WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Reconstruction des images hv-convexes par la recherche taboue

( Télécharger le fichier original )
par Abdesselem DAKHLI
ISG-GABES - Master informatique 2010
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Bibliographie

[1] A. Kuba and G.T. Hermann. Discrete tomography : a historical overview. In Discrete Tomography: Foundations, Algorithms and Applications, pages 3-33. Birkhauser, 1999.

[2] B. Wang and F. Zhang. On the precise number of (0, 1)-matrices in u(r, s). Discrete Mathematics, 187 : 211-220, 1998.

[3] C. Picouleau. Reconstruction of domino tiling from its two orthogonal projections. Theoretical computer science, 255(1) : 437-447, 2001.

[4] E. Barcucci and A. Del Lungo. Reconstructing convex polyominoes from their horizontal and vertical projections. Theoretical computer science, 155(1) :321-347, 1996.

[5] G.J.Woeginger. The reconstruction of polyominoes from their orthogonal projections. Information Processing Letters, 77(5-6) : 225-229, 2001.

[6] H.J. Ryser. Combinatorial properties of matrices of zeros and ones. Ca-nad. J. Math, 9 :371-377, 1957.

[7] M. Chrobak and C. Durr. Reconstructing hv-convex polyominoes from orthogonal Projections. Information Processing Letters, 69 : 283-289, 1999.

[8] R.J. Gardner,P. Gritzmann, and D. Prangenberg. On the computionnal complexity of reconstructing lattice sets from their x-rays. Discrete Mathematics, 202 : 45-71, 1999

[9] R. M. Haber. Term rank of 0,1 matrices. Rend. Sem. Mat. Univ. padova, 30 :24-51,1960.

[10] E. Barcucci, A. Del Lungo, M. Nivat and R. Pinzani, Reconstructing convex polyominoes from their horizontal and vertical projections, Theoret. Comput. Sci., 155 (1996), 321-347.

[11] G.J.Woeginger.The reconstruction of polyominoes from their orthogonal projections. Information Processing Letters, 77(5-6) : 225-229, 2001.

Abdessalem DAKHLI 50

Bibliographie

[12] Geir dahl, Truls Flatberg, Optimization and reconstruction of hv-convex (0, 1)-matrices. (2003), 58-69.

[13] F.Jarray, M.Costa, C. Picouleau. Approximating hv-convex binary matrices and images from discrete projections.1-10.

[14] R.J. Gardner, P. Gritzmann, and D. Prangenberg. On the computational complexity of determining polyatomic structures by x-rays. Theoretical computer science, 233 :91-106, 2000

[15] H.J. Ryser. Combinatorial properties of matrices of zeros and ones. Ca-nad. J. Math, 9 :371-377, 1957.

[16] K.J. Bateleur. An Evolutionary Algorithm for Discrtee tomography : Mathemaical Institue, Leinden University, Niels Bohrweg, I, 2333 CA Leinden and CWI.

[17] A. Del Lungo and M. Nivat. Reconstruction of connected sets from two projections. Chapter 7 of [15], page 163-188, 1999.

[18] D. Gale. A theorem on flows in networks. Pacific journal of Mathematics, 7 : 1073-1082, 1957.

[19] G. Dahl and T. Flatberg. Optimization and reconstruction of hv-convex (0, 1)-matrices. In A. Del Lungo. V. Di Gesù and A. Kuba. Editors, Electronic Notes in Discrete Mathematics. Volume 12. Elsevier, 2003.

[20] H.J. Ryser. Combinatorial Mathematics. The Carus Mathematical Monographs no. 14, chapter 6. AMS, 1963.

[21] R.J. Gardner, P. Gritzmann, and D. Prangenberg. On the computational complexity of reconstructing lattice sets from their X-rays. Discrete Mathematics, 202 : 45-71, 1999.

[22] S. Brunetti, A. Del Lungo, F. Del Ristoro, A. Kuba, and M. Nivat. Reconstruction of 4-and 8-connected convex discrete sets from row and column projections. Linear Algebra and its Applications, 339 : 37-57, 2001.

[23] S. Matej, A. Vardi, G.T Herman, and E. Vardi. Binary tomography using gibbs priors. Chapter 8 of [15], pages 191-212, 1999

[24] Th. Back, D.B. Fogel, and T. Michalewiez, editors. Evolutionary Computation 1. Institute of Physics Publishing, Bristol and Philadelphia, 2000.

[25] W. Hochstattler, M. Loebl, and C. Moll. Generating convex polyominoes at random. Discrete Mathematics, 153 :165-176, 1996.

[26] Z. Michalewiez. Genetic Algorithms + Data Structures= Evolution Programs; 3rd Revision edition. Springer Verlag, 1996.

[27] A. kuba and G.T. Herman. Discrete tomography: A historical overview. Chapter 1 of [15], pages 3-34, 1999.

Abdessalem DAKHLI 51

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"L'imagination est plus importante que le savoir"   Albert Einstein