WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Banques et croissance économique

( Télécharger le fichier original )
par Odilon Modeste ALAVO
Université d'Abomey Calavi- Bénin - Master recherche en sciences économiques 2009
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

ANNEXES

600

500

400

300

200

100

LH1

LC1

LL1

70 75 80 85 90 95 00

LD1

10000

8000

6000

4000

2000

0

70 75 80 85 90 95 00

LI1

LY1

6000

5000

4000

3000

2000

1000

0

70 75 80 85 90 95 00

LV1

70 75 80 85 90 95 00

4000

3000

2000

1000

0

70 75 80 85 90 95 00

1200

1000

800

600

400

200

0

2000

1500

1000

500

0

4000

3000

2000

1000

0

70 75 80 85 90 95 00

70 75 80 85 90 95 00

Illustration graphique des séries (échantillon 1, l'ensemble des
pays)

10000
8000
6000
4000
2000
0

 

70 75 80 85 90 95 00

LY1 LL1 LC 1

LD 1 LI1 LV1

LH 1

TEST DE RACINE UNITAIRE (Augmented Dickey Fuller) Test en niveau LY1

ADF Test Statistic -1.333631 1% Critical Value* -4.2605

5% Critical Value -3.5514

10% Critical Value -3.2081

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LY1) Method: Least Squares

Date: 01/31/09 Time: 17:23 Sample(adjusted): 1972 2004 Included observations: 33 after adjusting endpoints

Variable

Coefficient

Std. Error t-Statistic

Prob.

LY1(-1)

-0.161056

0.120765 -1.333631

0.1927

D(LY1(-1))

0.073784

0.196933 0.374665

0.7106

C

265.6855

152.3807 1.743563

0.0918

@TREND(1970)

5.661507

11.10387 0.509868

0.6140

R-squared

0.088087

Mean dependent var

44.42121

Adjusted R-squared

-0.006249

S.D. dependent var

342.2448

S.E. of regression

343.3124

Akaike info criterion

14.62837

Sum squared resid

3418039.

Schwarz criterion

14.80977

Log likelihood

-237.3681

F-statistic

0.933763

Durbin-Watson stat

2.016349

Prob(F-statistic)

0.436971

En Différence première

 
 

ADF Test Statistic -3.855490

1% Critical Value*

-4.2712

 
 

5% Critical Value

-3.5562

 
 

10% Critical Value

-3.2109

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LY1,2)

Method: Least Squares

Date: 01/31/09 Time: 17:26

Sample(adjusted): 1973 2004

Included observations: 32 after adjusting endpoints

Variable

Coefficient

Std. Error t-Statistic

Prob.

D(LY1(-1))

-1.049021

0.272085 -3.855490

0.0006

D(LY1(-1),2)

0.015051

0.189173 0.079564

0.9371

C

175.5644

149.9251 1.171014

0.2515

@TREND(1970)

-7.019125

7.137056 -0.983476

0.3338

R-squared

0.516330

Mean dependent var

-0.656250

Adjusted R-squared

0.464508

S.D. dependent var

491.4087

S.E. of regression

359.5996

Akaike info criterion

14.72433

Sum squared resid

3620733.

Schwarz criterion

14.90755

Log likelihood

-231.5893

F-statistic

9.963572

Durbin-Watson stat

1.997958

Prob(F-statistic)

0.000123

Test en niveau LL1

 
 

ADF Test Statistic -0.368433

1% Critical Value*

-4.2605

 
 

5% Critical Value

-3.5514

 
 

10% Critical Value

-3.2081

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LL1)

Method: Least Squares

Date: 01/31/09 Time: 17:27

Sample(adjusted): 1972 2004

Included observations: 33 after adjusting endpoints

Variable

Coefficient

Std. Error t-Statistic

Prob.

LL1(-1)

-0.008949

0.024290 -0.368433

0.7152

D(LL1(-1))

0.142345

0.182297 0.780839

0.4412

C

7.942003

3.980121 1.995417

0.0555

@TREND(1970)

1.403013

0.848709 1.653114

0.1091

R-squared

0.801714

Mean dependent var

33.48061

Adjusted R-squared

0.781201

S.D. dependent var

14.03044

S.E. of regression

6.562869

Akaike info criterion

6.713945

Sum squared resid

1249.066

Schwarz criterion

6.895340

Log likelihood

-106.7801

F-statistic

39.08435

Durbin-Watson stat

2.007209

Prob(F-statistic)

0.000000

En Différence Première

 
 

ADF Test Statistic -3.589994

1% Critical Value*

-4.2712

 
 

5% Critical Value

-3.5562

 
 

10% Critical Value

-3.2109

*MacKinnon critical values for rejection of hypothesis of a unit root. Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LL1,2)

Method: Least Squares

Date: 01/31/09 Time: 17:28

Sample(adjusted): 1973 2004

Included observations: 32 after adjusting endpoints

Variable

Coefficient

Std. Error t-Statistic

Prob.

D(LL1(-1))

-0.862467

0.245019 -3.519994

0.0015

D(LL1(-1),2)

-0.019675

0.186354 -0.105579

0.9167

C

9.880086

3.315551 2.979923

0.0059

@TREND(1970)

1.079930

0.337585 3.198984

0.0034

R-squared

0.448019

Mean dependent var

1.585937

Adjusted R-squared

0.388878

S.D. dependent var

8.427825

S.E. of regression

6.588393

Akaike info criterion

6.724965

Sum squared resid

1215.394

Schwarz criterion

6.908182

Log likelihood

-103.5994

F-statistic

7.575454

Durbin-Watson stat

2.024481

Prob(F-statistic)

0.000735

Test en niveau LC1

 
 

ADF Test Statistic -1.385535

1% Critical Value*

-4.2605

 
 

5% Critical Value

-3.5514

 
 

10% Critical Value

-3.2081

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LC1)

Method: Least Squares

Date: 01/31/09 Time: 17:31

Sample(adjusted): 1972 2004

Included observations: 33 after adjusting endpoints

Variable

Coefficient

Std. Error t-Statistic

Prob.

LC1(-1)

-0.134922

0.097379 -1.385535

0.1765

D(LC1(-1))

-0.004368

0.187722 -0.023270

0.9816

C

12.27152

5.512383 2.226174

0.0339

@TREND(1970)

0.110237

0.263161 0.418897

0.6784

R-squared

0.118695

Mean dependent var

2.093939

Adjusted R-squared

0.027526

S.D. dependent var

7.586746

S.E. of regression

7.481601

Akaike info criterion

6.975983

Sum squared resid

1623.256

Schwarz criterion

7.157378

Log likelihood

-111.1037

F-statistic

1.301922

Durbin-Watson stat

2.015896

Prob(F-statistic)

0.292632

En Différence Première

 
 

ADF Test Statistic -4.388598

1% Critical Value*

-4.2712

 
 

5% Critical Value

-3.5562

 
 

10% Critical Value

-3.2109

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LC1,2)

Method: Least Squares

Date: 01/31/09 Time: 17:32

Sample(adjusted): 1973 2004

Included observations: 32 after adjusting endpoints

Variable

Coefficient

Std. Error t-Statistic

Prob.

D(LC1(-1))

-1.216374

0.277167 -4.388598

0.0001

D(LC1(-1),2)

0.118951

0.187897 0.633067

0.5318

C

7.098303

3.481207 2.039035

0.0510

@TREND(1970)

-0.245946

0.159366 -1.543282

0.1340

R-squared

0.549361

Mean dependent var

0.028125

Adjusted R-squared

0.501079

S.D. dependent var

11.01076

S.E. of regression

7.777383

Akaike info criterion

7.056785

Sum squared resid

1693.655

Schwarz criterion

7.240002

Log likelihood

-108.9086

F-statistic

11.37802

Durbin-Watson stat

2.032879

Prob(F-statistic)

0.000047

Test en niveau LD1

 
 

ADF Test Statistic -1.205804

1% Critical Value*

-4.2605

 
 

5% Critical Value

-3.5514

 
 

10% Critical Value

-3.2081

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LD1) Method: Least Squares

Date: 01/31/09 Time: 17:33 Sample(adjusted): 1972 2004 Included observations: 33 after adjusting endpoints

Variable

Coefficient

Std. Error t-Statistic

Prob.

LD1(-1)

-0.100863

0.083648 -1.205804

0.2376

D(LD1(-1))

0.004461

0.187048 0.023848

0.9811

C

41.88263

18.57762 2.254466

0.0319

@TREND(1970)

0.142413

0.962529 0.147957

0.8834

R-squared

0.117384

Mean dependent var

8.766667

Adjusted R-squared

0.026079

S.D. dependent var

28.49537

S.E. of regression

28.12135

Akaike info criterion

9.624148

Sum squared resid

22933.50

Schwarz criterion

9.805542

Log likelihood

-154.7984

F-statistic

1.285625

Durbin-Watson stat

2.015066

Prob(F-statistic)

0.297914

En Différence Première

 
 

ADF Test Statistic -4.195187

1% Critical Value*

-4.2712

 
 

5% Critical Value

-3.5562

 
 

10% Critical Value

-3.2109

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LD1,2)

Method: Least Squares

Date: 01/31/09 Time: 17:35

Sample(adjusted): 1973 2004

Included observations: 32 after adjusting endpoints

 

Variable

Coefficient

Std. Error t-Statistic

Prob.

D(LD1(-1))

-1.148938

0.273871 -4.195187

0.0002

D(LD1(-1),2)

0.083708

0.188148 0.444906

0.6598

C

28.36144

13.34173 2.125770

0.0425

@TREND(1970)

-0.987474

0.603956 -1.635009

0.1132

R-squared

0.533863

Mean dependent var

-0.025000

Adjusted R-squared

0.483920

S.D. dependent var

40.50511

S.E. of regression

29.09835

Akaike info criterion

9.695708

Sum squared resid

23707.99

Schwarz criterion

9.878925

Log likelihood

-151.1313

F-statistic

10.68940

Durbin-Watson stat

2.017042

Prob(F-statistic)

0.000074

Test en niveau LI1

 
 

ADF Test Statistic -1.675700

1% Critical Value*

-4.2605

 
 

5% Critical Value

-3.5514

 
 

10% Critical Value

-3.2081

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LI1)

Method: Least Squares

Date: 01/31/09 Time: 17:37

Sample(adjusted): 1972 2004

Included observations: 33 after adjusting endpoints

Variable

Coefficient

Std. Error t-Statistic

Prob.

LI1(-1)

-0.309553

0.184731 -1.675700

0.1045

D(LI1(-1))

-0.121786

0.200209 -0.608297

0.5477

C

388.2784

539.9711 0.719072

0.4779

@TREND(1970)

19.24918

36.49316 0.527474

0.6019

R-squared

0.181352

Mean dependent var

25.39394

Adjusted R-squared

0.096664

S.D. dependent var

1514.190

S.E. of regression

1439.147

Akaike info criterion

17.49470

Sum squared resid

60063147

Schwarz criterion

17.67610

Log likelihood

-284.6626

F-statistic

2.141414

Durbin-Watson stat

1.985292

Prob(F-statistic)

0.116584

En Différence Première

 
 

ADF Test Statistic -4.853837

1% Critical Value*

-4.2712

 
 

5% Critical Value

-3.5562

 
 

10% Critical Value

-3.2109

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LI1,2)

Method: Least Squares

Date: 01/31/09 Time: 17:38

Sample(adjusted): 1973 2004

Included observations: 32 after adjusting endpoints

Variable

Coefficient

Std. Error t-Statistic

Prob.

D(LI1(-1))

-1.470098

0.302873 -4.853837

0.0000

D(LI1(-1),2)

0.128508

0.187626 0.684916

0.4990

C

554.6303

612.9929 0.904791

0.3733

@TREND(1970)

-28.06257

29.70124 -0.944828

0.3528

R-squared

0.656903

Mean dependent var

-0.412500

Adjusted R-squared

0.620142

S.D. dependent var

2466.083

S.E. of regression

1519.911

Akaike info criterion

17.60716

Sum squared resid

64683649

Schwarz criterion

17.79038

Log likelihood

-277.7146

F-statistic

17.86982

Durbin-Watson stat

2.023657

Prob(F-statistic)

0.000001

Test en niveau LV1

 
 

ADF Test Statistic -1.473408

1% Critical Value*

-4.2605

 
 

5% Critical Value

-3.5514

 
 

10% Critical Value

-3.2081

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LV1) Method: Least Squares

Date: 01/31/09 Time: 17:39 Sample(adjusted): 1972 2004 Included observations: 33 after adjusting endpoints

Variable

Coefficient

Std. Error t-Statistic

Prob.

LV1(-1)

-0.198246

0.134549 -1.473408

0.1514

D(LV1(-1))

0.077681

0.197653 0.393017

0.6972

C

245.7904

187.6859 1.309584

0.2006

@TREND(1970)

17.01945

19.01135 0.895225

0.3780

R-squared

0.090744

Mean dependent var

74.53333

Adjusted R-squared

-0.003317

S.D. dependent var

490.8794

S.E. of regression

491.6929

Akaike info criterion

15.34680

Sum squared resid

7011094.

Schwarz criterion

15.52819

Log likelihood

-249.2222

F-statistic

0.964738

Durbin-Watson stat

2.012056

Prob(F-statistic)

0.422636

En Différence Première

 
 

ADF Test Statistic -3.911694

1% Critical Value*

-4.2712

 
 

5% Critical Value

-3.5562

 
 

10% Critical Value

-3.2109

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LV1,2)

Method: Least Squares

Date: 01/31/09 Time: 17:41

Sample(adjusted): 1973 2004

Included observations: 32 after adjusting endpoints

Variable

Coefficient

Std. Error t-Statistic

Prob.

D(LV1(-1))

-1.068063

0.273044 -3.911694

0.0005

D(LV1(-1),2)

0.018700

0.188621 0.099142

0.9217

C

235.5522

213.1995 1.104844

0.2786

@TREND(1970)

-8.433431

10.11882 -0.833440

0.4117

R-squared

0.524782

Mean dependent var

-2.503125

Adjusted R-squared

0.473866

S.D. dependent var

714.4091

S.E. of regression

518.1975

Akaike info criterion

15.45506

Sum squared resid

7518802.

