WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Techniques hybrides de recherche exacte et approchée: application à  des problèmes de transport

( Télécharger le fichier original )
par Boris BONTOUX
Université d'Avignon et des pays de Vaucluse - Doctorat spécialité informatique 2008
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Résumé

Nous nous intéressons dans cette thèse aux possibilités d'hybridation entre les méthodes exactes et les méthodes heuristiques afin de pouvoir tirer avantage de chacune des deux approches : optimalité de la résolution exacte, caractère moins déterministe et rapidité de la composante heuristique. Dans l'objectif de résoudre des problèmes NPdifficiles de taille relativement importante tels que les problèmes de transports, nous nous intéressons dans les deux dernières parties de ce mémoire à la conception de méthodes incomplètes basées sur ces hybridations.

Dans la première partie, nous allons nous intéresser aux méthodes de résolution par recherche arborescente. Nous introduisons une nouvelle approche pour la gestion des décisions de branchement, que nous appelons Dynamic Learning Search (DLS). Cette méthode définit de manière dynamique des règles de priorité pour la sélection des variables à chaque noeud et l'ordre des valeurs sur lesquelles brancher. Ces règles sont conçues dans une optique de généricité, de manière à pouvoir utiliser la méthode indépendamment du problème traité. Le principe général est de tenir compte par une technique d'apprentissage de l'impact qu'ont eu les décisions de branchement dans les parties déjà explorées de l'arbre. Nous évaluons l'efficacité de la méthode proposée sur deux problèmes classiques : un problème d'optimisation combinatoire et un problème à satisfaction de contraintes.

La deuxième partie de ce mémoire traite des recherches à grand voisinage. Nous présentons un nouvel opérateur de voisinage, qui détermine par un algorithme de programmation dynamique la sous-séquence optimale d'un chemin dans un graphe. Nous montrons que cet opérateur est tout particulièrement destiné à des problèmes de tournées pour lesquels tous les noeuds ne nécessitent pas d'être visités. Nous appelons cette classe de problème les Problèmes de Tournées avec Couverture Partielle et présentons quelques problèmes faisant partie de cette classe. Les chapitres 3 et 4 montrent, à travers des tests expérimentaux conséquents, l'efficacité de l'opérateur que nous proposons en appliquant cette recherche à voisinage large sur deux problèmes, respectivement le Problème de l'Acheteur Itinérant (TPP) et le Problème de Voyageur de Commerce Généralisé (GTSP). Nous montrons alors que cet opérateur peut être combiné de manière efficace avec des métaheuristiques classiques, telles que des algorithmes génétiques ou des algorithmes d'Optimisation par Colonies de Fourmis.

Enfin, la troisième partie présente des méthodes heuristiques basées sur un algorithme de Génération de Colonnes. Ces méthodes sont appliquées sur un problème

complexe : le problème de Tournées de Véhicules avec Contraintes de Chargement à Deux Dimensions (2L-VRP). Nous montrons une partie des possibilités qu'il existe afin de modifier une méthode a priori exacte en une méthode heuristique et nous évaluons ces possibilités à l'aide de tests expérimentaux.

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Il existe une chose plus puissante que toutes les armées du monde, c'est une idée dont l'heure est venue"   Victor Hugo