CONCLUSION
Our results showed that the use of EOs as larvicides is a
promising strategy. Therefore, they could be the object of
Thèse de Doctorat unique - 150
-
TABLE 5 | Median and 90% lethal concentrations
and their Confidence Limits (CLs) of plant essential oils against 3 and 4
larval instars of Aedes aegypti from Bobo-
Dioulasso, field strain.
|
|
|
|
|
|
|
Treatment
|
LC50 (ppm)
|
Confidence limit 95%
|
LC90 (ppm)
|
Confidence limit 95%
|
X2(df)
|
Slope ( #177; SE)
|
Pyriproxyfen
|
11.04a
|
8.2-13.7
|
43.2a
|
35.3-56.1
|
80.8
|
2.1 #177; 0.24
|
Cymbopogon citratus
|
74.6c
|
67.7-81.2
|
152.3c
|
131.9-186.0
|
116.2
|
5.1 #177; 0.48
|
Cymbopogon nardus
|
63.5c
|
57.3-69.4
|
148.5c
|
128.4-182.6
|
74.2
|
5.4 #177; 0.54
|
Ocimum americanum
|
79.4e
|
67.6-90.2
|
226.3d
|
186.9-302.9
|
64.4
|
2.8 #177; 0.35
|
Lippia multitlora
|
42b
|
33.4-47.3
|
74.6b
|
65.3-92.5
|
22.0
|
6.0 #177; 1.28
|
Eucalyptus camaldulensis
|
103.8d
|
95.4-112.3
|
311.3d
|
238-503.1
|
18.3
|
4.9 #177; 0.45
|
LC (lethal concentration) in ppm (part per million). LC
values followed by different letters are significantly different.
Frontiers in Tropical Diseases |
www.frontiersin.org 5 July 2022
| Volume 3 | Article 853405
Balbone' et al. Larvicidal Activities in
Mosquitoes
particular attention in the search for new natural,
selective, and biodegradable larvicidal products that can be used in public
health vector control programs against An. gambiae
and Ae. aegypti in
particular.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are
included in the article/supplementary materials, further inquiries can be
directed to the corresponding author/s.
AUTHOR CONTRIBUTIONS
MB and OG designed the study. DS critically supervised
the study. MB, HK, GM, and OT carried out the laboratory experiments. MB, SD,
and OG analyzed and interpreted the data and drafted the manuscript. OG, RD,
and MN revised the
REFERENCES
1. WHO. (2020) 2507(February).
2. WHO. WHO. World malaria report, Briefing kit/Global
messaging (2021).
3. Ministere de la Santé du Burkina Faso,
Direction des statistiques sectorielles. Rapport
Final. (2018).
4. WHO. Noncommunicable Diseases
(2021). Available at: https://www.who.int/
news-room/fact-sheets/detail/n.
5. MinisteÌ re de la
Santeì.
«MinisteÌre de la Santé du
Burkina Faso, Direction des statistiques
sectorielles«Flambée de cas de dengue au Burkina
Faso,». In: Sitrep Dengue, vol.
26 p.11. (2017).
6. Minjas JN. «Laboratory
Observation on the Toxicity of Swartzia Madaguscariensis (Leguminosae) Extract
to Mosquito Larvae. Trans R Soc Trop Med Hyg (1986)
80:460-1. doi: 10.1016/0035-9203(86)90345-7
7. WHO. Vector Resistance for
Pesticides. World Health Organization Technical Report Serial 818
Vol. 17. . Geneva: WHO (1992) p. 62 pp.
499-504.
8. Hemingway J. Parasitology: Enhanced New Ways to
Control Malaria. Science (2004)
303:1984-5. doi: 10.1126/science.1096548
9. Gnankine O, Bassoleì IHN,
Chandre F, Glitho IA, Akogbeto M, Dabireì RK, et al.
Insecticide Resistance in Bemisia Tabaci Gennadius
(Homoptera: Aleyrodidae) and Anopheles Gambiae Giles
(Diptera: Culicidae) Could Compromise the Sustainability of Malaria Vector
Control Strategies in West Africa. Acta Tropica
(2013) 128(1):7-17. doi:
10.1016/j.actatropica.2013.06.004
10. Redwane A, Lazrek HB, Bouallam S, Markouk M,
Amarouch H, Jana M. Larvicidal Activity of Extracts From Querus Lusitania Var.
Infectoria Galls (Oliv). J Ethnophamacol (2002)
79:261-3. doi: 10.1016/S0378-8741(01)00390-7
11. Gnankineýì O,
Bassoleýì ILHN. Essential Oils as an Alternative
to Pyrethroids ` Resistance Against Anopheles Species Complex
Giles. molecules (2017), 22 (10):1321. doi:
10.3390/molecules22101321
12. Zoubiri S, Baaliouamer A. Potentiality of Plants
as Source of Insecticide Principles. J Saudi Chem Soc
(2014) 18(6):925-38. doi:
10.1016/j.jscs.2011.11.015
13. Tripathi AK, Upadhyay S, Bhuiyan M, Bhattacharya
PR. A Review on Prospects of Essential Oils as Biopesticide in Insect-Pest
Management. Pharmacol Phytother (2009)
1(5):52-63.
