Bibliographie
[1]AITCHIsON, J. & AITKEN, C.G.G. (1976). Multivariate
binary discrimination by the kernel method. Biometrika
63, 413-420.
[2]CHAUBEY, Y.P., SEN A. & SEN P.K. (2007). A New Smooth
Density Estimator For Non-Negative Random Variables
Technical Report No 01/07. Concordia University. Montréal.
[3]CHEN, S.X. (1999). Beta Kernels estimators for
density functions. Computational Statistics and Data
Analysis 31, 131-145.
[4]CHEN, S.X. (2000). Gamma Kernels estimators for
density functions. Annals of the Institute of
Statistical Mathematics 52, 471-480.
[5]DUONG, T. (2004). Bandwidth selectors for
multivariate kernel density estimation,
thesisforthedegreeofDoctorofphilosophyattheUniversityofWesternAustralia.
School of Mathematics and Statistics.
[6]FELLER,W.(1966).AnIntroductiontoProbabilityandItsApplications.JohnWiley
and Sons, New York.
[7]HALL,P.(1981).Onnonparametricmultivariatebinarydiscrimination
Biometrika 68, 287-294.
[8]HALL, P., RACINE, J.S. & LI, Q. (2004).
Cross validation and the estimation of conditional probability
densities. Journal of the American Statistical Association 99,
1015-1026.
[9]HILLE, E. (1948). Functional Analysis and
Semigroups. American Mathematical Society
Colloquium, New York.
[10]SENGA KIEssE, T. (2008). Approche
non-parametrique des donnees de denombrement, these en
préparation pour obtenir le grade dun Docteur
dUniversité de Pau et des Pays de l'Adour.
[11]KOKONENDJI, C.C., SENGA KIEssE, T. & ZOCCHI, S.S.
(2007). Discrete triangular distributions and non-parametric
estimation for probability massfunction. Journal of
Nonparametric Statistics 19, 241-254.
[12]LI, Q. & RACINE, J.S. (2007). Nonparametric
Econometrics: Theory and Practice. Princeton University
Press, New York
[13]MICHELs, P. (1992). Assymetric Kernels Functions
in Non-Parametric Regression Ananlysis and Prediction.
The Statistician 41, 439-454.
[14]SCAILLET,O.(2004).DensityestimationusinginverseandreciprocalinverseGaussian
kernels. Journal of Nonparametric Statistics 16, 217-226.
[15]SEsHADRI, V. (1993). The Inverse Gaussian Distribution: A
Case Study n Exponential Families. Oxford University
Press New York.
[16]SIMONOFF, J.S. (1996). Smoothing Methods in
Statistics. Springer, New York. [17]TSYBAKOV, A.B. (2004).
Introduction a l'Estimation Non Parametrique. Springer,
Paris.
[18]WAND, M.P. & JONES, M.C. (1995). Kernel
Smoothing. Chapman and Hall, London.
|