Schwarz criterion

15.63828

Log likelihood

-243.2809

F-statistic

10.30677

Durbin-Watson stat

2.003172

Prob(F-statistic)

0.000097

Test en niveau LH1

 
 

ADF Test Statistic 0.232643

1% Critical Value*

-4.2605

 
 

5% Critical Value

-3.5514

 
 

10% Critical Value

-3.2081

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LH1) Method: Least Squares

Date: 01/31/09 Time: 17:42 Sample(adjusted): 1972 2004 Included observations: 33 after adjusting endpoints

Variable

Coefficient

Std. Error t-Statistic

Prob.

LH1(-1)

0.009822

0.042220 0.232643

0.8177

D(LH1(-1))

0.457047

0.183905 2.485230

0.0190

C

-8.727067

19.59044 -0.445476

0.6593

@TREND(1970)

2.006774

2.119978 0.946601

0.3517

R-squared

0.626330

Mean dependent var

55.14333

Adjusted R-squared

0.587675

S.D. dependent var

55.03372

S.E. of regression

35.33855

Akaike info criterion

10.08104

Sum squared resid

36215.59

Schwarz criterion

10.26243

Log likelihood

-162.3371

F-statistic

16.20288

Durbin-Watson stat

1.900065

Prob(F-statistic)

0.000002

En Différence Première

 
 

ADF Test Statistic -3.855490

1% Critical Value*

-4.2712

 
 

5% Critical Value

-3.5562

 
 

10% Critical Value

-3.2109

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LH1,2)

Method: Least Squares

Date: 01/31/09 Time: 17:49

Sample(adjusted): 1973 2004

Included observations: 32 after adjusting endpoints

LY1 LL1 LC1 LD1 LI1

LY1(-1) 0.789156 0.221885 0.467481 14.61628 0.719118

(0.39209) (0.81436) (1.99295) (12.1998) (3.79751)

(2.01270) (0.27246) (0.23457) (1.19808) (0.18937)

LL1(-1) -1.443669 -1.357253 -5.813946 26.94642 -8.756328

(0.38402) (0.79760) (1.95194) (11.9487) (3.71936)

(-3.75936) (-1.70167) (-2.97855) (2.25517) (-2.35426)

LV1

LH1

45.76870

3.966643

(59.1796)

(2.31994)

(0.77339)

(1.70980)

137.5571

-2.330918

(57.9618)

(2.27220)

(2.37324)

(-1.02584)

Variable

Coefficient

Std. Error t-Statistic

Prob.

D(LH1(-1))

-1.049021

0.272085 -3.855490

0.0006

D(LH1(-1),2)

0.015051

0.189173 0.079564

0.9371

C

175.5644

149.9251 1.171014

0.2515

@TREND(1970)

-7.019125

7.137056 -0.983476

0.3338

R-squared

0.516330

Mean dependent var

-0.656250

Adjusted R-squared

0.464508

S.D. dependent var

491.4087

S.E. of regression

359.5996

Akaike info criterion

14.72433

Sum squared resid

3620733.

Schwarz criterion

14.90755

Log likelihood

-231.5893

F-statistic

9.963572

Durbin-Watson stat

1.997958

Prob(F-statistic)

0.000123

Stationnarité des Résidus

 

ADF Test Statistic -2.787108

1% Critical Value*

-2.6344

 
 

5% Critical Value

-1.9514

 
 

10% Critical Value

-1.6211

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(RESID01)

Method: Least Squares

Date: 02/04/09 Time: 22:57

Sample(adjusted): 1972 2004

Included observations: 33 after adjusting endpoints

Variable

Coefficient

Std. Error t-Statistic

Prob.

RESID01(-1)

-0.613236

0.220026 -2.787108

0.0090

D(RESID01(-1))

-0.156247

0.193450 -0.807687

0.4254

R-squared

0.344826

Mean dependent var

1.95E-11

Adjusted R-squared

0.323692

S.D. dependent var

5.68E-10

S.E. of regression

4.67E-10

Akaike info criterion

-40.07093

Sum squared resid

6.77E-18

Schwarz criterion

-39.98023

Log likelihood

663.1703

Durbin-Watson stat

1.833330

Nombre optimal de retard Q=1

Date: 02/01/09 Time: 18:42

Sample(adjusted): 1971 2004

Included observations: 34 after adjusting endpoints Standard errors & t-statistics in parentheses

LC1(-1) 0.555657

0.756198

2.884456

-12.51171

3.359137

-53.12095

-0.368271

(0.20572)

(0.42728)

(1.04566)

(6.40099)

(1.99248)

(31.0504)

(1.21723)

(2.70101)

(1.76980)

(2.75850)

(-1.95465)

(1.68591)

(-1.71080)

(-0.30255)

LD1(-1) 0.010509

0.010865

0.044544

0.818880

-0.075068

6.828004

-0.059750

(0.00438)

(0.00911)

(0.02229)

(0.13643)

(0.04247)

(0.66180)

(0.02594)

(2.39677)

(1.19306)

(1.99868)

(6.00228)

(-1.76768)

(10.3174)

(-2.30308)

LI1(-1) -0.018501

-0.032962

-0.091962

0.138215

0.815653

-3.711244

0.125323

(0.00989)

(0.02055)

(0.05029)

(0.30783)

(0.09582)

(1.49325)

(0.05854)

(-1.87007)

(-1.60412)

(-1.82873)

(0.44900)

(8.51230)

(-2.48535)

(2.14088)

LV1(-1) -0.002788

-0.003678

-0.011752

0.009393

-0.024062

-0.058508

0.004722

(0.00068)

(0.00142)

(0.00348)

(0.02129)

(0.00663)

(0.10330)

(0.00405)

(-4.07337)

(-2.58729)

(-3.37818)

(0.44108)

(-3.63000)

(-0.56639)

(1.16613)

LH1(-1) 0.021146

0.048898

0.120749

-0.111164

0.610032

-0.378836

0.846917

(0.02000)

(0.04153)

(0.10164)

(0.62217)

(0.19367)

(3.01806)

(0.11831)

(1.05754)

(1.17738)

(1.18804)

(-0.17867)

(3.14992)

(-0.12552)

(7.15827)

C -37.92026

-53.25763

-129.0867

945.7084

-198.4155

2781.043

-28.08353

(15.0029)

(31.1607)

(76.2582)

(466.812)

(145.308)

(2264.45)

(88.7704)

(-2.52753)

(-1.70913)

(-1.69276)

(2.02589)

(-1.36548)

(1.22813)

(-0.31636)

R-squared 0.983964

0.947299

0.966736

0.969873

0.998650

0.917305

0.997167

Adj. R-squared 0.979646

0.933110

0.957780

0.961762

0.998286

0.895041

0.996404

Sum sq. resids 484.7825

2091.281

12524.78

469334.0

45475.29

11043900

16972.03

S.E. equation 4.318041

8.968494

21.94818

134.3551

41.82164

651.7403

25.54937

F-statistic 227.9033

66.76429

107.9462

119.5729

2746.967

41.20140

1307.237

Log likelihood -93.41869

-118.2698

-148.6987

-210.3000

-170.6195

-263.9914

-153.8642

Akaike AIC 5.965805

7.427637

9.217569

12.84117

10.50703

15.99949

9.521426

Schwarz SC 6.324949

7.786780

9.576713

13.20032

10.86617

16.35864

9.880570

Mean dependent 85.18235

87.51471

356.4265

1289.097

1631.450

2247.682

444.1676

S.D. dependent 30.26667

34.67689

106.8170

687.0767

1010.214

2011.711

426.0549

Determinant Residual

4.05E+16

 
 
 
 
 

Covariance

 
 
 
 
 
 

Log Likelihood

-987.7931

 
 
 
 
 

Akaike Information Criteria

61.39959

 
 
 
 
 

Schwarz Criteria

63.91360

 
 
 
 
 

Q=2

Date: 02/01/09 Time: 18:44

Sample(adjusted): 1972 2004

Included observations: 33 after adjusting endpoints Standard errors & t-statistics in parentheses

LY1 LL1 LC1 LD1 LI1 LV1 LH1

LY1(-1) 0.913838 -1.630209 -2.193834 -12.69141 8.356108 -41.56414 3.332516

(2.08576) (4.28587) (10.5963) (55.6020) (17.9949) (194.755) (11.9564)

(0.43813) (-0.38037) (-0.20704) (-0.22825) (0.46436) (-0.21342) (0.27872)

LY1(-2) 0.077761 1.854241 3.031097 42.09998 -2.868094 28.21537 2.137697

(1.79911) (3.69685) (9.14003) (47.9604) (15.5218) (167.989) (10.3132)

(0.04322) (0.50157) (0.33163) (0.87781) (-0.18478) (0.16796) (0.20728)

LL1(-1) -0.928024 -0.652049 -3.816553 72.08520 -12.25157 -135.1702 -1.755943

(1.58152) (3.24974) (8.03462) (42.1599) (13.6446) (147.672) (9.06588)

 

(-0.58679)

(-0.20065)

(-0.47501)

(1.70980)

(-0.89791)

(-0.91534)

(-0.19369)

LL1(-2)

-0.850227

-2.327244

-5.335681

-20.08738

7.321730

105.0177

1.195592

 

(1.45528)

(2.99035)

(7.39330)

(38.7947)

(12.5555)

(135.885)

(8.34225)

 

(-0.58423)

(-0.77825)

(-0.72169)

(-0.51779)

(0.58315)

(0.77284)

(0.14332)

LC1(-1)

0.276468

0.718781

2.338361

-26.64799

3.902014

82.14110

-0.130678

 

(1.00041)

(2.05565)

(5.08237)

(26.6686)

(8.63099)

(93.4112)

(5.73470)

 

(0.27636)

(0.34966)

(0.46009)

(-0.99923)

(0.45209)

(0.87935)

(-0.02279)

LC1(-2)

0.391333

0.684291

1.820541

3.277858

-3.300162

-72.24742

-1.346854

 

(0.85800)

(1.76304)

(4.35893)

(22.8725)

(7.40243)

(80.1147)

(4.91840)

 

(0.45610)

(0.38813)

(0.41766)

(0.14331)

(-0.44582)

(-0.90180)

(-0.27384)

LD1(-1)

0.008612

0.011068

0.045559

0.021894

-0.082956

11.15087

-0.091627

 

(0.01058)

(0.02174)

(0.05376)

(0.28207)

(0.09129)

(0.98800)

(0.06066)

 

(0.81390)

(0.50907)

(0.84752)

(0.07762)

(-0.90871)

(11.2863)

(-1.51061)

LD1(-2)

0.017779

0.025568

0.062042

2.181817

-0.046157

-11.55113

0.058055

 

(0.02445)

(0.05023)

(0.12420)

(0.65170)

(0.21092)

(2.28269)

(0.14014)

 

(0.72726)

(0.50899)

(0.49954)

(3.34788)

(-0.21884)

(-5.06032)

(0.41427)

LI1(-1)

-0.043954

-0.075647

-0.205856

-0.345201

0.937621

0.849773

0.053844

 

(0.02503)

(0.05144)

(0.12718)

(0.66735)

(0.21598)

(2.33752)

(0.14350)

 

(-1.75575)

(-1.47058)

(-1.61861)

(-0.51727)

(4.34121)

(0.36354)

(0.37520)

LI1(-2)

-0.007047

-0.017132

-0.035767

-0.409239

0.031044

0.683291

0.166546

 

(0.02308)

(0.04742)

(0.11724)

(0.61521)

(0.19911)

(2.15488)

(0.13229)

 

(-0.30535)

(-0.36127)

(-0.30506)

(-0.66520)

(0.15592)

(0.31709)

(1.25892)

LV1(-1)

-0.003749

-0.004632

-0.014083

-0.153050

-0.032759

0.820692

-0.003798

 

(0.00252)

(0.00518)

(0.01280)

(0.06716)

(0.02174)

(0.23524)

(0.01444)

 

(-1.48804)

(-0.89476)

(-1.10035)

(-2.27889)

(-1.50718)

(3.48876)

(-0.26296)

LV1(-2)

-0.002974

-0.006338

-0.015318

-0.074869

0.025453

0.360269

0.004800

 

(0.00153)

(0.00314)

(0.00777)

(0.04077)

(0.01320)

(0.14281)

(0.00877)

 

(-1.94447)

(-2.01672)

(-1.97131)

(-1.83625)

(1.92892)

(2.52267)

(0.54747)

LH1(-1)

0.017946

0.024955

0.076244

-0.279083

-0.136284

-2.386292

0.698342

 

(0.04208)

(0.08646)

(0.21377)

(1.12174)

(0.36304)

(3.92906)

(0.24121)

 

(0.42647)

(0.28861)

(0.35665)

(-0.24880)

(-0.37540)

(-0.60734)

(2.89513)

LH1(-2)

0.053845

0.116839

0.283545

0.243400

0.522562

-0.159126

-0.065144

 

(0.03737)

(0.07679)

(0.18986)

(0.99627)

(0.32243)

(3.48958)

(0.21423)

 

(1.44076)

(1.52147)

(1.49342)

(0.24431)

(1.62070)

(-0.04560)

(-0.30408)

C

-43.50496

-94.57336

-207.6369

1689.849

-69.24280

-1823.785

13.29672

 

(26.9050)

(55.2849)

(136.686)

(717.229)

(232.123)

(2512.21)

(154.230)

 

(-1.61698)

(-1.71065)

(-1.51908)

(2.35608)

(-0.29830)

(-0.72597)

(0.08621)

R-squared

0.987620

0.960267

0.974094

0.983947

0.999233

0.977749

0.998127

Adj. R-squared

0.977991

0.929364

0.953945

0.971461

0.998636

0.960443

0.996669

Sum sq. resids

330.7812

1396.655

8537.317

235066.4

24621.28

2883943.