14. Deletre E, Martin T, Campagne P, Bourguet D,
Cadin A, Menut C, et al. Repellent, Irritant and Toxic Effects of 20 Plant
Extracts on Adults of the Malaria Vector Anopheles Gambiae Mosquito.
PloS one (2013) 8(12):1-10. doi:
10.1371/journal.pone.0082103
15. Abegaz B, Asfaw N, Lwande W. Constituents of the
Essential Oils From Wild and Cultivated Lippia Adoensis Hochst. Ex Walp.
J Essent Oil Res (1993) 5
(5):487-91. doi: 10.1080/10412905.1993.9698268
manuscript. All authors contributed to the article
and approved the submitted version.
FUNDING
Funding for this study was provided partly by the
TWAS 18-163 RG/BIO/AF/AC_G-FR3240303649 and the Centre
d'excellence Africain (CEA) en Innovations biotechnologiques
pour l'elimination des maladies a transmission vectorielle. I
also thanks LAMIVECT (Laboratoire Mixte International sur les Maladies à
transmissions Vectorielle) for supporting publication fees.
ACKNOWLEDGMENTS
We are indebted to «Institut de
recherche en Sciences Appliqueìes et
technologiques» (IRSAT) for providing us with essential
oils.
16. Daferera BD, Sokmena A, Sokmen M, Polissiou M.
Antimicrobial and Antioxidant Activities of the Essential Oil and Various
Extracts of Salvia Tomentosa Miller (Lamiaceae). Food Chem
(2005) 90(3):333-40. doi:
10.1016/j.foodchem.2003.09.013
17. Ohno T, Kita M, Yamaoka Y, Imamura S, Yamamoto T,
Mitsufuji S, et al. Antimicrobial Activity of Essential Oils and Other Plant
Extracts. Helicobacter (2003)
8:207-15. doi: 10.1046/j.1523-5378.2003.00146.x
18. Abena AA, Diatewa GM, Gakosso M, Gbeassor TH,
Hondi-Assah, Ouamba JM. Comparative Chemical and Analgesic Properties of
Essential Oils of Cymbopogon Nardus (L) Rendle of
Benin and Congo. Afr J Tradit Complement Altern Med
(2007) 4(3):267-72. doi:
10.4314/ajtcam.v4i3.31218
19. Ahouansou AC, Fagla SRM, Tokoudagba JM, Toukourou
H, Badou YK, Gbaguidi FA. Chemical Composition and Larvicidal Activity of the
Essential Oil of Cymbopogon Nardus (L.) Rendle on
Anopheles Gambiae. Int J Biol Chem Sci
(2019) 13(3):1861. doi: 10.4314/ijbcs.v13i3.53
20. Drabo SF, Olivier G, Bassoleì
IHN, Neìbieì RC,
Laurence M. Susceptibility of MED-Q1 and MED-Q3 Biotypes of Bemisia Tabaci
(Hemiptera: Aleyrodidae) Populations to Essential and Seed Oils. J
Econ Entomol (2017) 110(3):1031-8. doi:
10.1093/jee/tox100
21. Wangrawa DW, Badolo A, Guenne S,
Guelbeýìogo WM,
Kiendreýìbeogo M, Sagnon N, et al. Larvicidal
and Oviposition- Deterrence Activities of Four Local Plant Extracts From
Burkina Faso Against Anopheles Gambiae s. L. (Diptera: Culicidae).
Int J Mosquito Res (2016)
3(6):11-9.
22. Yameìogo F, Wangrawa DW,
Sombieì A, Sanon A, Badolo A. Insecticidal Activity of
Essential Oils From Six Aromatic Plants Against Aedes Aegypti, Dengue Vector
From Two Localities of Ouagadougou, Burkina Faso. Arthropod Plant
Interact (2021) 15(4):627-34. doi:
10.1007/s11829-021-09842-4
23. Bassoleýì IHN,
Guelbeýìogo WM,
Neýìbieýì R,
Costantini C, Sagnon NF, Kabore ZI, et al. Ovicidal and Larvicidal Activity
Against Aedes Aegypti and Anopheles Gambiae Complex Mosquitoes of Essential
Oils Extracted From Three Spontaneous Plants of Burkina Faso.
Parasitologia (2003) 45:23-6. doi:
10.1007/s11829-021-09842-4
24. Pereira Filho AA, Pessoa GCD, Yamaguchi LF,
Stanton MA, Serravite AM, Pereira RHM, et al. Larvicidal Activity of Essential
Oils From Piper Species Against Strains of Aedes Aegypti
(Diptera: Culicidae) Resistant to Pyrethroids. Front
Plant Sci (2021) 12:685864. doi:
10.3389/fpls.2021.685864
25. WHO. World Malaria Report 2015 -
Summary. (2015). Available at: http://
www.who.int/malaria/publications/world-malaria-report-2015/report/en/.
