Abstract
The world's energy needs continue to grow. Fossil fuels now
retain a dominant position in meeting energy demand. This creates economic and
environmental constraints. Based on this observation, it is necessary to look
for other alternative energy resources such as renewable energies. Among the
potential sources, photovoltaic conversion is extremely promising. The use of
solar energy in remote sites for different applications such as water pumping
and electrification is of great interest.
However, this technology is currently facing a large number of
problems such as the maintenance of photovoltaic systems and after-sales
monitoring. Many photovoltaic installations fail for a long time without
repair, particularly in Africa. These problems tarnish the reputation of the
sector and hinder its development.
The general objective of this work is to contribute to the
development of the photovoltaic sector. More specifically, this work consists
of identifying the different types of failures in each system. The levels of
recurrence of photovoltaic system failures are also determined in this work.
Indeed, scientific information relating to failures and their levels of
recurrence is made available to the actors (design offices, user installers,
etc.) in the photovoltaic field.
The results obtained show that batteries are the most fragile
components (40%) for photovoltaic systems for electrification. Controllers are
the most vulnerable components (43.75%) for photovoltaic systems for pumping.
It should be noted that the main causes of photovoltaic system failures are
lightning (40%), overload (30%) and human intrusion (20%).
Thus, to remedy the various problems and ensure optimal
operation of a photovoltaic installation, the following solutions were
recommended.
Organisation of regular and close visit and inspection
campaigns.
Organization of training sessions for users (the beneficiaries of
the facilities).
Increased security at installation sites to limit human
intrusion.
Installation of lightning arresters in the sites to strongly
mitigate the impacts of lightning.
Keywords: Photovoltaics, Pumping,
Electrification, Failures, Maintenance, Recurrence.
Année Universitaire : 2017-2018 Page v
Liste des figures
Figure I.1: Types de rayonnements solaires
reçus au sol 4
Figure I.2: Intensité de
l'ensoleillement reçu sur un plan horizontal incliné (Narimene
DEBILI, 2015)
4
Figure I.3: Analyse spectrale du rayonnement
solaire 5
Figure I.4: Présentation
schématique d'une cellule solaire 7
Tableau 1: Les différents types de
cellules en silicium et leurs rendements 8
Figure I.5: Constitution d'un module PV 9
Figure I.6: Protection des modules par les
diodes anti retour et by-pass 9
Figure I.7: Pompage photovoltaique au fil du
soleil 10
Figure I.8: Pompage photovoltaique avec
stockage d'énergie 11
Figure I.9: Schéma simplifié
d'un SPV 12
Tableau 2: Les besoins en eau [11] 14
Figure II.1: Hauteur manométrique
totale 15
Tableau 3: Estimation des besoins
énergétiques des récepteurs alimentés 16
Figure II.2: Interface HOMER-fichier vierge
19
Figure II.3: Interface HOMER-résultats
des calculs 19
Figure II.4: Interface RETScreen 20
Figure II.5: Interface RETScreen-onglet
démarrer 20
Figure II.6: Interface PV*SOL 21
Figure II.7: Interface COMPASS Lorentz 22
Figure II.8: Système de pompage
solaire 25
Tableau 4: Liste des installations de SPVE
30
Tableau 5: Liste des installations de SPVP
31
Tableau 6 : Les composants d'un
système PV et leurs défaillances 32
Tableau 7 : Les composants défaillants
33
Figure III.2: Histogramme de fréquence
des défaillances des composants d'un SPVE 34
Figure III.3: Histogramme des niveaux de
récurrence des défaillances des modules PV 34
Figure III.4: Histogramme des niveaux de
récurrence des défaillances des onduleurs 35
Figure III.5: Histogramme des niveaux de
récurrence des défaillances des batteries 35
Tableau 8: Les causes des défaillances
36
Figure III.6: Histogramme des niveaux de
récurrence des causes des défaillances des SPVE 37
Tableau 9: Les solutions proposées
37
Tableau 10 : Les composants d'un SPVP et
leurs défaillances. 38
Tableau 11: Les défaillances, causes
et solutions proposées 38
Figure III.7: Histogramme de
récurrence des défaillances des composants d'un SPVP 40
Figure III.8: Histogramme des niveaux de
récurrence des défaillances de la pompe 41
Figure III.9: Histogramme des niveaux de
défaillances du contrôleur 41
Figure III.10: Histogramme des niveaux de
récurrence des défaillances des sondes 42
Figure III.11: Histogramme des niveaux de
récurrence des défaillances des tuyaux. 42
Figure III.12: Histogramme de
récurrence des causes des défaillances d'un SPVP 43
Année Universitaire : 2017-2018 Page vi
|