WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Prédiction de durée de séjour hospitalier en gynécologie basée sur le machine learning: cas de quelques hôpitaux au sud-Kivu


par René CUBAKA ZAHINDA
Institut Supérieur Pédagogique de Kaziba - Licence 2022
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Annexe

Annexe I : Information de notre base de données

1 DATABASE. info ()

<class 'pandas core frame DataFrame'> Int64Index : 332 entries, 0 to 331 Data columns (total 25 columns) :

#

Column

Non-Null Count

Dtype

0

Adresse(km)

332 non-null

float64

1

Age

332 non-null

float64

2

Hopital

332 non-null

category

3

Grossesse

332 non-null

category

4

IU

332 non-null

category

5

MAV

332 non-null

category

6

Anémie

332 non-null

category

7

Paludisme

332 non-null

category

8

Avortement

332 non-null

category

9

Infections

332 non-null

category

10

Autres

332 non-null

category

11

AB

332 non-null

category

12

AP

332 non-null

category

II

13

 

OCYTOCIQUES

332 non-null

category

14

AI

332 non-null

category

15

ASM

332 non-null

category

16

ANAL

332 non-null

category

17

AAL

332 non-null

category

18

Vitamine

332 non-null

category

19

Celphalo

332 non-null

category

20

AA

332 non-null

category

21

Transfusion

332 non-null

category

22

Autre2

332 non-null

category

23

MeanDDSHop

332 non-null

float64

24

DDS

332 non-null

int32

dtypes : category(21), float64(3), int32(1) memory usage : 19.6 KB memory usage : 70.4 KB

Annexe II : Subdivision de la base de données

1 #Subdivision de la base de données en target et data

2 data=BASE[ [ ' Adresse (km) ', 'Age ' , ' Hopital ' , ' Grossesse ', 'IU ' , 'MAV' , 'Ané mie' ,

3 ' Paludisme' , ' Avortement' , ' Infections ' , ' Autres' , 'AB' , 'AP' ,

4 'OCYTOCIQUES' , 'AI ' , 'ASM' , 'ANAL' , 'AAL' , ' Vitamine ' , ' Celphalo ' , 'AA' ,

5 ' Transfusion ', ' Autre2 ' , 'MeanDDSHop ' ] ]

6 target=BASE[ [ 'DDS' ] ]

7

8 #Données de test et données d ' entrainement

9 x , y=data , target

10 x_train , x_test , y_train , y_test= train_test_split (x , y , test_size =0.20)

III

Annexe III :Entrainement de nos données aux modèles de machine learning

Arbes de décision

1

2

3 # Split the data into training and testing sets

4 x_train , x_test , y_train , y_test = train_test_split (x , y , test_size =0.20 , random_state=0) # Adjust test_size and random_state as needed

5

6 # Model initialization and training

7 model1 =t ree . DecisionTreeRegressor (max_depth=300, min_samples_split =25)

8 model1 . fit ( x_train , y_train )

9

10 # Model evaluation

11 y_pred = model1 . predict ( x_test )

12 # Compute various scores

13 mae = mean_absolute_error ( y_test , y_pred)

14 mse = mean_squared_error ( y_test , y_pred)

15 r_squared = r2_score ( y_test , y_pred)

16

17 # Print the scores in a formatted manner

18 print ("Mean Absolute Error : { :.2 f }". format (mae) )

19 print ("Mean Squared Error : { :.2 f }". format (mse) )

20 print ("R-squared : { :.2 f }". format ( r_squared ) )

21

22 # Print the R-squared score in a formatted manner

23 print ("R-squared : { :.2 f }". format ( r_squared ) )

k plus proches voisins

1 import numpy as np

2 import matplotlib . pyplot as plt

3 from sklearn . datasets import load_digits

4 from sklearn . neighbors import KNeighborsRegressor

IV

5 from sklearn . model_selection import train_test_split

6 from sklearn . metrics import mean_absolute_error , mean_squared_error , r2_score