10869.53

S.E. equation

4.286809

8.808629

21.77832

114.2771

36.98444

400.2737

24.57362

F-statistic

102.5667

31.07328

48.34435

78.80387

1674.036

56.49670

685.0114

Log likelihood

-84.85664

-108.6229

-138.4939

-193.1984

-155.9701

-234.5646

-142.4790

Akaike AIC

6.051918

7.492296

9.302662

12.61808

10.36183

15.12513

9.544179

Schwarz SC

6.732148

8.172526

9.982893

13.29831

11.04206

15.80536

10.22441

Mean dependent

86.95152

89.52424

362.8970

1317.976

1669.158

2306.945

457.1203

S.D. dependent

28.89559

33.14323

101.4813

676.4506

1001.284

2012.537

425.8085

Determinant Residual

4.05E+14

 
 
 
 
 

Covariance

Log Likelihood -882.7334

Akaike Information Criteria 53.38872

Schwarz Criteria 60.44257

Q=3

Date: 02/01/09 Time: 18:45

Sample(adjusted): 1973 2004

Included observations: 32 after adjusting endpoints Standard errors & t-statistics in parentheses

LY1 LL1 LC1 LD1 LI1 LV1 LH1

LY1(-1) -0.799434 -3.630197 -8.283425 24.11953 15.11625 -123.7206 8.354567

(2.64445) (5.08428) (12.9372) (63.8412) (15.8513) (215.806) (13.3906)

(-0.30231) (-0.71400) (-0.64028) (0.37781) (0.95363) (-0.57330) (0.62391)

LY1(-2) -1.792642 -4.177081 -9.908928 125.0923 18.76423 -315.1959 -17.82704

(3.33054) (6.40337) (16.2937) (80.4043) (19.9638) (271.795) (16.8646)

(-0.53824) (-0.65233) (-0.60814) (1.55579) (0.93991) (-1.15968) (-1.05707)

LY1(-3) 3.159896 7.134746 17.24718 -99.36813 -29.34967 415.4750 14.47576

(2.02468) (3.89269) (9.90515) (48.8788) (12.1362) (165.228) (10.2522)

(1.56069) (1.83286) (1.74123) (-2.03295) (-2.41835) (2.51456) (1.41196)

LL1(-1) -1.647734 -2.186819 -7.699288 79.47685 -12.26726 -170.8321 -10.69164

(1.60472) (3.08526) (7.85062) (38.7403) (9.61892) (130.956) (8.12571)

(-1.02681) (-0.70879) (-0.98072) (2.05153) (-1.27533) (-1.30450) (-1.31578)

LL1(-2) -0.990027 -3.214814 -5.851639 0.968251 -2.811784 131.7574 9.216998

(2.26064) (4.34636) (11.0595) (54.5753) (13.5506) (184.484) (11.4471)

(-0.43794) (-0.73966) (-0.52910) (0.01774) (-0.20750) (0.71419) (0.80518)

LL1(-3) 0.351572 0.782715 0.958173 -25.98542 3.495470 -12.70602 -2.638364

(1.51881) (2.92009) (7.43032) (36.6663) (9.10395) (123.945) (7.69068)

(0.23148) (0.26804) (0.12895) (-0.70870) (0.38395) (-0.10251) (-0.34306)

LC1(-1) 0.820212 1.578241 4.692385 -35.19632 3.140050 100.9792 2.620612

(1.04140) (2.00221) (5.09473) (25.1409) (6.24228) (84.9852) (5.27325)

(0.78761) (0.78825) (0.92103) (-1.39996) (0.50303) (1.18820) (0.49696)

LC1(-2) 0.781179 2.172210 4.441562 -19.55906 -2.587554 -16.20735 -0.380550

(1.39580) (2.68360) (6.82857) (33.6969) (8.36666) (113.907) (7.06785)

(0.55966) (0.80944) (0.65044) (-0.58044) (-0.30927) (-0.14229) (-0.05384)

LC1(-3) -0.562194 -1.401859 -2.931816 22.63674 1.755221 -52.40406 -2.689552

(0.89494) (1.72064) (4.37825) (21.6053) (5.36443) (73.0337) (4.53167)

(-0.62819) (-0.81473) (-0.66963) (1.04774) (0.32720) (-0.71753) (-0.59350)

LD1(-1) -0.008746 -0.019285 -0.038999 0.322787 0.064007 9.094339 -0.121631

(0.01495) (0.02875) (0.07315) (0.36097) (0.08963) (1.22021) (0.07571)

(-0.58492) (-0.67085) (-0.53313) (0.89422) (0.71416) (7.45308) (-1.60647)

LD1(-2) 0.005249 0.014601 0.033863 3.249835 0.364282 -11.09972 0.237531

(0.03444) (0.06622) (0.16849) (0.83147) (0.20645) (2.81065) (0.17440)

(0.15241) (0.22049) (0.20098) (3.90856) (1.76453) (-3.94917) (1.36201)

LD1(-3) 0.075861 0.109030 0.311130 -2.927112 -1.136003 8.599341 -0.258010

(0.06233) (0.11985) (0.30495) (1.50485) (0.37364) (5.08694) (0.31564)

(1.21700) (0.90975) (1.02025) (-1.94512) (-3.04034) (1.69047) (-0.81742)

LI1(-1) 0.012642 0.025739 0.058746 -1.095061 0.682587 4.548384 0.153658

(0.04107) (0.07897) (0.20093) (0.99154) (0.24619) (3.35177) (0.20797)

(0.30779) (0.32595) (0.29237) (-1.10440) (2.77258) (1.35701) (0.73883)

LI1(-2) -0.108085 -0.211008 -0.530559 -0.164971 0.074455 -4.346295 0.120089

(0.05339) (0.10265) (0.26121) (1.28897) (0.32004) (4.35717) (0.27036)

(-2.02437) (-2.05555) (-2.03120) (-0.12799) (0.23264) (-0.99750) (0.44418)

LI1(-3) 0.013697 0.046416 0.092228 1.565890 0.654318 -5.754602 0.197511

(0.02717) (0.05225) (0.13294) (0.65604) (0.16289) (2.21765) (0.13760)

(0.50402) (0.88840) (0.69373) (2.38688) (4.01694) (-2.59491) (1.43537)

LV1(-1) -0.003154 -0.004491 -0.013738 -0.211693 -0.059043 0.741015 -0.025048

(0.00326) (0.00626) (0.01593) (0.07862) (0.01952) (0.26575) (0.01649)

(-0.96864) (-0.71732) (-0.86233) (-2.69277) (-3.02480) (2.78841) (-1.51902)

LV1(-2) -0.008850 -0.014706 -0.038568 0.178667 0.112002 -0.333731 0.040387

(0.00585) (0.01124) (0.02860) (0.14115) (0.03505) (0.47713) (0.02961)

(-1.51374) (-1.30821) (-1.34838) (1.26581) (3.19585) (-0.69945) (1.36417)

LV1(-3) -0.004630 -0.008084 -0.022178 0.068971 0.030148 -0.488203 0.000927

(0.00290) (0.00558) (0.01419) (0.07003) (0.01739) (0.23674) (0.01469)

(-1.59591) (-1.44948) (-1.56268) (0.98484) (1.73376) (-2.06220) (0.06309)

LH1(-1) -0.019424 -0.035011 -0.087056 -0.239999 -0.118951 0.135563 0.490284

(0.05762) (0.11077) (0.28187) (1.39095) (0.34536) (4.70192) (0.29175)

(-0.33713) (-0.31605) (-0.30885) (-0.17254) (-0.34442) (0.02883) (1.68049)

LH1(-2) 0.079116 0.138564 0.357571 0.645125 0.671919 -3.656440 -0.078764

(0.06212) (0.11943) (0.30390) (1.49967) (0.37236) (5.06942) (0.31455)

(1.27360) (1.16018) (1.17659) (0.43018) (1.80451) (-0.72127) (-0.25040)

LH1(-3) 0.008580 0.032720 0.082264 -0.177656 -0.170403 4.970051 -0.164169

(0.05946) (0.11432) (0.29090) (1.43549) (0.35642) (4.85249) (0.30109)

(0.14430) (0.28621) (0.28279) (-0.12376) (-0.47809) (1.02423) (-0.54525)

C -73.89154 -171.8166 -375.9236 2359.007 -219.6893 -3271.800 -139.5288

(35.0080) (67.3072) (171.267) (845.147) (209.843) (2856.90) (177.268)

(-2.11070) (-2.55272) (-2.19496) (2.79124) (-1.04692) (-1.14523) (-0.78711)

R-squared 0.992973 0.980281 0.986219 0.993080 0.999808 0.991355 0.999254

Adj. R-squared 0.978215 0.938871 0.957279 0.978548 0.999404 0.973200 0.997687

Sum sq. resids 163.1692 603.1510 3905.248 95097.28 5862.647 1086660. 4183.730

S.E. equation 4.039420 7.766280 19.76170 97.51784 24.21290 329.6452 20.45417

F-statistic 67.28662 23.67269 34.07779 68.33655 2476.705 54.60601 637.6744

Log likelihood -71.47086 -92.38894 -122.2755 -173.3567 -128.7760 -212.3322 -123.3776

Akaike AIC 5.841929 7.149309 9.017218 12.20980 9.423498 14.64576 9.086100

Schwarz SC 6.849622 8.157002 10.02491 13.21749 10.43119 15.65345 10.09379

Mean dependent 88.77188 91.60312 369.5094 1347.178 1707.891 2367.819 470.7206

S.D. dependent 27.36803 31.41162 95.60974 665.8053 991.8695 2013.637 425.2773

Determinant Residual 2.39E+10

Covariance

Log Likelihood -700.2195

Akaike Information Criteria 59.86263

Schwarz Criteria 64.62424

Q=4

Date: 02/01/09 Time: 18:47

Sample(adjusted): 1974 2004

Included observations: 31 after adjusting endpoints Standard errors & t-statistics in parentheses

LY1 LL1 LC1 LD1 LI1 LV1 LH1

LY1(-1) 5.344082 6.702909 20.76125 -132.4906 80.91659 199.2077 40.93642

(7.93816) (20.6256) (48.0078) (285.335) (27.7891) (367.445) (27.2057)

(0.67321) (0.32498) (0.43246) (-0.46433) (2.91181) (0.54214) (1.50470)

LY1(-2) -7.823182 -13.16963 -35.80192 239.5359 -22.82968 -443.7527 -24.77193

(4.16659) (10.8260) (25.1984) (149.767) (14.5860) (192.865) (14.2797)

(-1.87760) (-1.21648) (-1.42080) (1.59939) (-1.56518) (-2.30085) (-1.73476)

LY1(-3) 10.33632 20.37881 52.24529 -165.0990 -1.714039 405.8983 -0.970132

(6.59507) (17.1359) (39.8851) (237.058) (23.0874) (305.275) (22.6026)

(1.56728) (1.18925) (1.30989) (-0.69645) (-0.07424) (1.32961) (-0.04292)

LY1(-4) -3.251433 -8.441097 -20.40365 42.75031 -23.33829 -125.3120 5.446886

(8.32275) (21.6249) (50.3337) (299.159) (29.1355) (385.247) (28.5238)

(-0.39067) (-0.39034) (-0.40537) (0.14290) (-0.80103) (-0.32528) (0.19096)

LL1(-1) 6.719979 11.73586 31.39649 -141.2574 41.62122 83.25204 26.09970

(5.89468) (15.3161) (35.6494) (211.883) (20.6355) (272.856) (20.2023)

(1.14001) (0.76625) (0.88070) (-0.66668) (2.01697) (0.30511) (1.29192)

LL1(-2) -6.303110 -11.10665 -29.47978 163.1058 -42.10251 -157.2869 -22.41640

(3.87848) (10.0774) (23.4560) (139.411) (13.5774) (179.529) (13.2923)

(-1.62515) (-1.10214) (-1.25681) (1.16996) (-3.10093) (-0.87611) (-1.68641)

LL1(-3) 6.402472 12.11825 31.32336 -101.5073 6.164936 56.31505 1.572117

(2.99871) (7.79150) (18.1354) (107.788) (10.4976) (138.806) (10.2772)

(2.13507) (1.55532) (1.72720) (-0.94173) (0.58727) (0.40571) (0.15297)

LL1(-4) -4.504161 -8.803740 -22.75542 25.96988 -10.29451 19.07714 1.660076

(2.81189) (7.30609) (17.0055) (101.073) (9.84359) (130.158) (9.63693)

(-1.60183) (-1.20499) (-1.33812) (0.25694) (-1.04581) (0.14657) (0.17226)

LC1(-1) -3.667304 -5.860680 -16.24523 79.39529 -30.63037 -56.98395 -17.95434

(3.68974) (9.58700) (22.3145) (132.627) (12.9167) (170.792) (12.6455)

(-0.99392) (-0.61132) (-0.72801) (0.59864) (-2.37138) (-0.33364) (-1.41982)

LC1(-2) 3.877564 6.676494 17.91716 -102.0941 21.10439 132.3576 13.42457

(2.16730) (5.63125) (13.1072) (77.9028) (7.58705) (100.321) (7.42776)

(1.78913) (1.18562) (1.36697) (-1.31053) (2.78163) (1.31934) (1.80735)

LC1(-3) -4.272170 -8.333382 -21.38508 63.25802 -4.265096 -82.74989 -0.397992

(1.98081) (5.14670) (11.9794) (71.1995) (6.93421) (91.6884) (6.78863)

(-2.15678) (-1.61917) (-1.78516) (0.88846) (-0.61508) (-0.90251) (-0.05863)

LC1(-4) 2.572568 5.342054 13.55426 -20.09738 6.809614 4.738635 -3.633296

(2.08816) (5.42562) (12.6286) (75.0582) (7.31001) (96.6575) (7.15654)

(1.23198) (0.98460) (1.07330) (-0.26776) (0.93155) (0.04902) (-0.50769)

LD1(-1) 0.010206 0.018176 0.060057 -0.817185 0.263556 10.55862 0.008374

(0.03359) (0.08728) (0.20316) (1.20748) (0.11760) (1.55495) (0.11513)

(0.30381) (0.20825) (0.29562) (-0.67677) (2.24117) (6.79033) (0.07274)

LD1(-2) -0.040028 -0.112218 -0.253735 4.309371 0.569452 -6.134439 0.146184

(0.05429) (0.14105) (0.32831) (1.95132) (0.19004) (2.51285) (0.18605)

(-0.73735) (-0.79558) (-0.77285) (2.20844) (2.99646) (-2.44123) (0.78572)

LD1(-3) 0.080364 0.119621 0.346176 -1.672153 -1.183442 6.443154 0.036731

(0.14707) (0.38213) (0.88943) (5.28636) (0.51484) (6.80759) (0.50404)

(0.54644) (0.31304) (0.38921) (-0.31631) (-2.29864) (0.94647) (0.07287)

LD1(-4) 0.147643 0.229973 0.621927 -3.032689 -0.454401 -6.890726 -0.412299

(0.26028) (0.67629) (1.57412) (9.35582) (0.91117) (12.0481) (0.89204)

