suitable sites for cork oak development.
To achieve this goal, firstly, the main known factors having
an influence in the cork oak regeneration was identified and mapped. Secondly,
due to the importance given to the thickness of the sand in the Maamora forest,
its spatial dependence was studied by a geostatistical approach. Therefore, the
factors were combined using a weighted linear combination with the weight of
each criterion calculated by AHP (Analytic Hierarchy Process) resulting to a
cork oak regeneration suitability index for the whole forest.
The mapping of these factors was made by inserting a fuzzy
logic to avoid crisp classes. This permitted the integration of an uncertainty
to the exact class boundaries
The main factors influencing the regeneration of the cork oak
forest of Maamora are the continentality manifested by a decrease in
precipitation from the west to east at the same time a rising temperature in
the opposite direction, the bare soil slope less than 10% (gentle slope) and
steep slope (> 15 %), the thickness of the sand, the slope of the clay
floor, the flora and soil types.
Furthermore, a great variability in the thickness of the sand
was observed. This variability is greater in the southwest northeast direction
than in the opposite direction. Spatial dependence or spatial autocorrelation
is less than 46.7 % with a sampling grid of 500 m X 500 m. From a systematic
sampling of every 100 m gave a spatial autocorrelation of 87.7 %. Using a
sampling grid of 500 m X 500 m, a large spatial variability was not observed.
To take into account a greater portion of the spatial variability of the sand's
thickness, a sampling grid of 300 to 350 m is advised.
Finally, four classes of regeneration suitability were
obtained. These classes are good, medium, low and very low suitability and
which represent 17.40 %, 40.18 %, 34.84 % and 4.28 % of the forest area
respectively.
vi
ÕÎáã
åÐå
ÉíãäÊá
ÉÈÓÇäã ÑíÛ
ÑÈÊÚÊ íÊáÇ
ÉÈÑÊáÇ
ÚÇæäÇ ÖÚÈá
ÇÑÙä ÉÈáÞÊã
ÉíáãÚ
ÉÑæãÚãáÇ
ÉÈÇÛ í
íäíááÇ
ØæáÈáÇ
ÏíÏÌÊ .ÇåäíÈ
Ç ãí áÎÇÏÊÊ
ìÑÎÇ áãÇæÚ
ßÇäå ÏÌæÊ äßá
ÉÑÏÞáÇ
ãííÞÊ í
ÏíÍæáÇ
áãÇÚáÇ íå
ÊÓíá ÉÈÑÊáÇ
ßáÐ Úãæ
.ÑÇÌÔáÇÇ
ÇåÞÇØä æå Çã
äßáæ íäíááÇ
ØæáÈáá
ÉÍáÇÕ ÑíÛ
ÞØÇäãáÇ ÖÚÈ
ä äßããáÇ äã
ÉÈÊÑãáÇ í
íäíááÇ
ØæáÈáÇ
ÏíÏÌÊ ÉíáãÚ
ìáÚ ÑËÄÊ
íÊáÇ
ÉíÓíÆÑáÇ
áãÇæÚáÇ
ÏíÏÍÊ ãÊ
ÉíÇÏÈáÇ í
áÇÄÓáÇ ÇÏå
ìáÚ
ÉÈÇÌáÅá åÐå
ÌÒã ãÊ ÇÑíÎ
.åÚÖæã ÑíÛÊ
äÇßã ÏíÏÍÊ
äã äßãÊ
ÉíÌåäã
ÏÇãÊÚÇ ãÊ
áÇãÑáÇ ßãÓ
ìáÚ ÒíßÑÊáÇ
ÏÚÈ ÉíäÇËáÇ
ØæáÈáÇ
ÏíÏÌÊ ìáÚ
ÉÑÏÞáÇ
ÊÇÑÔÄã
ÏíÏÍÊá
ÉíáíáÍÊ
ÉíãÑå
ÉíáãÚ
ãÇÏÎÊÓÇÈ
áãÇÚ áß
ÉíãåÇ
ãííÞÊæ
ÇåÖÚÈ Úã
áãÇæÚáÇ
.íäíááÇ ááÇÎ
äã ßáÐ
ìáÌÊíæ
ÎÇäãáÇ :íå
ÉÑæãÚãáÇ
ÉÈÇÛ í
íäíááÇ
ØæáÈáÇ
ÏíÏÌÊ ÉíáãÚ
í ãßÍÊÊ íÊáÇ
ÉíÓíÆÑáÇ
áãÇæÚáÇ
áãÇæÚ ìáÇ
ÉÇÙÇ.ÓßÇÚãáÇ
åÇÌÊáÇÇ í
ÉÑÇÑÍáÇ
ÊÇÌÑÏ
ÚÇÊÑÇæ
ÞÑÔáÇ ìáÅ
ÈÑÛáÇ äã
ÑÇØãáÇ áæØå
í ÖÇÎäÇ
.ÉÈÑÊáÇ
ÚÇæäÇæ
ÉíäíØáÇ
ÉÞÈØáÇ
áÇãÑáÇ ßãÓ
ÉíÚíÈØáÇ
ÊÇÑÏÍäãáÇß
ìÑÎÇ .ÕáÇ
ÏæÏÍ äíÈ
ãÇÓÞäáÇÇ
ÈäÌÊá
íÈÇÈÖáÇ
ÞØäãáÇ
áÇÎÏÅ ÞíÑØ