7

8 # Assuming x and y are your data and target

9 x , y = data, target

10

11 # Split the data into training and testing sets

12 x_train , x_test , y_train , y_test = train_test_split (x , y , test_size =0.20 , random_state=42)

13 # Adjust random_state as needed

14

15 # Model initialization and training

16 MODEL = KNeighborsRegressor ( leaf_size =30000000, metric='minkowski ' , n_neighbors=10, p=4000, weights ='uniform ' )

17 MODEL. fit ( x_train , y_train )

18

19 # Model evaluation

20 y_pred = MODEL. predict ( x_test )

21

22 # Compute various scores

23 mae = mean_absolute_error ( y_test , y_pred)

24 mse = mean_squared_error ( y_test , y_pred)

25 r_squared = r2_score ( y_test , y_pred)

26

27 # Print the scores

28 print ("Mean Absolute Error :" , mae)

29 print ("Mean Squared Error :" , mse)

30 print ("R-squared :" , r_squared )

31

32 # Visualize the results

33 plt . scatter ( y_test , y_pred , color ='blue ' )

34 plt . xlabel ("Actual Values")

35 plt . ylabel (" Predicted Values")

36 plt . title ("Actual vs . Predicted Values")

37 plt . show ()

V

Réseau de neurone

1 import numpy as np

2 from sklearn . datasets import load_digits

3 from sklearn . neural_network import MLPRegressor

4 from sklearn . model_selection import train_test_split

5 from sklearn . preprocessing import StandardScaler

6 from sklearn . metrics import mean_squared_error , r2_score

7

8 # Assuming x and y are your data and target

9 x , y = data, target

10

11 # Split the data into training and testing sets

12 x_train , x_test , y_train , y_test = train_test_split (x , y , test_size =0.20 , random_state=42)

13

14 # Feature scaling

15 scaler = StandardScaler ()

16 x_train_scaled = scaler . fit_transform ( x_train )

17 x_test_scaled = scaler. transform ( x_test )

18

19 # Model initialization and training

20 model = MLPRegressor( hidden_layer_sizes =(300, 700 , 1) , max_iter=1000)

21 model. fit ( x_train_scaled , y_train )

22

23 # Model evaluation

24 y_pred = model. predict ( x_test_scaled )

25 # Compute various scores

26 mae = mean_absolute_error ( y_test , y_pred)

27 mse = mean_squared_error ( y_test , y_pred)

28 r_squared = r2_score ( y_test , y_pred)

29

30 # Print the scores in a formatted manner

31 print ("Mean Absolute Error : { :.2 f }". format (mae) )

32 print ("Mean Squared Error : { :.2 f }". format (mse) )

VI

33 print ("R-squared : { :.2 f } " . format ( r_squared ) )

34

35 # Visualize the results

36 plt . scatter ( y_test , y_pred , color ='blue ' )

37 plt . xlabel ( " Actual Values " )

38 plt . ylabel ( " Predicted Values " )

39 plt . title ( " Actual vs . Predicted Values " )

40 plt . show ()

Modèle linéaire généralisé avec la distribution de poisson

1 import pandas as pd

2 from patsy import dmatrices

3 import numpy as np

4 import statsmodels . api as sm

5 import matplotlib . pyplot as plt

6 poisson_training_results = sm.GLM( y_train , x_train , family=sm. families . Poisson()). fit ()

7 print ( poisson_training_results . summary()) #affichage du résumé

Modèle linéaire généralisé avec la distribution de Binomiale négative

1 import pandas as pd

2 from patsy import dmatrices

3 import numpy as np

4 import statsmodels . api as sm

5 import matplotlib . pyplot as plt

6 nb_training_results = sm.GLM( y_train , X_train , family=sm. families. NegativeBinomial () ) . fit ()

7 print ( nb_training_results . summary ( ) ) #affichage du résumé

précédent sommaire






La Quadrature du Net

Ligue des droits de l'homme