(0.56724) (0.34005) (0.39509) (-0.32415) (-0.49870) (-0.57193) (-0.46220)

LI1(-1) 0.007183 0.054820 0.084928 -0.502206 -0.353007 -2.714636 -0.119578

(0.11887) (0.30885) (0.71888) (4.27269) (0.41612) (5.50223) (0.40739)

(0.06043) (0.17750) (0.11814) (-0.11754) (-0.84833) (-0.49337) (-0.29353)

LI1(-2) -0.181101 -0.341210 -0.875158 2.730891 -0.223340 -1.990356 -0.443695

(0.08589) (0.22318) (0.51946) (3.08744) (0.30069) (3.97591) (0.29438)

(-2.10842) (-1.52887) (-1.68473) (0.88452) (-0.74276) (-0.50060) (-1.50723)

LI1(-3) 0.071192 0.157533 0.409313 -4.016498 1.816736 2.608944 1.542211

(0.14012) (0.36408) (0.84742) (5.03668) (0.49053) (6.48607) (0.48023)

(0.50807) (0.43269) (0.48301) (-0.79745) (3.70363) (0.40224) (3.21141)

LI1(-4) -0.135203 -0.178106 -0.554176 5.215701 -0.822062 -7.324097 -0.660407

(0.16658) (0.43282) (1.00742) (5.98760) (0.58314) (7.71063) (0.57090)

(-0.81165) (-0.41150) (-0.55010) (0.87108) (-1.40972) (-0.94987) (-1.15679)

LV1(-1) 0.004162 0.013340 0.029308 -0.427780 -0.038797 0.514693 0.006817

(0.00925) (0.02403) (0.05593) (0.33241) (0.03237) (0.42806) (0.03169)

(0.45002) (0.55517) (0.52404) (-1.28692) (-1.19841) (1.20238) (0.21509)

LV1(-2) -0.014562 -0.021432 -0.061775 0.263071 0.061784 -0.508781 -0.022947

(0.01307) (0.03396) (0.07905) (0.46983) (0.04576) (0.60504) (0.04480)

(-1.11405) (-0.63106) (-0.78146) (0.55992) (1.35024) (-0.84091) (-0.51224)

LV1(-3) -0.016408 -0.025325 -0.068643 0.332165 0.064005 0.415130 0.035303

(0.02315) (0.06015) (0.14001) (0.83215) (0.08104) (1.07161) (0.07934)

(-0.70876) (-0.42102) (-0.49027) (0.39917) (0.78976) (0.38739) (0.44495)

LV1(-4) -0.004166 -0.006330 -0.016960 -0.086558 0.035778 0.276714 0.046676

(0.00733) (0.01904) (0.04432) (0.26341) (0.02565) (0.33921) (0.02511)

(-0.56854) (-0.33245) (-0.38270) (-0.32861) (1.39467) (0.81577) (1.85850)

LH1(-1) 0.090371 0.111979 0.369639 -4.554235 1.485740 11.55551 0.882907

(0.14227) (0.36967) (0.86043) (5.11397) (0.49806) (6.58560) (0.48760)

(0.63519) (0.30292) (0.42960) (-0.89055) (2.98308) (1.75466) (1.81072)

LH1(-2)

-0.007696

0.006775

-0.014887

2.607119

0.108372

-4.389817

-0.045779

 

(0.06941)

(0.18034)

(0.41976)

(2.49487)

(0.24298)

(3.21281)

(0.23788)

 

(-0.11087)

(0.03757)

(-0.03547)

(1.04499)

(0.44601)

(-1.36635)

(-0.19245)

LH1(-3)

0.023703

0.061962

0.156702

2.128439

-0.545975

2.480604

-0.757606

 

(0.10376)

(0.26958)

(0.62748)

(3.72944)

(0.36322)

(4.80266)

(0.35559)

 

(0.22845)

(0.22984)

(0.24973)

(0.57071)

(-1.50317)

(0.51651)

(-2.13057)

LH1(-4)

0.120687

0.112376

0.391117

-3.829976

1.690713

3.630916

0.605197

 

(0.10994)

(0.28565)

(0.66488)

(3.95173)

(0.38486)

(5.08891)

(0.37678)

 

(1.09776)

(0.39340)

(0.58825)

(-0.96919)

(4.39301)

(0.71350)

(1.60622)

C

140.7212

212.4412

671.3743

-2236.910

666.3828

486.0639

466.8828

 

(153.235)

(398.147)

(926.721)

(5507.98)

(536.429)

(7093.00)

(525.167)

 

(0.91834)

(0.53357)

(0.72446)

(-0.40612)

(1.24226)

(0.06853)

(0.88902)

R-squared

0.998792

0.993784

0.996339

0.997598

0.999990

0.999580

0.999948

Adj. R-squared

0.981883

0.906754

0.945087

0.963969

0.999848

0.993693

0.999221

Sum sq. resids

23.89773

161.3353

874.0576

30876.41

292.8642

51203.72

280.6960

S.E. equation

3.456713

8.981516

20.90523

124.2506

12.10091

160.0058

11.84686

F-statistic

59.06733

11.41891

19.43997

29.66518

7040.355

169.7995

1375.353

Log likelihood

-39.95394

-69.55430

-95.74406

-150.9954

-78.79578

-158.8356

-78.13801

Akaike AIC

4.448641

6.358342

8.048004

11.61261

6.954567

12.11842

6.912130

Schwarz SC

5.790113

7.699814

9.389476

12.95408

8.296039

13.45990

8.253602

Mean dependent

90.63226

93.76452

376.2161

1377.097

1748.445

2430.716

484.9771

S.D. dependent

25.68135

29.41267

89.21083

654.5796

980.9255

2014.715

424.4629

Determinant Residual

0.000000

 
 
 
 
 

Covariance

 
 
 
 
 
 

Test de Cointégration de JOHANSEN

Date: 02/01/09 Time: 18:06

Sample: 1970 2004

Included observations: 33

Test
assumption:

Linear
deterministic

trend in the

data

Series: LY1 LL1 LC1 LD1 LI1 LV1 LH1

Lags interval: 1 to 1

Eigenvalue

Likelihood
Ratio

5 Percent
Critical Value

1 Percent
Critical Value

Hypothesized
No. of CE(s)

0.849850

179.8056

124.24

133.57

None **

0.718013

117.2336

94.15

103.18

At most 1 **

0.586166

75.45907

68.52

76.07

At most 2 *

0.449082

46.34348

47.21

54.46

At most 3

0.375869

26.66987

29.68

35.65

At most 4

0.264515

11.11382

15.41

20.04

At most 5

0.029125

0.975397

3.76

6.65

At most 6

*(**) denotes
rejection of the
hypothesis at
5%(1%)
significance

level
L.R. test
indicates 3
cointegrating
equation(s) at
5%
significance
level

Normalized Cointegrating Coefficients: 1 Cointegrating Equation(s)

LY1

1.000000

Log likelihood

LL1
0.133676
(0.04212)

-941.3501

LC1
-0.358572
(0.01422)

LD1
-0.039942
(0.00266)

LI1
0.0.20455
(0.00225)

LV1
0.006042
(0.00045)

LH1
0.024097
(0.000217)

C
25.57425

Normalized Cointegrating Coefficients: 2 Cointegrating Equation(s)

 
 
 
 
 
 
 

LY1

LL1

LC1

LD1

LI1

LV1

LH1

C

1.000000
0.000000

Log likelihood

0.000000
1.000000

-920.4629

-0.405662 (0.22520) -0.236397 (0.04977)

-0.096248 (0.14444) 0.085192 (0.03192)

0.261880 (0.39519) -0.078277 (0.08734)

0.011593 (0.02309) -0.014117 (0.00510)

-0.370328 (0.63657) 0.035600 (0.14069)

-101.2342

29.08664

Normalized

 
 
 
 
 
 
 

Cointegrating

 
 
 
 
 
 
 

Coefficients: 3

 
 
 
 
 
 
 

Cointegrating

 
 
 
 
 
 
 

Equation(s)

 
 
 
 
 
 
 

LY1

LL1

LC1

LD1

LI1

LV1

LH1

C

1.000000

0.000000

0.000000

0.158107

-0.144118

-0.032144

0.086294

-21.45901

 
 
 

(0.02315)

(0.11693)

(0.00550)

(0.22674)

 

0.000000

1.000000

0.000000

0.233416

-0.314870

-0.039604

0.301695

75.57519

 
 
 

(0.04560)

(0.23031)

(0.01084)

(0.44659)

 

0.000000

0.000000

1.000000

0.627013

-1.000827

-0.107814

1.125622

196.6542

 
 
 

(0.14775)

(0.74618)

(0.03511)

(1.44691)

 

Log likelihood

-905.9051

 
 
 
 
 
 

Normalized

 
 
 
 
 
 
 

Cointegrating

 
 
 
 
 
 
 

Coefficients: 4

 
 
 
 
 
 
 

Cointegrating

 
 
 
 
 
 
 

Equation(s)

 
 
 
 
 
 
 

LY1

LL1

LC1

LD1

LI1

LV1

LH1

C

1.000000

0.000000

0.000000

0.000000

5.747749

-0.178145

-11.18412

-4016.454

 
 
 
 

(53.7603)

(1.57201)

(104.799)

 

0.000000

1.000000

0.000000

0.000000

8.383381

-0.255148

-16.33698

-5822.297

 
 
 
 

(77.9471)

(2.27925)

(151.948)

 

0.000000

0.000000

1.000000

0.000000

22.36481

-0.686819

-43.56995

-15646.48

 
 
 
 

(208.441)

(6.09502)

(406.329)

 

0.000000

0.000000

0.000000

1.000000

-37.26500

0.923434

71.28332

25267.63

 
 
 
 

(339.908)

(9.93925)

(662.607)

 

Log likelihood

-896.0683

 
 
 
 
 
 

Normalized

 
 
 
 
 
 
 

Cointegrating

 
 
 
 
 
 
 

Coefficients: 5

 
 
 
 
 
 
 

Cointegrating

 
 
 
 
 
 
 

Equation(s)

 
 
 
 
 
 
 

LY1

LL1

LC1

LD1

LI1

LV1

LH1

C

1.000000

0.000000

0.000000

0.000000

0.000000

-0.015181

0.109158

-95.18805

 
 
 
 
 

(0.00451)

(0.05807)

 

0.000000

1.000000

0.000000

0.000000

0.000000

-0.017456

0.134827

-102.9324

 
 
 
 
 

(0.00591)

(0.07601)

 

0.000000

0.000000

1.000000

0.000000

0.000000

-0.052715

0.372813

-388.6118

 
 
 
 
 

(0.01631)

(0.20986)

 

0.000000

0.000000

0.000000

1.000000

0.000000

-0.133132

-1.935578

-155.5385

 
 
 
 
 

(0.02455)

(0.31586)

 

0.000000

0.000000

0.000000

0.000000

1.000000

-0.028353

-1.964817

-682.2265

 
 
 
 
 

(0.01334)

(0.17156)

 

Log likelihood

-888.2903

 
 
 
 
 
 

Normalized

 
 
 
 
 
 
 

Cointegrating

 
 
 
 
 
 
 

Coefficients: 6

 
 
 
 
 
 
 

Cointegrating

 
 
 
 
 
 
 

Equation(s)

 
 
 
 
 
 
 

LY1

LL1

LC1

LD1

LI1

LV1

LH1

C

1.000000

0.000000

0.000000

0.000000

0.000000

0.000000

-0.217880

5.929235

 
 
 
 
 
 

(0.14683)

 

0.000000

1.000000

0.000000

0.000000

0.000000

0.000000

-0.241241

13.34449

 
 
 
 
 
 

(0.16325)

 

0.000000

0.000000

1.000000

0.000000

0.000000

0.000000

-0.762836

-37.47985

 
 
 
 
 
 

(0.50720)

 

0.000000

0.000000

0.000000

1.000000

0.000000

0.000000

-4.803659

731.2451

 
 
 
 
 
 

(1.95456)

 

0.000000

0.000000

0.000000

0.000000

1.000000

0.000000

-2.575626

-493.3699

 
 
 
 
 
 

(0.36597)

 

0.000000

0.000000

0.000000

0.000000

0.000000

1.000000

-21.54322

6660.960

 
 
 
 
 
 

(12.5953)

 

Log likelihood

-883.2211

 
 
 
 
 
 

Estimation du VECM

Date: 02/01/09 Time: 18:24

Sample(adjusted): 1973 2004

Included observations: 32 after adjusting endpoints

Standard errors & t-statistics in parentheses

Cointegrating Eq:

CointEq1

 
 
 
 
 
 

LY1(-1)

1.000000

 
 
 
 
 
 

LL1(-1)

0.133676

 
 
 
 
 
 
 

(0.04212)

 
 
 
 
 
 
 

(3.17353)

 
 
 
 
 
 

LC1(-1)

-0.358572

 
 
 
 
 
 
 

(0.01422)

 
 
 
 
 
 
 

(-25.2223)

 
 
 
 
 
 

LD1(-1)

-0.039942

 
 
 
 
 
 
 

(0.00266)

 
 
 
 
 
 
 

(-15.0220)

 
 
 
 
 
 

LI1(-1)

0.020455

 
 
 
 
 
 
 

(0.00225)

 
 
 
 
 
 
 

(9.09466)

 
 
 
 
 
 

LV1(-1)

0.006042

 
 
 
 
 
 
 

(0.00045)

 
 
 
 
 
 
 

(13.5034)

 
 
 
 
 
 

LH1(-1)

0.024097

 
 
 
 
 
 
 

(0.00217)

 
 
 
 
 
 
 

(11.1022)

 
 
 
 
 
 

C

25.57425

 
 
 
 
 
 

Error Correction:

D(LY1)

D(LL1)

D(LC1)

D(LD1)

D(LI1)

D(LV1)

D(LH1)

CointEq1

-0.430715

-0.580505

-1.418382

33.81925

16.59082

-90.44913

6.130396

 

(0.57113)

(1.18338)

(2.92584)

(10.3096)

(3.50635)

(32.4437)

(3.29331)

 

(-2.75415)

(-2.49055)

(-2.48478)

(3.28035)

(4.73165)

(-2.78788)

(1.86147)

D(LY1(-1))

1.128497

1.081714

3.898838

34.83750

22.10816

-33.25280

24.75070

 

(2.39546)

(4.96337)

(12.2717)

