WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Corruption, insécurité transfrontalière et dynamique du commerce intra-Cemac.

( Télécharger le fichier original )
par Eric AYANG
Université de Ngaoundere - Master II 2015
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Annexes 3: résultats du test d'hétéroscédasticité et sa correction

1-test d'hétéroscédasticité

Source

SS

df

MS

Number of obs =

225

F( 6, 218) =

6882.61

 
 
 
 

Model

86250.008

6

14375.0013

Prob > F =

0.0000

Residual

455.314171

218

2.08859711

R-squared =

0.9947

Adj R-squared =

0.9946

 
 
 
 

Total

86705.3222

224

387.077331

Root MSE =

1.4452

residus2

Coef.

Std. Err.

t

P>|t|

[95% Conf. Interval]

logpibreeli

20.66821

.1258484

164.23

0.000

20.42018

20.91625

logpibreelj

-3.027739

.130537

-23.19

0.000

-3.285015

-2.770462

logdistij

-5.908226

.1551594

-38.08

0.000

-6.214031

-5.602422

logcorrupi

-1.146092

.7431219

-1.54

0.124

-2.610715

.3185314

logcorrupj

-9.602522

.4680009

-20.52

0.000

-10.52491

-8.680136

instraij

-9.916242

.2632378

-37.67

0.000

-10.43506

-9.397425

_cons

-284.0963

3.56105

-79.78

0.000

-291.1148

-277.0778

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance

Variables: fitted values of residus2

chi2(1) = 3.71

Prob > chi2 = 0.0540

Page 97

Corruption, insécurité transfrontalière et dynamique du commerce intra- CEMAC

2-la correction de l'hétéroscédasticité

Linear regression Number of obs =

225

F( 6,

218)

=

515.79

Prob > F

 

=

0.0000

R-squared

 

=

0.8638

Root MSE

 

=

.55807

logcomij

Coef.

Robust

Std. Err.

t

P>|t|

[95% Conf. Interval]

logpibreeli

1.473571

.0509322

28.93

0.000

1.373189

1.573954

logpibreelj

-.251845

.04233

-5.95

0.000

-.3352735

-.1684166

logdistij

-.385963

.0671101

-5.75

0.000

-.5182306

-.2536954

logcorrupi

-.242403

.3670455

-0.66

0.510

-.9658151

.4810091

logcorrupj

-.6793408

.1975841

-3.44

0.001

-1.06876

-.2899213

instraij

-.7701079

.1091191

-7.06

0.000

-.9851713

-.5550444

_cons

-16.1904

1.748728

-9.26

0.000

-19.63698

-12.74382

Annexe4 : d'autocorrélation

RE GLS regression with AR(1) disturbances Number of obs =

Group variable: code Number of groups =

225

15

R-sq: within = 0.6987

 

Obs per group: min =

15

between = 0.5257

 

avg =

15.0

overall = 0.5629

 

max =

15

 
 

Wald chi2(7) =

138.11

corr(u_i, Xb) = 0 (assumed)

Prob > chi2 =

0.0000

logcomij

Coef.

Std. Err.

z P>|z| [95% Conf.

Interval]

logpibreeli

.4053621

.0536522

7.56 0.000 .3002056

.5105185

logpibreelj

.2484885

.049396

5.03 0.000 .1516741

.3453029

logdistij

-.8204785

.3412215

-2.40 0.016 -1.48926

-.1516966

logcorrupi

.040483

.1621586

0.25 0.803 -.277342

.358308

logcorrupj

.2632605

.1688906

1.56 0.119 -.0677589

.5942799

instraij

-.8408219

.5387677

-1.56 0.119 -1.896787

.2151435

_cons

-1.808704

2.683344

-0.67 0.500 -7.067962

3.450554

rho_ar

.87858731

(estimated

autocorrelation coefficient)

 

sigma_u

.80674674

 
 
 

sigma_e

.2329313

 
 
 

rho_fov

.92305035

(fraction of variance due to u_i)

 

theta

.5987641

 
 
 

modified Bhargava et al. Durbin-Watson = .52784527 Baltagi-Wu LBI = .9575195

Page 98

Corruption, insécurité transfrontalière et dynamique du commerce intra- CEMAC

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Enrichissons-nous de nos différences mutuelles "   Paul Valery