äÚ áãÇæÚáÇ
åÐå äííÚÊ
ãÊí
.򋇂
åÇÌÊáÇÇ ÓßÚ
íÞÑÔáÇ
áÇãÔáÇ
åÇÌÊÇ í ÇÏÌ
ÑíÈß
áÇÊÎáÇÇ ÇÐå
áÊÎã ÏÌ
áÇãÑáÇ ßãÓ
ßáÐ ìáÚ
ÉæáÇÚæ ÑÊã 055
ìáÚ ÚÈÑã
ÑÊã 055 ÉßÈÔ äã
ÊÇäíÚáÇ ÐÎ
Úã %7..4 áËãí
íäÇßãáÇ
íÊÇÐáÇ
ØÇÈÊÑáÇÇ æ
íäÇßãáÇ
ÏÇãÊÚáÇÇ áÇ
íÊáÇ
ÉÑíÈßáÇ
ÉíäÇßãáÇ
ÊÇÑíÛÊáÇ ä
æÏÈí ° % 74 æå
íäÇßãáÇ
íÊÇÐáÇ
ØÇÈÊÑáÇÇ
ÑÊã 055 áß
ÉíÌåäã ÉäíÚ
äã .ÚÈÑã
ÉÖÎäã
ÉØÓæÊã ÉÏíÌ
:ÏÏÌÊáÇ ÉÑÏÞ
äã ÊÇÆ ÚÈÑ
ìáÚ áæÕÍáÇ
ãÊ ÇÑíÎÇ .ã
055í ÊÇäíÚáÇ
ÐÎ Úã ÇåÖÑÚ
ãÊí
.ÉÈÇÛáÇ
ÉÍÇÓã äã % 77,7
æ % 47777 7% 75707 % 5 0477
ÚÈÇÊÊáÇÈ
ÊÇÆáÇ åÐå
áËãÊæ ÇÏÌ
ÉÖÎäãæ
ÑííÇÚãáÇ
ÏÏÚÊãáÇ
ãííÞÊáÇ
ÉÑæãÚãáÇ
íäíááÇ
ØæáÈáÇ
:ÉíÓÇÓáÇÇ
ÊÇãáßáÇ
vii
Table des matières
Résumé iv
Abstract v
ÕÎáã vi
Liste des figures x
Liste des tableaux xii
Liste des sigles et acronymes xiii
Introduction 1
Chapitre 1. Revue bibliographique 4
1.1. Principe de la typologie des stations forestières
4
1.1.1. Définition de la station 4
1.1.2. Principaux descripteurs des stations 5
1.1.2.1. Régime hydrique 5
1.1.2.2. Climat 5
1.1.2.3. Topographie 6
1.1.2.4. Fertilité du sol 6
1.1.2.5. Phytocénose 6
1.1.3. Utilisation pratique de la notion de la station 7
1.1.4. Notion de groupes de stations 7
1.1.5. Conclusion 8
1.2. Aperçu sur le chêne-liège 8
1.2.1. Aire de répartition du chêne-liège
8
1.2.2. Ecologie du chêne-liège 10
Chapitre 2. Matériels et méthodes 12
2.1. Présentation de la zone d'étude 12
2.1.1. Situation géographique, administrative et
forestière 12
2.1.2. Caractéristiques du milieu 13
2.1.2.1. Cadre géologique 13
2.1.2.2. Cadre topographique 13
2.1.2.3. Cadre hydrographique 14
2.1.2.4. Cadre pédologique 14
2.1.2.5. Cadre climatique 15
2.1.2.6. Groupements et associations végétales de
la Maâmora 20
viii
2.2. Approche méthodologique 21
2.2.1. Analyse des facteurs influençant la
régénération du chêne-liège en
Maâmora 21
2.2.2. Outils de traitement 22
2.2.3. Facteurs considérés 22
2.2.3.1. Profondeur du plancher argileux (épaisseur du
sable) 22
2.2.3.2. Pente du plancher argileux 24
2.2.3.3. Types de sol 25
2.2.3.4. Climat 25
2.2.3.5. Topographie 25
2.2.3.6. Groupements végétaux 26
2.2.4. Evaluation de l'aptitude 26
2.2.4.1. Identification de l'objectif 26
2.2.4.2. Détermination des critères et contraintes
d'évaluation 26
2.2.4.3. Détermination des notes ou scores pour chacun des
critères 27
2.2.4.4. Attribution de poids à chacun des facteurs 27
2.2.4.5. Description du processus d'AHP 28
2.2.4.6. Agrégation ou combinaison des poids et notes pour
un résultat
synthétique 30
2.2.5. Base de données géographiques 30
Chapitre 3. Résultats et discussions 32
3.1. Analyse des facteurs influençant la
régénération du chêne-liège en Maâmora
32
3.1.1. Epaisseur du sable et la pente du plancher argileux 32
3.1.2. Pédologie 33
3.1.3. Continentalité 34
3.1.4. Flore 34
3.1.5. Pente du terrain 35
3.2. Analyse de la variabibilité de l'épaisseur du
sable 35
3.2.1. Analyse exploratoire des données 36
|