(43.2411)

(14.7065)

(136.077)

(13.8129)

 

(1.47110)

(1.21794)

(1.31771)

(1.80566)

(1.50329)

(-0.24437)

(1.79185)

D(LY1(-2))

-1.677219

-2.684125

-7.688464

104.4778

34.29288

-367.7833

2.516808

 

(2.14145)

(4.43707)

(10.9704)

(38.6560)

(13.1471)

(121.648)

(12.3482)

 

(-1.78322)

(-1.60493)

(-1.70083)

(2.70276)

(2.60841)

(-3.02335)

(1.20382)

D(LL1(-1))

-1.284150

-1.598436

-5.311541

78.68691

-0.942130

-232.0976

4.355496

 

(1.67451)

(3.46958)

(8.57837)

(30.2272)

(10.2804)

(95.1227)

(9.65575)

 

(-1.76688)

(-0.46070)

(-0.61918)

(2.60319)

(-0.09164)

(-2.43998)

(0.45108)

D(LL1(-2))

-2.190368

-4.362032

-10.97016

33.42845

11.18970

-91.53003

5.796280

 

(1.51369)

(3.13636)

(7.75449)

(27.3241)

(9.29304)

(85.9871)

(8.72840)

 

(-1.44704)

(-1.39080)

(-1.41468)

(1.22340)

(1.20409)

(-1.06446)

(0.66407)

D(LC1(-1))

0.234009

0.314965

1.125616

-33.11707

-1.052314

105.0301

-5.943697

 

(1.01616)

(2.10548)

(5.20569)

(18.3430)

(6.23854)

(57.7242)

(5.85949)

 

(1.23029)

(0.14959)

(0.21623)

(-1.80543)

(-0.16868)

(1.81951)

(-1.01437)

D(LC1(-2))

1.192081

2.263658

5.918494

-22.91446

-8.830030

88.81067

-2.193364

 

(0.90682)

(1.87893)

(4.64556)

(16.3693)

(5.56727)

(51.5131)

(5.22900)

 

(1.31457)

(1.20476)

(1.27401)

(-1.39984)

(-1.58606)

(1.72404)

(-0.41946)

D(LD1(-1))

-0.009276

-0.014194

-0.015241

1.177110

0.694806

6.053097

0.203100

(0.03107)

(0.06437)

(0.15916)

(0.56084)

(0.19074)

(1.76491)

(0.17915)

(-1.29857)

(-0.22048)

(-0.09575)

(2.09885)

(3.64263)

(3.42968)

(1.13366)

D(LD1(-2)) 0.008055

0.024226

0.076539

4.747023

1.085077

-5.610636

0.460794

(0.05112)

(0.10592)

(0.26188)

(0.92279)

(0.31384)

(2.90395)

(0.29478)

(1.15757)

(0.22872)

(0.29226)

(5.14421)

(3.45737)

(-1.93207)

(1.56320)

D(LI1(-1)) 0.020320

0.042180

0.076905

-2.791466

-0.330022

6.800664

-0.233518

(0.05029)

(0.10421)

(0.25765)

(0.90787)

(0.30877)

(2.85700)

(0.29001)

(1.40402)

(0.40477)

(0.29849)

(-3.07475)

(-1.06883)

(2.38036)

(-0.80521)

D(LI1(-2)) -0.015018

-0.047471

-0.107140

-1.668803

-0.463985

4.041318

-0.111440

(0.02944)

(0.06099)

(0.15079)

(0.53135)

(0.18071)

(1.67211)

(0.16973)

(-1.51020)

(-0.77834)

(-0.71050)

(-3.14070)

(-2.56752)

(2.41689)

(-0.65656)

D(LV1(-1)) -0.001844

-0.003126

-0.011455

-0.427682

-0.146341

0.276840

-0.046336

(0.00524)

(0.01085)

(0.02683)

(0.09454)

(0.03215)

(0.29752)

(0.03020)

(-1.35199)

(-0.28802)

(-0.42694)

(-4.52363)

(-4.55113)

(0.93048)

(-1.53425)

D(LV1(-2)) -0.001427

-0.002837

-0.007876

-0.128724

-0.014954

0.296812

-0.000135

(0.00239)

(0.00495)

(0.01223)

(0.04310)

(0.01466)

(0.13562)

(0.01377)

(-1.59778)

(-0.57342)

(-0.64394)

(-2.98684)

(-1.02024)

(2.18850)

(-0.00978)

D(LH1(-1)) 0.018070

0.028494

0.083517

-0.172621

-0.322004

3.088715

0.311525

(0.05039)

(0.10440)

(0.25813)

(0.90958)

(0.30935)

(2.86237)

(0.29055)

(1.35861)

(0.27292)

(0.32354)

(-0.18978)

(-1.04090)

(1.07908)

(1.07218)

D(LH1(-2)) 0.081498

0.164966

0.400315

-0.642171

0.377409

0.273855

0.049255

(0.04051)

(0.08394)

(0.20755)

(0.73133)

(0.24873)

(2.30145)

(0.23362)

(2.01160)

(1.96518)

(1.92877)

(-0.87809)

(1.51735)

(0.11899)

(0.21084)

C -3.479734

-7.167479

-18.20827

54.37015

11.44097

-1041.779

4.755857

(3.73536)

(7.73964)

(19.1359)

(67.4281)

(22.9326)

(212.192)

(21.5392)

(-0.93157)

(-0.92607)

(-0.95152)

(0.80634)

(0.49890)

(-4.90962)

(0.22080)

0.594193

0.457167

0.513991

0.762676

0.921324

0.978836

0.712030

R-squared

 
 
 
 
 
 

Adj. R-squared 0.213750

-0.051740

0.058357

0.540185

0.847565

0.958995

0.442058

Sum sq. resids 481.1805

2065.783

12628.18

156792.7

18136.33

1552744.

15999.38

S.E. equation 5.483957

11.36272

28.09379

98.99266

33.66779

311.5229

31.62216

F-statistic 1.561844

0.898332

1.128079

3.427890

12.49105

49.33315

2.637420

Log likelihood -88.77414

-112.0865

-141.0532

-181.3571

-146.8450

-218.0428

-144.8391

Akaike AIC 6.548384

8.005406

9.815827

12.33482

10.17781

14.62768

10.05245

Schwarz SC 7.281252

8.738274

10.54869

13.06769

10.91068

15.36054

10.78531

Mean dependent 2.456250

2.759375

8.778125

55.48438

108.6562

24.09375

43.17531

S.D. dependent 6.184629

11.07971

28.95125

145.9860

86.23284

1538.400

42.33474

Determinant Residual

6.70E+13

 
 
 
 
 

Covariance

 
 
 
 
 
 

Log Likelihood

-827.2228

 
 
 
 
 

Akaike Information Criteria

59.13893

 
 
 
 
 

Schwarz Criteria

64.58963

 
 
 
 
 

Decomposition de la variance

Varia
nce

Deco
mposi
tion of

LY1:

Perio

d

S.E.

LY1

LL1

LC1

LD1

LI1

LV1

LH1

1

3.166018

100.0000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

2

3.434566

88.78875

0.255433

0.232175

0.954986

3.836985

5.524315

0.407360

3

4.330526

55.85259

0.189794

0.653421

8.261803

4.690334

23.18026

7.171788

4

5.533345

34.32353

0.799082

1.405027

20.82632

4.650721

28.02456

9.970762

5

6.094218

28.42829

3.003940

1.434894

20.82843

4.989316

30.92220

10.39293

6

6.495212

25.15319

3.091678

2.575879

18.43957

5.716328

35.69445

9.328908

7

7.124911

21.43765

3.784047

5.143314

15.32460

6.502566

40.05365

7.754173

8

8.031471

17.36426

9.940176

6.559195

12.19368

7.065318

40.75583

6.121545

9

9.042812

14.10563

19.59717

6.113521

9.791593

7.640403

37.88217

4.869505

10

10.07406

11.92515

29.48276

5.083773

7.890427

8.240118

33.44045

3.937319

Varia
nce

Deco mposi tion of LL1:

Perio

d

S.E.

LY1

LL1

LC1

LD1

LI1

LV1

LH1

1

6.505603

94.06571

5.934287

0.000000

0.000000

0.000000

0.000000

0.000000

2

7.010347

83.57657

10.07871

0.776893

0.023892

3.334946

2.019910

0.189076

3

8.034988

63.63344

11.29928

1.369949

4.496112

3.938366

9.067245

6.195605

4

9.284231

47.89979

8.471767

1.034418

16.81915

4.194662

12.32599

9.254218

5

9.759850

43.97939

10.80565

1.086989

16.78605

4.367674

13.14408

9.830160

6

10.11034

41.26708

12.11331

1.620129

15.72255

4.655771

15.45850

9.162667

7

10.71902

37.34580

10.80400

4.636536

14.14146

5.099909

19.70944

8.262851

8

11.61754

32.07649

12.68109

7.136399

12.08002

5.571328

23.41177

7.042900

9

12.67631

27.05117

19.04007

7.241926

10.37787

6.221634

24.14013

5.927193

10

13.79260

23.04765

27.26171

6.260300

8.789329

6.970057

22.64694

5.024011

Varia
nce

Deco mposi tion of LC1:

Perio d

S.E.

LY1

LL1

LC1

LD1

LI1

LV1

LH1

1

16.08436

97.31131

2.335554

0.353139

0.000000

0.000000

0.000000

0.000000

2

17.31035

86.32514

3.925646

1.829984

0.808705

3.758812

3.062248

0.289470

3

20.59584

61.09519

5.233247

1.375930

6.305047

4.541102

14.75875

6.690728

4

24.61979

43.22621

3.680631

1.064788

18.61194

4.663461

18.96264

9.790323

5

26.09443

39.01436

5.464012

0.948201

18.65535

4.938049

20.65677

10.32326

6

27.17269

36.29003

5.906809

1.755364

17.26946

5.421061

23.82952

9.527750

7

29.23841

32.04393

5.736163

4.807046

15.08114

5.974565

28.04664

8.310522

8

32.36688

26.57271

10.56185

6.938979

12.34308

6.434533

30.36456

6.784285

9

35.91615

21.81363

19.35001

6.727132

10.19908

7.016850

29.36724

5.526056

10

39.52889

18.35014

28.74407

5.683360

8.424489

7.689292

26.53383

4.574809

Varia
nce
Deco

mposi
tion of
LD1:

Perio

d

S.E.

LY1

LL1

LC1

LD1

LI1

LV1

LH1

1

84.39920

21.48853

4.739922

1.880795

71.89075

0.000000

0.000000

0.000000

2

120.5865

14.90720

26.73661

13.89299

36.64431

0.089727

7.649234

0.079924

3

145.4018

14.66695

36.87421

15.23318

25.47720

0.088336

7.605123

0.054996

4

158.0911

12.48511

44.05073

14.33565

22.23675

0.079795

6.733414

0.078547

5

166.7851

11.24062

47.24062

13.24595

21.85524

0.081388

6.063669

0.272514

6

172.7692

10.55768

48.95246

12.55758

21.77678

0.099842

5.760324

0.295337

7

175.8486

10.28106

49.66282

12.50554

21.08673

0.157239

5.996350

0.310253

8

177.2694

10.17784

49.29196

12.61270

20.78679

0.227569

6.440928

0.462212

9

178.5172

10.04405

48.60954

12.80040

20.53440

0.315820

7.092625

0.603156

10

180.7489

9.804059

47.51358

13.20254

20.04994

0.464897

8.291520

0.673469

Varia
nce

Deco mposi tion of LI1:

Perio

d

S.E.

LY1

LL1

LC1

LD1

LI1

LV1

LH1

1

27.31482

1.382414

0.556570

0.180649

32.47558

65.40478

0.000000

0.000000

2

41.63389

11.57427

7.975357

0.576778

23.26664

53.48263

2.964439

0.159883

3

57.34247

8.698827

26.91020

0.617096

16.02854

41.52623

4.798543

1.420573

4

83.42863

7.891199

44.98775

1.728302

9.201818

28.98647

3.069051

4.135412

5

113.4345

7.167360

56.11676

1.393522

7.239336

21.15118

2.628952

4.302893

6

143.3309

5.668528

63.19750

1.117207

5.479619

17.52158

2.801744

4.213818

7

172.1577

5.044975

65.68357

0.783732

4.968522

15.76179

3.683772

4.073635

8

199.4006

4.707841

66.32361

0.585720

4.866983

14.98818

4.525919

4.001742

9

225.0409

4.725253

65.97287

0.487237

4.774050

14.90559

5.130007

4.004988

10

249.4789

4.824651

65.23849

0.494854

4.672516

15.22196

5.504107

4.043418

Varia
nce

Deco mposi tion of LV1:

Perio d

S.E.

LY1

LL1

LC1

LD1

LI1

LV1

LH1

1

295.6217

9.632136

6.147125

12.96110

15.36207

1.916991

53.98058

0.000000

2

854.9493

1.473644

2.642407

11.82508

72.79886

0.387964

10.75580

0.116244

3

1102.015

3.837210

21.69256

17.38666

43.84798

1.909690

10.96476

0.361138

4

1274.991

8.285985

31.38963

15.69874

32.78372

1.973247

9.403412

0.465264

5

1352.445

7.386788

37.50900

15.00105

29.23499

2.059177

8.395427

0.413569

6

1411.961

6.939309

39.45202

13.86444

28.64417

2.363071

7.950036

0.786946

7

1481.635

6.484547

41.22723

12.92806

28.26787

2.731304

7.220927

1.140071

8

1548.026

6.299688

43.40205

12.79394

26.09425

3.430979

6.823676

1.155421

9

1600.545

6.150483

44.94849

12.55306

24.41528

4.267354

6.584247

1.081082

10

1642.200

5.961747

45.82866

12.27341

23.19360

5.331870

6.383136

1.027582

Varia

nce

Deco mposi tion of LH1:

Perio d

S.E.

