Conclusion
The current study confirmed that the essential oils of
Cymbopogon citratus, Cymbopogon nardus, Eucalyptus camaldulensis, Lippia
multi!ora and Ocimum americanum have insecticidal properties.
L. multi!ora EO was efficient in comparison with the others tested.
Our current study showed that the activity of the two combined EOs, C.
nardus and O. americanum, was improved by the combinations at
certain proportions regarding the values of rate of mortality reaching at least
98%.
The EO of L. multi!ora and combinations of EO of
C. nardus and O. americanum could be valuable alternatives in
the malaria vector control.
Data availability
The datasets generated and analyzed during the current study
are available from the corresponding author on reasonable request. Requests to
access these datasets should be directed to the corresponding author.
Received: 30 April 2022; Accepted: 2 November 2022
References
1. WHO. Global plan for insecticide management. (World
Health Organisation, Geneva, Switzerland 130, 2012).
2. WHO. Paludisme: situation mondiale. vol. 2507. World Health
Organisation, Geneva, Switzerland, (2020).
3. WHO. Procédures pour tester la
résistance aux insecticides chez les moustiques vecteurs du paludisme
Seconde édition. (World Health Organisation, Geneva,
Switzerland, 2017).
4. WHO. Guidelines for Malaria Vector Control.
(World Health Organisation, Geneva, Switzerland, 2019).
5. Churcher, T. S., Lissenden, N., Griffin, J. T., Worrall,
E. & Ranson, H. The impact of pyrethroid resistance on the efficacy and
effectiveness of bednets for malaria control in Africa. Elife
5, 16090 (2016).
6. Hemingway, J. et al. Averting a malaria disaster:
Will insecticide resistance derail malaria control?. Lancet
387, 1785-1788 (2016).
7. Dabiré, K. R. et al. Trends in insecticide
resistance in natural populations of malaria vectors in Burkina Faso, West
Africa: 10 Years surveys K. INTECH 32, 479-502
(2012).
8. WHO. WHO Global Malaria Programme: Global Plan for
insecticide resistance management. (World Health Organisation,
Geneva, Switzerland, 2012).
9. Toe, K. H. et al. Do bednets including piperonyl
butoxide offer additional protection against populations of Anopheles gambiae
s.l. that are highly resistant to pyrethroids? An experimental hut evaluation
in Burkina Faso. Med. Vet. Entomol. 32, 407-416
(2018).
10. Hien, A. S. et al. Evidence supporting
deployment of next generation insecticide treated nets in Burkina Faso:
Bioassays with either chlorfenapyr or piperonyl butoxide increase mortality of
pyrethroid-resistant Anopheles gambiae. Malar. J.
20, 1-12 (2021).
11. Zoubiri, S. & Baaliouamer, A. Potentiality of plants
as source of insecticide principles. J. Saudi Chem. Soc.
18, 925-938 (2014).
12. Tripathi, A. K., Upadhyay, S., Bhuiyan, M. &
Bhattacharya, P. R. A review on prospects of essential oils as biopesticide in
insect-pest management. J. Pharmacogn. Phytother. 1,
52-63 (2009).
13. Isman, M. B. Plant essential oils for pest and disease
management. Crop Prot. 19, 603-608 (2000).
14. Mossa, A. T. H. Green pesticides: Essential oils as
biopesticides in insect-pest management. J. Environ. Sci. Technol.
9, 354-378 (2016).
15. Lucia, A. et al. Larvicidal effect of
Eucalyptus grandis essential oil and turpentine and their major
components on Aedes aegypti larvae. J. Am. Mosq. Control Assoc.
23, 299-303 (2007).
16. Singh, R., Koul, O. & Rup, P. J. Toxicity of some
essential oil constituents and their binary mixtures against Chilo partellus
(Lepi-doptera: Pyralidae). Int. J. Tropical Insect Sci.
29, 93-101 (2009).
17. Sarma, R., Adhikari, K., Mahanta, S. & Khanikor, B.
Combinations of plant essential oil based terpene compounds as larvicidal and
adulticidal agent against Aedes aegypti (Diptera: Culicidae). Sci.
Rep. 9, 1-13 (2019).
Scientific Reports | (2022) 12:19077 |
https://doi.org/10.1038/s41598-022-23554-6
8
18.
Thèse de Doctorat unique - 169
-
Mansour, S. A., Foda, M. S. & Aly, A. R. Mosquitocidal
activity of two Bacillus bacterial endotoxins combined with plant oils and
conventional insecticides. Ind. Crops Prod. 35, 44-52 (2012).