26. Petersen JL, Floore TG, Brogdon WG. Diagnostic
Dose of Synergized D-Phenothyrin for Insecticide Susceptibility Testing by
Bottle Bioassay. J Am Mosq Control Assoc (2004)
20:183-8.
Thèse de Doctorat unique - 151
-
Frontiers in Tropical Diseases |
www.frontiersin.org
6 July 2022 | Volume 3 | Article 853405
Balbone' et al. Larvicidal Activities in
Mosquitoes
27. Manh HD, Hue DT, Hieu NTT, Tuyen DTT, Tuyet OT. The
Mosquito Larvicidal Activity of Essential Oils From Cymbopogon and Eucalyptus
Species in Vietnam. Insects (2020) 11(2):1-7. doi:
10.3390/insects11020128
28. Cavalcanti ES, Morais SM, Lima MA, Santana EW. Larvicidal
Activity of Essential Oils from Brazilian Plants Against Aedes aegypti
L. Mem Inst Oswaldo Cruz (2004) 99(5):541-4.
doi: 10.1590/S0074-02762004000500015
29. Folashade KO, Omoregie EH. Essential Oil of Lippia
Multiflora Moldenke : A Review. J Appl Pharm Sci (2012)
02(1):15-23.
30. Namountougou M, Soma DD, Kientega M,
Balboneýì M, Kaboreýì DPA, Drabo SF, et al.
Insecticide Resistance Mechanisms in Anopheles Gambiae Complex Populations From
Burkina Faso, West Africa. Acta Tropica (2019) 197:1-
93201-12. doi: 10.1016/j.actatropica.2019.105054
31. Chandre F, Darrier LM, Akogbeto M, Faye O, Mouchet J,
Guillet P. Status of Pyrethroid Resistance in Anopheles Gambiae Sensu Lato.
Bulletin of the World Health Organization (1999)
77(3):230-4.
32. Poda SB, Soma DD, Hien A, Namountougou M,
Gnankineýì O, Diabateýì A, et al. Targeted
Application of an Organophosphate - Based Paint Applied on Windows and Doors
Against Anopheles Coluzzii Resistant to Pyrethroids Under Real Life Conditions
in Vallýìe Du Kou, Burkina Faso (West Africa). Malaria J
(2018) 17(136):1-9. doi: 10.1186/s12936-018-2273-x
33. Namountougou M, Soma DD, Balboneýì M,
Kaboreýì AD, Kientega M, Hien A, et al. Monitoring Insecticide
Susceptibility in Aedes Aegypti Populations
From the Two Biggest Cities, Ouagadougou and Bobo-Dioulasso,
in Burkina Faso: Implication of Metabolic Resistance. Trop Med Infect Dis
(2020) 5:84. doi: 10.3390/tropicalmed5020084
Conflict of Interest: The authors declare that the research
was conducted in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.
Publisher's Note: All claims expressed in this article are
solely those of the authors and do not necessarily represent those of their
affiliated organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim that may
be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Copyright(c) 2022 Balboneì, Soma,
Namountougou, Drabo, Konateì, Toe, Bayili, Meda, Dabiré
and Gnankine. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these
terms.
Thèse de Doctorat unique - 152
-
Frontiers in Tropical Diseases |
www.frontiersin.org
7 July 2022 | Volume 3 | Article 853405
Vector Control, Pest Management, Resistance, Repellents
Downloaded from
https://academic.oup.com/jme/advance-article/doi/10.1093/jme/tjac148/6759614
by guest on 14 October 2022
Alternatives to Pyrethroid Resistance: Combinations of
Cymbopogon nardus and Ocimum americanum Essential Oils
Improve the Bioefficiency Control Against the Adults' Populations of Aedes
aegypti (Diptera: Culicidae)
Mahamoudou Balboné,1 Dieudonné
Diloma Soma,2 Samuel Fogné Drabo,1 Moussa
Namountougou,2,3 Hamadou Konaté,2,3 Georges Benson
Meda,2 Ignace Sawadogo,4 Rahim Romba,1 Etienne
Bilgo,2 Roger C. H. Nebié,4 Imaël H. N.
Bassolé,1 Roch K. Dabire,2 and Olivier
Gnankine1,5,
1Laboratoire d'Entomologie Fondamentale et
Appliquée, Unité de Formation et de Recherche en Sciences de la
Vie et de la Terre (UFR-SVT), Université Joseph KI-ZERBO, Ouagadougou,
Burkina Faso, 2Institut de Recherche en Sciences de la
Santé/Centre Muraz, Bobo-Dioulasso BP 545, Burkina Faso,
3Université Nazi Boni, Bobo-Dioulasso, Burkina Faso,
4Institut de Recherche en Sciences Appliquées et
Technologies, Ouagadougou 03 BP 7047, Burkina Faso, and
5Corresponding author,
e-mail:
olignankine@gmail.com;
olivier.gnankine@ujkz.bf
Subject Editor: Athanase Badolo
Received 8 June 2022; Editorial decision 23 August 2022.
|