LY1

LL1

LC1

LD1

LI1

LV1

LH1

1

18.14882

4.429773

8.502750

21.07472

0.896425

19.74914

0.046072

45.30112

2

22.87780

5.094728

5.513801

16.57893

8.583660

21.72962

0.087375

42.41189

3

28.82553

4.305368

21.37445

12.40377

5.497693

25.39454

0.577113

30.44706

4

37.67825

2.760669

40.74941

7.338573

3.955931

26.49235

0.433595

18.26947

5

47.59462

2.444990

53.26716

5.049063

2.545322

24.83184

0.371713

11.48991

6

57.90444

3.228139

59.17582

3.620227

1.740680

23.54776

0.666755

8.020619

7

68.75658

4.773956

61.06479

2.608511

1.971638

22.00921

1.230436

6.341454

8

80.41887

5.646941

61.93931

1.966357

2.564796

20.55918

1.634634

5.688782

9

93.08116

5.991689

62.48018

1.707501

3.082692

19.38134

1.927950

5.428645

10

106.6486

5.838800

63.25807

1.613682

3.374523

18.55496

2.141506

5.218458

Fonctions de Reponses impulsionnelles -Réponse de LY1 a un choc sur LL1, LC1, LD1, LH1

Response of LY1 to One S.D. LL1 Innovation Response of LY1 to One S.D. LC1 Innovation Response of LY1 to One S.D. LD1 Innovation Response of LY1 to One S.D. LH1 Innovation

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1 2 3 4 5 6 7 8 9 10

4

3

2

1

0

1

1 2 3 4 5 6 7 8 9 10

0.4

0.0

-0.4

-0.8

-1.2

-1.6

1 2 3 4 5 6 7 8 9 10

0.5

0.0

-0.5

-1.0

-1.5

-2.0

-2.5

1 2 3 4 5 6 7 8 9 10

-Réponse de LL1, LC1, LD1, LH1 a un choc sur LY1

Response of LL1 to One S.D. LY1 Innovation Response of LC1 to One S.D. LY1 Innovation Response of LD1 to One S.D. LY1 Innovation Response of LH1 to One S.D. LY1 Innovation

16

12

8

4

0

4

1 2 3 4 5 6 7 8 9 10

8

6

4

2

0

2

1 2 3 4 5 6 7 8 9 10

20

15

10

5

0

5

1 2 3 4 5 6 7 8 9 10

0

-10

-20

-30

40

1 2 3 4 5 6 7 8 9 10

Quelques Résultats pour les échantillons 2 (pays développés) et les échantillons 3 (pays en développés)

ADF TEST pour pays développés LY2 en Différence : I(1)

ADF Test Statistic -3.773341 1% Critical Value* -4.2712

5% Critical Value -3.5562

10% Critical Value -3.2109

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LY2,2)

Method: Least Squares

Date: 02/04/09 Time: 16:48

Sample(adjusted): 1973 2004

Included observations: 32 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

D(LY2(-1)) -0.972162 0.257640 -3.773341 0.0008

D(LY2(-1),2) 0.021316 0.187141 0.113904 0.9101

C 6.510794 2.931691 2.220832 0.0346

@TREND(1970) -0.222870 0.129311 -1.723518 0.0958

-squared 0.478534 Mean dependent var -0.006250

Adjusted R-squared 0.422663 S.D. dependent var 8.018846

S.E. of regression 6.092936 Akaike info criterion 6.568606

Sum squared resid 1039.468 Schwarz criterion 6.751823

Log likelihood -101.0977 F-statistic 8.564936

Durbin-Watson stat 2.006797 Prob(F-statistic) 0.000341

LL2 en Différence I(1)

ADF Test Statistic -4.212604 1% Critical Value* -4.2712

5% Critical Value -3.5562

10% Critical Value -3.2109

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LL2,2)

Method: Least Squares

Date: 02/04/09 Time: 16:52

Sample(adjusted): 1973 2004

Included observations: 32 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

D(LL2(-1)) -1.160269 0.275428 -4.212604 0.0002

D(LL2(-1),2) 0.078991 0.187964 0.420247 0.6775

C 8.978357 4.927039 1.822262 0.0791

@TREND(1970) -0.312605 0.227679 -1.373008 0.1806

R-squared 0.541525 Mean dependent var 0.015625

Adjusted R-squared 0.492403 S.D. dependent var 15.83239

S.E. of regression 11.27992 Akaike info criterion 7.800394

Sum squared resid 3562.626 Schwarz criterion 7.983611

Log likelihood -120.8063 F-statistic 11.02401

Durbin-Watson stat 2.019605 Prob(F-statistic) 0.000059

L en Différence : I(1)

ADF Test Statistic -4.195187 1% Critical Value* -4.2712

5% Critical Value -3.5562

10% Critical Value -3.2109

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(L,2)

Method: Least Squares

Date: 02/04/09 Time: 16:54

Sample(adjusted): 1973 2004

Included observations: 32 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

D(L(-1)) -1.148938 0.273871 -4.195187 0.0002

D(L(-1),2) 0.083708 0.188148 0.444906 0.6598

C 28.36144 13.34173 2.125770 0.0425

@TREND(1970) -0.987474 0.603956 -1.635009 0.1132

R-squared 0.533863 Mean dependent var -0.025000

Adjusted R-squared 0.483920 S.D. dependent var 40.50511

S.E. of regression 29.09835 Akaike info criterion 9.695708

Sum squared resid 23707.99 Schwarz criterion 9.878925

Log likelihood -151.1313 F-statistic 10.68940

Durbin-Watson stat 2.017042 Prob(F-statistic) 0.000074

LD2 en Différence : I(1)

ADF Test Statistic -3.802972 1% Critical Value* -4.2712

5% Critical Value -3.5562

10% Critical Value -3.2109

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LD2,2)

Method: Least Squares

Date: 02/04/09 Time: 16:57

Sample(adjusted): 1973 2004

Included observations: 32 after adjusting endpoints

Variable

Coefficient

D(LD2(-1))

-1.062865

D(LD2(-1),2)

-0.029454

C

70.09658

@TREND(1970)

-0.601964

R-squared

0.547960

Adjusted R-squared

0.499527

S.E. of regression

152.7441

Sum squared resid

653261.0

Log likelihood

-204.1900

Durbin-Watson stat

2.003002

LI2 en Différence : I(1)

ADF Test Statistic -4.081272

Std. Error t-Statistic Prob.

0.279483 -3.802972

0.0007

0.188847 -0.155967

0.8772

63.10635 1.110769

0.2761

2.928265 -0.205570

0.8386

Mean dependent var

0.465625

S.D. dependent var

215.9106

Akaike info criterion

13.01187

Schwarz criterion

13.19509

F-statistic

11.31379

Prob(F-statistic)

0.000049

 
 

1% Critical Value*

-4.2712

5% Critical Value

-3.5562

10% Critical Value

-3.2109

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LI2,2)

Method: Least Squares

Date: 02/04/09 Time: 20:00

Sample(adjusted): 1973 2004

Included observations: 32 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

D(LI2(-1)) -1.144501 0.280427 -4.081272 0.0003

D(LI2(-1),2) 0.049409 0.189615 0.260576 0.7963

C 1041.848 720.0771 1.446857 0.1590

@TREND(1970) -30.04743 33.43739 -0.898618 0.3765

R-squared 0.544536 Mean dependent var 20.12656

Adjusted R-squared 0.495736 S.D. dependent var 2388.389

S.E. of regression 1696.032 Akaike info criterion 17.82644

Sum squared resid 80542640 Schwarz criterion 18.00966

Log likelihood -281.2230 F-statistic 11.15859

Durbin-Watson stat 1.996177 Prob(F-statistic) 0.000054

LV2 en Différence : I(1)

ADF Test Statistic -4.853837 1% Critical Value* -4.2712

5% Critical Value -3.5562

10% Critical Value -3.2109

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LV2,2)

Method: Least Squares

Date: 02/04/09 Time: 16:59

Sample(adjusted): 1973 2004

Included observations: 32 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

D(LV2(-1)) -1.470098 0.302873 -4.853837 0.0000

D(LV2(-1),2) 0.128508 0.187626 0.684916 0.4990

C 554.6303 612.9929 0.904791 0.3733

@TREND(1970) -28.06257 29.70124 -0.944828 0.3528

R-squared 0.656903 Mean dependent var -0.412500

Adjusted R-squared 0.620142 S.D. dependent var 2466.083

S.E. of regression 1519.911 Akaike info criterion 17.60716

Sum squared resid 64683649 Schwarz criterion 17.79038

Log likelihood -277.7146 F-statistic 17.86982

Durbin-Watson stat 2.023657 Prob(F-statistic) 0.000001

LH2 en Différence : I(1)

ADF Test Statistic -3.239488 1% Critical Value* -4.2712

5% Critical Value -3.5562

10% Critical Value -3.2109

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LH2,2)

Method: Least Squares

Date: 02/04/09 Time: 17:00

Sample(adjusted): 1973 2004

Included observations: 32 after adjusting endpoints

Variable

Coefficient

Std. Error

t-Statistic

Prob.

D(LH2(-1))

-0.850540

0.262554

-3.239488

0.0031

D(LH2(-1),2)

0.003121

0.198037

0.015762

0.9875

C

-12.21893

13.06156

-0.935487

0.3575

@TREND(1970) 2.676849 0.928269 2.883698 0.0075

R-squared 0.411674 Mean dependent var 3.956875

Adjusted R-squared 0.348639 S.D. dependent var 39.76432

S.E. of regression 32.09256 Akaike info criterion 9.891594

Sum squared resid 28838.10 Schwarz criterion 10.07481

Log likelihood -154.2655 F-statistic 6.530895

Durbin-Watson stat 1.960378 Prob(F-statistic) 0.001731

Stationnarité du résidu, échantillon2

ADF Test Statistic -2.787108 1% Critical Value* -2.6344

5% Critical Value -1.9514

10% Critical Value -1.6211

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(RESID02)

Method: Least Squares

Date: 01/04/80 Time: 00:17

Sample(adjusted): 1972 2004

Included observations: 33 after adjusting endpoints

Variable

Coefficient

Std. Error t-Statistic

Prob.

RESID02(-1)

-0.613236

0.220026 -2.787108

0.0090

D(RESID02(-1))

-0.156247

0.193450 -0.807687

0.4254

R-squared

0.344826

Mean dependent var

1.95E-11

Adjusted R-squared

0.323692

S.D. dependent var

5.68E-10

S.E. of regression

4.67E-10

Akaike info criterion

-40.07093

Sum squared resid

6.77E-18

Schwarz criterion

-39.98023

Log likelihood

663.1703

Durbin-Watson stat

1.833330

Estimation du MVCE : échantillon 2

Date: 02/04/09 Time: 16:39

Sample(adjusted): 1973 2004

Included observations: 32 after adjusting endpoints Standard errors & t-statistics in parentheses

Cointegrating Eq: CointEq1

LY2(-1) 1.000000

LL2(-1) 0.133676

(0.04212)
(3.17353)

L(-1) -0.358572

(0.01422)

(-25.2223)

LD2(-1) -0.039942

(0.00266)

(-15.0220)

LI2(-1) 0.020455

(0.00225)
(9.09466)

LV2(-1) 0.006042

(0.00045)
(13.5034)

LH2(-1) 0.024097

(0.00217)
(11.1022)

C 25.57425

Error Correction: D(LY2) D(LL2) D(L) D(LD2) D(LI2) D(LV2) D(LH2)

CointEq1 -0.430715 -0.580505 -1.418382 33.81925 16.59082 -90.44913 6.130396

(0.57113) (1.18338) (2.92584) (10.3096) (3.50635) (32.4437) (3.29331)

(-2.75415) (-2.49055) (-2.48478) (3.28035) (4.73165) (-2.78788) (1.86147)

D(LY2(-1)) 1.128497 1.081714 3.898838 34.83750 22.10816 -33.25280 24.75070

(2.39546) (4.96337) (12.2717) (43.2411) (14.7065) (136.077) (13.8129)

(1.47110) (1.21794) (1.31771) (1.80566) (1.50329) (-0.24437) (1.79185)

D(LY2(-2)) -1.677219 -2.684125 -7.688464 104.4778 34.29288 -367.7833 2.516808

(2.14145) (4.43707) (10.9704) (38.6560) (13.1471) (121.648) (12.3482)

(-1.78322) (-1.60493) (-1.70083) (1.70276) (2.60841) (-3.02335) (2.20382)

D(LL2(-1)) -1.284150 -1.598436 -5.311541 78.68691 -0.942130 -232.0976 4.355496

(1.67451) (3.46958) (8.57837) (30.2272) (10.2804) (95.1227) (9.65575)

(-1.76688) (-0.46070) (-0.61918) (2.60319) (-0.09164) (-2.43998) (0.45108)

D(LL2(-2)) -2.190368 -4.362032 -10.97016 33.42845 11.18970 -91.53003 5.796280

(1.51369) (3.13636) (7.75449) (27.3241) (9.29304) (85.9871) (8.72840)

(-1.44704) (-1.39080) (-1.41468) (1.22340) (1.20409) (-1.06446) (0.66407)

D(L(-1)) 0.234009 0.314965 1.125616 -33.11707 -1.052314 105.0301 -5.943697

(1.01616) (2.10548) (5.20569) (18.3430) (6.23854) (57.7242) (5.85949)

(1.23029) (0.14959) (0.21623) (-1.80543) (-0.16868) (1.81951) (-1.01437)

D(L(-2)) 1.192081 2.263658 5.918494 -22.91446 -8.830030 88.81067 -2.193364

(0.90682) (1.87893) (4.64556) (16.3693) (5.56727) (51.5131) (5.22900)

(1.31457) (1.20476) (1.27401) (-1.39984) (-1.58606) (1.72404) (-0.41946)

D(LD2(-1)) -0.009276 -0.014194 -0.015241 1.177110 0.694806 6.053097 0.203100

(0.03107) (0.06437) (0.15916) (0.56084) (0.19074) (1.76491) (0.17915)

(-1.29857) (-0.22048) (-0.09575) (2.09885) (3.64263) (3.42968) (1.13366)

D(LD2(-2)) 0.008055 0.024226 0.076539 4.747023 1.085077 -5.610636 0.460794

(0.05112) (0.10592) (0.26188) (0.92279) (0.31384) (2.90395) (0.29478)

(1.15757) (0.22872) (0.29226) (5.14421) (3.45737) (-1.93207) (1.56320)

D(LI2(-1)) 0.020320 0.042180 0.076905 -2.791466 -0.330022 6.800664 -0.233518

(0.05029) (0.10421) (0.25765) (0.90787) (0.30877) (2.85700) (0.29001)

(1.40402) (0.40477) (0.29849) (-3.07475) (-1.06883) (2.38036) (-0.80521)