19. Yaméogo, F., Wendgida, D. W., Sombié, A.,
Sanon, A. & Badolo, A. Insecticidal activity of essential oils from six
aromatic plants against Aedes aegypti, dengue vector from two
localities of Ouagadougou Burkina Faso. Arthropod. Plant. Interact. 15,
627-634 (2021).
20. Wangrawa, D. W. et al. Essential oils and their
binary combinations have synergistic and antagonistic insecticidal properties
against Anopheles gambiae s l. (Diptera: Culicidae). Biocatal. Agric.
Biotechnol. 42, 102347 (2022).
21. Drabo, S. F., Olivier, G., Bassolé, I. H. N.,
Nébié, R. C. & Laurence, M. Susceptibility of MED-Q1 and
MED-Q3 biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae) populations
to essential and seed oils. J. Econ. Entomol. 110, 1031-1038
(2017).
22. N'Guessan, R., Corbel, V., Akogbéto, M. &
Rowland, M. Treated nets and indoor residual reduced efficacy of
insecticide-pyrethroid resistance area benin. Emerg. Infect. Dis. 13,
199-206 (2007).
23. WHO. Standard operating procedure for testing
insecticide susceptibility of adult mosquitoes in WHO tube tests. (World
Health Organisation, Geneva, Switzerland 2022).
24. Abbott, W. S. A method of computing the effectiveness of
an insecticide. J. Econ. Entomol. 18, 265-267 (1925).
25. Schelz, Z., Molnar, J. & Hohmann, J. Antimicrobial
and antiplasmid activities of essential oils. Fitoterapia 77, 279-285
(2006).
26. Bassolé, I. H. N. & Juliani, H. R. Essential
oils in combination and their antimicrobial properties. Molecules 17,
3989-4006 (2012).
27. WHO. Test Procedures for Insecticide Resistance
Monitoring in Malaria Vector Mosquitoes Second edition. (World Health
Organisation, Geneva, Switzerland 2016).
28. Tchoumbougnang, F. et al. Activité
larvicide sur Anopheles gambiae giles et composition chimique des
huiles essentielles extraites de quatre plantes cultivées au Cameroun.
Biotechnol. Agron. Soc. Environ. 13, 77-84 (2009).
29. Ranson, H. & Lissenden, N. Insecticide resistance in
African Anopheles mosquitoes: A worsening situation that needs urgent action to
maintain malaria control. Trends Parasitol. 32, 187-196 (2016).
30. Wangrawa, D. et al. Insecticidal activity of
local plants essential oils against laboratory and field strains of Anopheles
gambiae s. L. (Diptera: Culicidae) from Burkina Faso. J. Econ. Entomol.
111, 2844-2853 (2018).
31. Gbolade, A. A. & Lockwood, G. B. Toxicity of
Ocimum sanctum L. essential oil to Aedes aegypti larvae and its
chemical composition. J. Essent. Oil Bearing Plants 11, 148-153
(2008).
32. Vani, R. S., Cheng, S. F. & Chuah, C. H. Comparative
study of volatile compounds from genus Ocimum. Am. J. Appl. Sci. 6,
523-528 (2009).
33. Bassolé, et al. Ovicidal and larvicidal
activity against Aedes aegypti and Anopheles gambiae complex
mosquitoes of essential oils extracted from three spontaneous plants of Burkina
Faso. Parasitologia 45, 23-26 (2003).
34. Peerzada, N. Chemical composition of the essential oil of
Hyptis Suaveolens. Molecules 2, 165-168 (1997).
35. Ilboudo, Z. et al. Biological activity and
persistence of four essential oils towards the main pest of stored cowpeas,
Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J. Stored Prod. Res.
46, 124-128 (2010).
36. Zulfikar, A. & Sitepu, F. Y. The effect of lemongrass
(Cymbopogon nardus) extract as insecticide against Aedes
aegypti. Int. J. Mosq. Res. 6, 101-103 (2019).
37. Ojewumi, E. M., Oladipupo, A. A. & Ojewumi, O. E. Oil
extract from local leaves an alternative to synthetic mosquito repellants.
Pharmacophore 9, 1-6 (2018).
38. Gnankiné, O. & Bassolé, I. H. N.
Essential oils as an alternative to pyrethroids resistance against Anopheles
species complex giles (Diptera: Culicidae). Molecules 22, 1321
(2017).
39. Bossou, A. D. et al. Chemical composition and
insecticidal activity of plant essential oils from Benin against Anopheles
gambiae (Giles). Parasit. Vectors 6, 337 (2013).
40. Balboné, et al. Essential oils from five
local plants: An alternative larvicide for Anopheles gambiae s. I. (Diptera:
Culicidae) and Aedes aegypti (Diptera: Culicidae) control in Western Burkina
Faso. Front. Trop. Dis. 3, 853405 (2022).
