Bibliographie
[1] A. Kuba and G.T. Hermann. Discrete tomography : a historical
overview. In Discrete Tomography: Foundations, Algorithms and Applications,
pages 3-33. Birkhauser, 1999.
[2] B. Wang and F. Zhang. On the precise number of (0,
1)-matrices in u(r, s). Discrete Mathematics, 187 : 211-220, 1998.
[3] C. Picouleau. Reconstruction of domino tiling from its two
orthogonal projections. Theoretical computer science, 255(1) : 437-447,
2001.
[4] E. Barcucci and A. Del Lungo. Reconstructing convex
polyominoes from their horizontal and vertical projections. Theoretical
computer science, 155(1) :321-347, 1996.
[5] G.J.Woeginger. The reconstruction of polyominoes from their
orthogonal projections. Information Processing Letters, 77(5-6) : 225-229,
2001.
[6] H.J. Ryser. Combinatorial properties of matrices of zeros
and ones. Ca-nad. J. Math, 9 :371-377, 1957.
[7] M. Chrobak and C. Durr. Reconstructing hv-convex polyominoes
from orthogonal Projections. Information Processing Letters, 69 : 283-289,
1999.
[8] R.J. Gardner,P. Gritzmann, and D. Prangenberg. On the
computionnal complexity of reconstructing lattice sets from their x-rays.
Discrete Mathematics, 202 : 45-71, 1999
[9] R. M. Haber. Term rank of 0,1 matrices. Rend. Sem. Mat.
Univ. padova, 30 :24-51,1960.
[10] E. Barcucci, A. Del Lungo, M. Nivat and R. Pinzani,
Reconstructing convex polyominoes from their horizontal and vertical
projections, Theoret. Comput. Sci., 155 (1996), 321-347.
[11] G.J.Woeginger.The reconstruction of polyominoes from
their orthogonal projections. Information Processing Letters, 77(5-6) :
225-229, 2001.
Abdessalem DAKHLI 50
Bibliographie
[12] Geir dahl, Truls Flatberg, Optimization and
reconstruction of hv-convex (0, 1)-matrices. (2003), 58-69.
[13] F.Jarray, M.Costa, C. Picouleau. Approximating hv-convex
binary matrices and images from discrete projections.1-10.
[14] R.J. Gardner, P. Gritzmann, and D. Prangenberg. On the
computational complexity of determining polyatomic structures by x-rays.
Theoretical computer science, 233 :91-106, 2000
[15] H.J. Ryser. Combinatorial properties of matrices of
zeros and ones. Ca-nad. J. Math, 9 :371-377, 1957.
[16] K.J. Bateleur. An Evolutionary Algorithm for Discrtee
tomography : Mathemaical Institue, Leinden University, Niels Bohrweg, I, 2333
CA Leinden and CWI.
[17] A. Del Lungo and M. Nivat. Reconstruction of connected
sets from two projections. Chapter 7 of [15], page 163-188, 1999.
[18] D. Gale. A theorem on flows in networks. Pacific journal
of Mathematics, 7 : 1073-1082, 1957.
[19] G. Dahl and T. Flatberg. Optimization and reconstruction
of hv-convex (0, 1)-matrices. In A. Del Lungo. V. Di Gesù and A. Kuba.
Editors, Electronic Notes in Discrete Mathematics. Volume 12. Elsevier,
2003.
[20] H.J. Ryser. Combinatorial Mathematics. The Carus
Mathematical Monographs no. 14, chapter 6. AMS, 1963.
[21] R.J. Gardner, P. Gritzmann, and D. Prangenberg. On the
computational complexity of reconstructing lattice sets from their X-rays.
Discrete Mathematics, 202 : 45-71, 1999.
[22] S. Brunetti, A. Del Lungo, F. Del Ristoro, A. Kuba, and
M. Nivat. Reconstruction of 4-and 8-connected convex discrete sets from row and
column projections. Linear Algebra and its Applications, 339 : 37-57, 2001.
[23] S. Matej, A. Vardi, G.T Herman, and E. Vardi. Binary
tomography using gibbs priors. Chapter 8 of [15], pages 191-212, 1999
[24] Th. Back, D.B. Fogel, and T. Michalewiez, editors.
Evolutionary Computation 1. Institute of Physics Publishing, Bristol and
Philadelphia, 2000.
[25] W. Hochstattler, M. Loebl, and C. Moll. Generating
convex polyominoes at random. Discrete Mathematics, 153 :165-176, 1996.
[26] Z. Michalewiez. Genetic Algorithms + Data Structures=
Evolution Programs; 3rd Revision edition. Springer Verlag, 1996.
[27] A. kuba and G.T. Herman. Discrete tomography: A
historical overview. Chapter 1 of [15], pages 3-34, 1999.
Abdessalem DAKHLI 51
|