D(LI2(-2)) -0.015018 -0.047471 -0.107140 -1.668803 -0.463985 4.041318 -0.111440

(0.02944) (0.06099) (0.15079) (0.53135) (0.18071) (1.67211) (0.16973)

(-1.51020) (-0.77834) (-0.71050) (-3.14070) (-2.56752) (2.41689) (-0.65656)

D(LV2(-1)) -0.001844

-0.003126

-0.011455

-0.427682

-0.146341

0.276840

-0.046336

(0.00524)

(0.01085)

(0.02683)

(0.09454)

(0.03215)

(0.29752)

(0.03020)

(-1.35199)

(-0.28802)

(-0.42694)

(-4.52363)

(-4.55113)

(0.93048)

(-1.53425)

D(LV2(-2)) -0.001427

-0.002837

-0.007876

-0.128724

-0.014954

0.296812

-0.000135

(0.00239)

(0.00495)

(0.01223)

(0.04310)

(0.01466)

(0.13562)

(0.01377)

(-1.59778)

(-0.57342)

(-0.64394)

(-2.98684)

(-1.02024)

(2.18850)

(-0.00978)

D(LH2(-1)) 0.018070

0.028494

0.083517

-0.172621

-0.322004

3.088715

0.311525

(0.05039)

(0.10440)

(0.25813)

(0.90958)

(0.30935)

(2.86237)

(0.29055)

(1.35861)

(0.27292)

(0.32354)

(-0.18978)

(-1.04090)

(1.07908)

(1.07218)

D(LH2(-2)) 0.081498

0.164966

0.400315

-0.642171

0.377409

0.273855

0.049255

(0.04051)

(0.08394)

(0.20755)

(0.73133)

(0.24873)

(2.30145)

(0.23362)

(2.01160)

(1.96518)

(1.92877)

(-0.87809)

(1.51735)

(0.11899)

(0.21084)

C -3.479734

-7.167479

-18.20827

54.37015

11.44097

-1041.779

4.755857

(3.73536)

(7.73964)

(19.1359)

(67.4281)

(22.9326)

(212.192)

(21.5392)

(-0.93157)

(-0.92607)

(-0.95152)

(0.80634)

(0.49890)

(-4.90962)

(0.22080)

R-squared 0.594193

0.457167

0.513991

0.762676

0.921324

0.978836

0.712030

Adj. R-squared 0.213750

-0.051740

0.058357

0.540185

0.847565

0.958995

0.442058

Sum sq. resids 481.1805

2065.783

12628.18

156792.7

18136.33

1552744.

15999.38

S.E. equation 5.483957

11.36272

28.09379

98.99266

33.66779

311.5229

31.62216

F-statistic 1.561844

0.898332

1.128079

3.427890

12.49105

49.33315

2.637420

Log likelihood -88.77414

-112.0865

-141.0532

-181.3571

-146.8450

-218.0428

-144.8391

Akaike AIC 6.548384

8.005406

9.815827

12.33482

10.17781

14.62768

10.05245

Schwarz SC 7.281252

8.738274

10.54869

13.06769

10.91068

15.36054

10.78531

Mean dependent 2.456250

2.759375

8.778125

55.48438

108.6562

24.09375

43.17531

S.D. dependent 6.184629

11.07971

28.95125

145.9860

86.23284

1538.400

42.33474

Determinant Residual

6.70E+13

 
 
 
 
 

Covariance

 
 
 
 
 
 

Log Likelihood

-827.2228

 
 
 
 
 

Akaike Information Criteria

59.13893

 
 
 
 
 

Schwarz Criteria

64.58963

 
 
 
 
 

ADF TEST échantillon 3(Pays en développés) LY3 en Différence : I (1)

ADF Test Statistic -3.773341 1% Critical Value* -4.2712

5% Critical Value -3.5562

10% Critical Value -3.2109

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LY3,2)

Method: Least Squares

Date: 02/04/09 Time: 19:18

Sample(adjusted): 1973 2004

Included observations: 32 after adjusting endpoints

Variable

Coefficient

Std. Error

t-Statistic

Prob.

D(LY3(-1))

-0.972162

0.257640

-3.773341

0.0008

D(LY3(-1),2)

0.021316

0.187141

0.113904

0.9101

C

6.510794

2.931691

2.220832

0.0346

@TREND(1970) -0.222870 0.129311 -1.723518 0.0958

R-squared 0.478534 Mean dependent var -0.006250

Adjusted R-squared 0.422663 S.D. dependent var 8.018846

S.E. of regression 6.092936 Akaike info criterion 6.568606

Sum squared resid 1039.468 Schwarz criterion 6.751823

Log likelihood -101.0977 F-statistic 8.564936

Durbin-Watson stat 2.006797 Prob(F-statistic) 0.000341

LL3 en Différence : I(1)

ADF Test Statistic -4.212604 1% Critical Value* -4.2712

5% Critical Value -3.5562

10% Critical Value -3.2109

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LL3,2)

Method: Least Squares

Date: 02/04/09 Time: 19:19

Sample(adjusted): 1973 2004

Included observations: 32 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

D(LL3(-1)) -1.160269 0.275428 -4.212604 0.0002

D(LL3(-1),2) 0.078991 0.187964 0.420247 0.6775

C 8.978357 4.927039 1.822262 0.0791

@TREND(1970) -0.312605 0.227679 -1.373008 0.1806

R-squared 0.541525 Mean dependent var 0.015625

Adjusted R-squared 0.492403 S.D. dependent var 15.83239

S.E. of regression 11.27992 Akaike info criterion 7.800394

Sum squared resid 3562.626 Schwarz criterion 7.983611

Log likelihood -120.8063 F-statistic 11.02401

Durbin-Watson stat 2.019605 Prob(F-statistic) 0.000059

LC3 en Différence : I(1)

ADF Test Statistic -4.195187 1% Critical Value* -4.2712

5% Critical Value -3.5562

10% Critical Value -3.2109

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LC3,2)

Method: Least Squares

Date: 02/04/09 Time: 19:21

Sample(adjusted): 1973 2004

Included observations: 32 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

D(LC3(-1)) -1.148938 0.273871 -4.195187 0.0002

D(LC3(-1),2) 0.083708 0.188148 0.444906 0.6598

C 28.36144 13.34173 2.125770 0.0425

@TREND(1970) -0.987474 0.603956 -1.635009 0.1132

R-squared 0.533863 Mean dependent var -0.025000

Adjusted R-squared 0.483920 S.D. dependent var 40.50511

S.E. of regression 29.09835 Akaike info criterion 9.695708

Sum squared resid 23707.99 Schwarz criterion 9.878925

Log likelihood -151.1313 F-statistic 10.68940

Durbin-Watson stat 2.017042 Prob(F-statistic) 0.000074

LD3 en Différence : I(1)

ADF Test Statistic -3.802972 1% Critical Value* -4.2712

5% Critical Value -3.5562

10% Critical Value -3.2109

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LD3,2)

Method: Least Squares

Date: 02/04/09 Time: 19:23

Sample(adjusted): 1973 2004

Included observations: 32 after adjusting endpoints

Variable

Coefficient

D(LD3(-1))

-1.062865

D(LD3(-1),2)

-0.029454

C

70.09658

@TREND(1970)

-0.601964

R-squared

0.547960

Adjusted R-squared

0.499527

S.E. of regression

152.7441

Sum squared resid

653261.0

Log likelihood

-204.1900

Durbin-Watson stat

2.003002

Std. Error t-Statistic

Prob.

0.279483 -3.802972

0.0007

0.188847 -0.155967

0.8772

63.10635 1.110769

0.2761

2.928265 -0.205570

0.8386

Mean dependent var

0.465625

S.D. dependent var

215.9106

Akaike info criterion

13.01187

Schwarz criterion

13.19509

F-statistic

11.31379

Prob(F-statistic)

0.000049

1% Critical Value*

-4.2712

5% Critical Value

-3.5562

10% Critical Value

-3.2109

LI3 en Différence : I(1)

ADF Test Statistic -3.855490

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LI3,2)

Method: Least Squares

Date: 02/04/09 Time: 20:06

Sample(adjusted): 1973 2004

Included observations: 32 after adjusting endpoints

Variable

Coefficient

Std. Error

t-Statistic

Prob.

D(LI3(-1))

-1.049021

0.272085

-3.855490

0.0006

D(LI3(-1),2)

0.015051

0.189173

0.079564

0.9371

C

175.5644

149.9251

1.171014

0.2515

@TREND(1970)

-7.019125

7.137056

-0.983476

0.3338

R-squared 0.516330 Mean dependent var -0.656250

Adjusted R-squared 0.464508 S.D. dependent var 491.4087

S.E. of regression 359.5996 Akaike info criterion 14.72433

Sum squared resid 3620733. Schwarz criterion 14.90755

Log likelihood -231.5893 F-statistic 9.963572

Durbin-Watson stat 1.997958 Prob(F-statistic) 0.000123

LV3 en Différence : I(1)

ADF Test Statistic -4.853837 1% Critical Value* -4.2712

5% Critical Value -3.5562

10% Critical Value -3.2109

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LV3,2)

Method: Least Squares

Date: 02/04/09 Time: 19:24

Sample(adjusted): 1973 2004

Included observations: 32 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

D(LV3(-1)) -1.470098 0.302873 -4.853837 0.0000

D(LV3(-1),2) 0.128508 0.187626 0.684916 0.4990

C 554.6303 612.9929 0.904791 0.3733

@TREND(1970) -28.06257 29.70124 -0.944828 0.3528

R-squared 0.656903 Mean dependent var -0.412500

Adjusted R-squared 0.620142 S.D. dependent var 2466.083

S.E. of regression 1519.911 Akaike info criterion 17.60716

Sum squared resid 64683649 Schwarz criterion 17.79038

Log likelihood -277.7146 F-statistic 17.86982

Durbin-Watson stat 2.023657 Prob(F-statistic) 0.000001

LH3 en Différence : I(1)

ADF Test Statistic -3.239488 1% Critical Value* -4.2712

5% Critical Value -3.5562

10% Critical Value -3.2109

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LH3,2)

Method: Least Squares

Date: 02/04/09 Time: 19:25

Sample(adjusted): 1973 2004

Included observations: 32 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

D(LH3(-1)) -0.850540 0.262554 -3.239488 0.0031

D(LH3(-1),2) 0.003121 0.198037 0.015762 0.9875

C -12.21893 13.06156 -0.935487 0.3575

@TREND(1970) 2.676849 0.928269 2.883698 0.0075

R-squared 0.411674 Mean dependent var 3.956875

Adjusted R-squared 0.348639 S.D. dependent var 39.76432

S.E. of regression 32.09256 Akaike info criterion 9.891594

Sum squared resid 28838.10 Schwarz criterion 10.07481

Log likelihood -154.2655 F-statistic 6.530895

Durbin-Watson stat 1.960378 Prob(F-statistic) 0.001731

Stationnarité du résidu, échantillon3

ADF Test Statistic -2.878571 1% Critical Value* -2.6344

5% Critical Value -1.9514

10% Critical Value -1.6211

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(RESID03)

Method: Least Squares

Date: 01/04/80 Time: 00:13

Sample(adjusted): 1972 2004

Included observations: 33 after adjusting endpoints

Variable

Coefficient

Std. Error t-Statistic

Prob.

RESID03(-1)

-0.390170

0.135543 -2.878571

0.0072

D(RESID03(-1))

0.293456

0.173179 1.694530

0.1002

R-squared

0.217972

Mean dependent var

-0.044206

Adjusted R-squared

0.192745

S.D. dependent var

2.469471

S.E. of regression

2.218755

Akaike info criterion

4.490461

Sum squared resid

152.6091

Schwarz criterion

4.581158

Log likelihood

-72.09261

Durbin-Watson stat

2.105107

Estimation de MVCE (échantillon 3)

Date: 02/14/09 Time: 09:25

Sample(adjusted): 1973 2004

Included observations: 32 after adjusting endpoints Standard errors & t-statistics in parentheses

Cointegrating Eq: CointEq1

LY3(-1) 1.000000

LL3(-1) 0.133676

(0.04212)
(3.17353)

LC3(-1)

-0.358572

 
 
 
 
 
 
 

(0.01422)

 
 
 
 
 
 
 

(-25.2223)

 
 
 
 
 
 

LD3(-1)

-0.039942

 
 
 
 
 
 
 

(0.00266)

 
 
 
 
 
 
 

(-15.0220)

 
 
 
 
 
 

LI3(-1)

0.020455

 
 
 
 
 
 
 

(0.00225)

 
 
 
 
 
 
 

(9.09466)

 
 
 
 
 
 

LV3(-1)

0.006042

 
 
 
 
 
 
 

(0.00045)

 
 
 
 
 
 
 

(13.5034)

 
 
 
 
 
 

LH3(-1)

0.024097

 
 
 
 
 
 
 

(0.00217)

 
 
 
 
 
 
 

(11.1022)

 
 
 
 
 
 

C

25.57425

 
 
 
 
 
 

Error Correction:

D(LY3)

D(LL3)

D(LC3)

D(LD3)

D(LI3)

D(LV3)

D(LH3)

CointEq1

-0.430715

-0.580505

-1.418382

33.81925

16.59082

-90.44913

6.130396

 

(0.57113)

(1.18338)

(2.92584)

(10.3096)

(3.50635)

(32.4437)

(3.29331)

 

(-2.75415)

(-2.49055)

(-2.48478)

(3.28035)

(4.73165)

(-2.78788)

(1.86147)

D(LY3(-1))

1.128497

1.081714

3.898838

34.83750

22.10816

-33.25280

24.75070

 

(2.39546)

(4.96337)

(12.2717)

(43.2411)

(14.7065)

(136.077)

(13.8129)

 

(1.47110)

(1.21794)

(1.31771)

(1.80566)

(1.50329)

(-0.24437)

(1.79185)

D(LY3(-2))

-1.677219

-2.684125

-7.688464

104.4778

34.29288

-367.7833

2.516808

 

(2.14145)

(4.43707)

(10.9704)

(38.6560)

(13.1471)

(121.648)

(12.3482)

 

(-1.78322)

(-1.60493)

(-1.70083)

(2.70276)

(2.60841)

(-3.02335)

(0.20382)

D(LL3(-1))

-1.284150

-1.598436

-5.311541

78.68691

-0.942130

-232.0976

4.355496

 

(1.67451)

(3.46958)

(8.57837)