41. Bekele, J. & Hassanali, A. Blend effects in the
toxicity of the essential oil constituents of Ocimum kilimandscharicum
and Ocimum kenyense (Labiateae) on two post-harvest insect pests.
Phytochemistry 57, 385-391 (2001).
42. Pavela, R. Acute and synergistic effects of some
monoterpenoid essential oil compounds on the house fly (Musca domestica).
J. Essent. Oil Bearing Plants 11, 451-459 (2008).
43. Tanprasit, P. Biological control of dengue fever
mosquitoes (Aedes aegypti Linn.) using leaf extracts of Chan
(Hyptis suaveolens (L) poit.) and hedge flower Lantana camara
Linn.). (2005).
44. Park, H. M. et al. Larvicidal activity of
myrtaceae essential oils and their components against Aedes aegypti,
acute toxicity on Daphnia magna, and aqueous residue. J. Med.
Entomol. 48, 405-410 (2011).
45. Burt, S. Essential oils: Their antibacterial properties
and potential applications in foods--A review. Int. J. Food Microbiol. 94,
223-253 (2004).
46. Abbassy, M. A., Abdelgaleil, S. A. M. & Rabie, R. Y.
A. Insecticidal and synergistic effects of Majorana hortensis
essential oil and some of its major constituents. Entomol. Exp. Appl.
131, 225-232 (2009).
47. Chiasson, H., Bélanger, A., Bostanian, N.,
Vincent, C. & Poliquin, A. Acaricidal properties of Artemisia absinthium
and Tanacetum vulgare (Asteraceae) essential oils obtained by three methods of
extraction. J. Econ. Entomol. 94, 167-171 (2001).
48. Luz, T. R. S. A., deMesquita, L. S. S., Amaral, F. M. M.
& Coutinho, D. F. Essential oils and their chemical constituents against
Aedes aegypti L. (Diptera: Culicidae) larvae. Acta Trop. 212, 105705
(2020).
49. Deletre, E., Mallent, M., Menut, C., Chandre, F. &
Martin, T. Behavioral response of Bemisia tabaci (Hemiptera:
Aleyrodidae) to 20 plant extracts. J. Econ. Entomol. 108, 1890-1901
(2015).
50. Berenbaum, M. A. Y. & Neal, J. J. Synergism between
myristicin and xanthotoxin, a naturally cooccurring plant toxicant. J.
Chem. Ecol. 11, 1349-1358 (1985).
51. Intirach, J. et al. Chemical constituents and
combined larvicidal effects of selected essential oils against Anopheles
cracens (Diptera: Culicidae). Psyche (London) https:// doi. org/
10. 1155/ 2012/ 591616 (2012).
52. Pavela, R. Acute, synergistic and antagonistic effects of
some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae)
larvae. Ind. Crops Prod. 60, 247-258 (2014).
53. Muturi, E. J., Ramirez, J. L., Doll, K. M. & Bowman,
M. J. Combined toxicity of three essential oils against Aedes aegypti
(Diptera: Culicidae) larvae. J. Med. Entomol. 54, 1684-1691
(2017).
Acknowledgements
We are indebted to «Institut de recherche en Sciences
Appliquées et technologiques» (IRSAT) for providing us with
essential oils. Mahamoudou Balboné is the recipient of a PhD studentship
of University Joseph KI-ZERBO. I also thank Casimir Gnankiné for editing
this manuscript.
Author contributions
M.B. and O.G. designed the study. D.D.S., critically
supervised the study. M.B., I.S., K.B., and G.B.M., carried out the laboratory
experiments. M.B., S.F.D., and O.G. analyzed and interpreted the data and
drafted the
Scientific Reports | (2022) 12:19077 |
https://doi.org/10.1038/s41598-022-23554-6
9
manuscript. O.G., R.K.D., H.C.R.N., M.N., I.H.N.B., revised
the manuscript. All authors contributed to the article and approved the
submitted version.
Funding
Funding for this study was provided partly by the TWAS 18-163
RG/BIO/AF/AC_G-FR3240303649 and the «Centre d'excellence Africain (CEA) en
Innovations biotechnologiques pour l'elimination des maladies a transmission
vectorielle».
Competing interests
The authors declare no competing interests.
Additional information
Correspondence and requests for materials should
be addressed to O.G.
Reprints and permissions information is
available at
www.nature.com/reprints.
Publisher's note Springer Nature remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.
Open Access This article is licensed under a Creative Commons
Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article's Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit
http:// creat iveco mmons. org/ licen ses/
by/4. 0/.
(c) The Author(s) 2022
Thèse de Doctorat unique - 170
-
Scientific Reports | (2022) 12:19077 |
https://doi.org/10.1038/s41598-022-23554-6
10
|