(30.2272)

(10.2804)

(95.1227)

(9.65575)

 

(-1.76688)

(-0.46070)

(-0.61918)

(2.60319)

(-0.09164)

(-2.43998)

(0.45108)

D(LL3(-2))

-2.190368

-4.362032

-10.97016

33.42845

11.18970

-91.53003

5.796280

 

(1.51369)

(3.13636)

(7.75449)

(27.3241)

(9.29304)

(85.9871)

(8.72840)

 

(-1.44704)

(-1.39080)

(-1.41468)

(1.22340)

(1.20409)

(-1.06446)

(0.66407)

D(LC3(-1))

0.234009

0.314965

1.125616

-33.11707

-1.052314

105.0301

-5.943697

 

(1.01616)

(2.10548)

(5.20569)

(18.3430)

(6.23854)

(57.7242)

(5.85949)

 

(1.23029)

(0.14959)

(0.21623)

(-1.80543)

(-0.16868)

(1.81951)

(-1.01437)

D(LC3(-2))

1.192081

2.263658

5.918494

-22.91446

-8.830030

88.81067

-2.193364

 

(0.90682)

(1.87893)

(4.64556)

(16.3693)

(5.56727)

(51.5131)

(5.22900)

 

(1.31457)

(1.20476)

(1.27401)

(-1.39984)

(-1.58606)

(1.72404)

(-0.41946)

D(LD3(-1))

-0.009276

-0.014194

-0.015241

1.177110

0.694806

6.053097

0.203100

 

(0.03107)

(0.06437)

(0.15916)

(0.56084)

(0.19074)

(1.76491)

(0.17915)

 

(-1.29857)

(-0.22048)

(-0.09575)

(2.09885)

(3.64263)

(3.42968)

(1.13366)

D(LD3(-2))

0.008055

0.024226

0.076539

4.747023

1.085077

-5.610636

0.460794

 

(0.05112)

(0.10592)

(0.26188)

(0.92279)

(0.31384)

(2.90395)

(0.29478)

 

(1.15757)

(0.22872)

(0.29226)

(5.14421)

(3.45737)

(-1.93207)

(1.56320)

D(LI3(-1))

0.020320

0.042180

0.076905

-2.791466

-0.330022

6.800664

-0.233518

 

(0.05029)

(0.10421)

(0.25765)

(0.90787)

(0.30877)

(2.85700)

(0.29001)

(1.40402)

(0.40477)

(0.29849)

(-3.07475)

(-1.06883)

(2.38036)

(-0.80521)

D(LI3(-2)) -0.015018

-0.047471

-0.107140

-1.668803

-0.463985

4.041318

-0.111440

(0.02944)

(0.06099)

(0.15079)

(0.53135)

(0.18071)

(1.67211)

(0.16973)

(-1.51020)

(-0.77834)

(-0.71050)

(-3.14070)

(-2.56752)

(2.41689)

(-0.65656)

D(LV3(-1)) -0.001844

-0.003126

-0.011455

-0.427682

-0.146341

0.276840

-0.046336

(0.00524)

(0.01085)

(0.02683)

(0.09454)

(0.03215)

(0.29752)

(0.03020)

(-1.35199)

(-0.28802)

(-0.42694)

(-4.52363)

(-4.55113)

(0.93048)

(-1.53425)

D(LV3(-2)) -0.001427

-0.002837

-0.007876

-0.128724

-0.014954

0.296812

-0.000135

(0.00239)

(0.00495)

(0.01223)

(0.04310)

(0.01466)

(0.13562)

(0.01377)

(-1.59778)

(-0.57342)

(-0.64394)

(-2.98684)

(-1.02024)

(2.18850)

(-0.00978)

D(LH3(-1)) 0.018070

0.028494

0.083517

-0.172621

-0.322004

3.088715

0.311525

(0.05039)

(0.10440)

(0.25813)

(0.90958)

(0.30935)

(2.86237)

(0.29055)

(1.35861)

(0.27292)

(0.32354)

(-0.18978)

(-1.04090)

(1.07908)

(1.07218)

D(LH3(-2)) 0.081498

0.164966

0.400315

-0.642171

0.377409

0.273855

0.049255

(0.04051)

(0.08394)

(0.20755)

(0.73133)

(0.24873)

(2.30145)

(0.23362)

(2.01160)

(1.96518)

(1.92877)

(-0.87809)

(1.51735)

(0.11899)

(0.21084)

C -3.479734

-7.167479

-18.20827

54.37015

11.44097

-1041.779

4.755857

(3.73536)

(7.73964)

(19.1359)

(67.4281)

(22.9326)

(212.192)

(21.5392)

(-0.93157)

(-0.92607)

(-0.95152)

(0.80634)

(0.49890)

(-4.90962)

(0.22080)

R-squared 0.594193

0.457167

0.513991

0.762676

0.921324

0.978836

0.712030

Adj. R-squared 0.213750

-0.051740

0.058357

0.540185

0.847565

0.958995

0.442058

Sum sq. resids 481.1805

2065.783

12628.18

156792.7

18136.33

1552744.

15999.38

S.E. equation 5.483957

11.36272

28.09379

98.99266

33.66779

311.5229

31.62216

F-statistic 1.561844

0.898332

1.128079

3.427890

12.49105

49.33315

2.637420

Log likelihood -88.77414

-112.0865

-141.0532

-181.3571

-146.8450

-218.0428

-144.8391

Akaike AIC 6.548384

8.005406

9.815827

12.33482

10.17781

14.62768

10.05245

Schwarz SC 7.281252

8.738274

10.54869

13.06769

10.91068

15.36054

10.78531

Mean dependent 2.456250

2.759375

8.778125

55.48438

108.6562

24.09375

43.17531

S.D. dependent 6.184629

11.07971

28.95125

145.9860

86.23284

1538.400

42.33474

Determinant Residual

6.70E+13

 
 
 
 
 

Covariance

 
 
 
 
 
 

Log Likelihood

-827.2228

 
 
 
 
 

Akaike Information Criteria

59.13893

 
 
 
 
 

Schwarz Criteria

64.58963

 
 
 
 
 

Année

Y1

BASE DE DONNEES

I1

V1

H1

L1

C1

D1

1970

2,48

1,955409145

0,17398024

0,08897383

6,76

0,23516362

0,027147143

1971

3,481254782

2,502147671

0,220153986

0,087986008

7,060540873

0,227584215

0,040903234

1972

4,436229205

2,861922267

0,261725209

0,091450845

7,323286688

0,224831944

0,046417827

1973

9,663716814

3,011920577

0,292980454

0,097273632

9,986292668

0,249916815

0,049117273

1974

10,5551969

1,713643873

0,177371978

0,10350574

17,83999027

0,233424625

0,000593449

1975

6,452554745

1,831257877

0,184592288

0,100800816

13,89068022

0,237098656

0,001328434

1976

7,240811849

1,798412274

0,179517387

0,09981993

17,14984599

0,017800344

0,000438279

1977

7,723785166

1,126671261

0,383334929

0,340236715

20,6751218

0,23318289

0,019927083

1978

7,668566002

1,18476262

0,403430463

0,34051586

20,5389471

0,255542645

0,017813568

1979

8,55567806

1,099004315

0,380281423

0,346023594

30,45402589

0,273523532

0,01563175

1980

9,343895998

1,336269229

0,455837381

0,341126901

53,53180304

0,280958501

0,03128371

1981

7,133568642

1,445270617

0,524352909

0,36280604

76,66580399

0,297226217

0,055243315

1982

6,866655107

1,618651053

0,555542417

0,343213206

80,75786089

0,286161698

0,070000349

1983

7,480123317

1,886426191

0,582842815

0,308966668

126,5704388

0,239807531

0,022345745

1984

7,321859903

2,021009838

0,526566246

0,260546107

186,4067688

0,188921453

-0,029133303

1985

7,61007174

1,450552511

0,597979239

0,412242393

222,4780662

0,248069967

0,041178274

1986

12,16993464

1,521538604

0,630994899

0,414708439

144,0878649

0,215282146

0,03776615

1987

5,803519403

1,500274956

0,490813131

0,327148786

229,1573175

0,199310767

0,030990519

1988

8,293864963

2,327566424

0,338527256

0,145442576

678,8782337

0,072882172

0,019334538

1989

4,841334418

1,901861416

0,436199278

0,229353871

38,0891526

0,052586425

0,030363585

1990

-8,129608071

1,675576176

0,423214066

0,252578231

-99,97580324

0,239609702

0,039084633

1991

-2,249208025

1,714613166

0,47479353

0,276909999

-1,234356819

0,248593393

0,042384295

1992

-1,382737388

3,446308062

0,751511435

0,218062756

4,645213411

0,232439437

0,020477582

1993

-17,19027276

8,440273589

3,516272394

0,416606447

-70,76042203

0,359893252

0,02738534

1994

2,738203897

10,47812479

1,973581796

0,188352576

12,38409555

0,286916264

0,011326924

1995

3,003849769

10,30667625

1,499170862

0,145456287

11,87246539

0,276024789

0,000642525

1996

3,9225

8,064016709

1,313183987

0,162844899

8,525

0,258814208

0,017407908

1997

3,542303159

10,2292127

1,735094379

0,169621498

5,920294863

0,266000226

0,028946935

1998

-0,055760138

10,5359761

1,869397624

0,177429942

5,339277947

0,223990512

0,034611099

1999

3,034811414

8,950226727

1,794723609

0,200522698

4,717662847

0,208730711

0,044224722

2000

-9,753401169

2,142479388

2,050016231

0,956842918

-21,13564669

0,228933999

0,27148131

2001

2,5

2,029399989

2,007506513

0,989211848

2,9

0,223508948

0,157146193

2002

3,87804878

2,145618696

2,051514238

0,956141108

2,830417881

0,20644482

0,205237528

2003

4,555059873

2,137216077

1,947181635

0,911083187

3,780271707

0,201296192

0,116251384

2004

4,536267685

2,143033463

1,852184015

0,864281425

3,11895276

0,215845202

0,00368972

Année

Y2

L2

 

D2

I2

V2

H2

1970

7,2

1,831471146

0,644967138

0,352157968

5,05

0,220786308

0,02453357

1971

7,20180045

1,811227506

0,671001048

0,370467568

5,641845592

0,220967302

0,032213478

1972

5,878236529

1,806357873

0,701015616

0,388082354

5,275675676

0,223588294

0,033955703

1973

6,807666887

1,84531989

0,701593349

0,380201478

7,202026426

0,229176769

0,036098603

1974

9,777227723

1,861177544

0,703998661

0,378254436

10,77974328

0,220104163

0,034150984

1975

11,78128523

1,803803755

0,71209817

0,394775855

11,01631406

0,191216417

0,031675323

1976

7,917297025

1,83311916

0,714757955

0,389913526

8,033025236

0,207236835

0,029303174

1977

7,61682243

1,856246521

0,727619503

0,391984305

8,02211007

0,208825303

0,030849323

1978

7,642205818

2,216100313

0,847380791

0,382374745

6,438551215

0,209885147

0,032011601

1979

8,793868495

2,182931615

0,851611491

0,390122844

9,397600435

0,214930249

0,036329733

1980

10,71560994

2,433104682

0,850198632

0,349429533

12,06389239

0,208996308

0,04133405

1981

8,774279973

2,399908799

0,846727292

0,352816446

10,23665007

0,194077389

0,040777029

1982

7,358374384

2,441349215

0,86245915

0,353271521

7,767260579

0,18528957

0,043334104

1983

5,448809865

2,477440653

0,884293156

0,356938179

5,051809753

0,181076417

0,031346844

1984

4,460157737

2,455864978

0,89595907

0,364824238

4,715975846

0,188328411

0,030793848

1985

4,139546993

2,45476463

0,910879468

0,371065908

4,370515329

0,179966721

0,036996123

1986

3,6

2,441568517

0,929165807

0,380561021

1,925

0,181100235

0,042493091

1987

3,257722008

2,440334965

0,966124122

0,39589816

2,877115526

0,182350262

0,040818863

1988

3,7391914

2,437405213

0,985522807

0,404332772

3,249648332

0,187876668

0,040190667

1989

4,235188105

2,438934084

0,986399882

0,404438926

4,791483859

0,090488995

0,034791198

1990

3,976658742

2,405857264

1,002120607

0,416533691

5,372292369

0,191545476

0,030764042

1991

3,949282893

1,970779677

1,000256084

0,507543332

-13,13076392

0,18839506

0,00579438

1992

3,039392122

1,991394325

0,985407738

0,494833055

4,188733751

0,17754598

0,003051534

1993

-26,39239278

1,906236204

0,953804522

0,500360092

-11,59889094

0,174368543

0,003572745

1994

3,137358292

1,933415729

0,957157262

0,495060243

2,273915316

0,183646884

-0,002987866

1995

2,249488753

1,901997219

0,97693991

0,513638979

2,223358037

0,18312048

0,005507464

1996

2

1,898249144

0,990730685

0,521918152

2,175

0,179029069

0,013398736

1997

2,794117647

1,901776965

1,002823038

0,527308437

1,712747737

0,180178668

0,029925539

1998

3,147353362

1,883657406

1,017726787

0,540292934

1,154678855

0,181398918

0,040143803

1999

2,727693019

0,924094606

0,972957281

1,052876269

1,165279429

0,166900818

0,030976899

2000

-9,9909991

2,126227044

0,977203373

0,559595026

-5,970850974

0,20675219

0,001581844

2001

1,9

2,063695077

1,302716632

0,585884103

1,76

0,802397224

-0,022716414

2002

2,183513248

2,067838438

1,119035398

0,592802232

1,547911558

0,181767902

-0,00883467

2003

1,944777911

2,018077439

1,123322014

0,707077674

1,717880484

0,18176283

6,00285E-05

2004

1,789919925

1,994301809

1,223154473

0,613038934

2,04567089

0,191084768

0,006275155

Année

Y3

L3

C3

D3

I3

V3

H3

1970

1,51

1,957313209

0,272155205

0,087954113

8,17

0,233219341

0,28257271

1971

-0,390320063

2,512817689

0,318510684

0,086956485

8,605194604

0,227608433

0,042934907

1972

2,821316615

2,877020243

0,112602625

0,091463249

9,453340479

0,224836185

0,047459323

1973

12,95731708

3,035276453

0,392793712

0,109745292

12,84375327

0,259977151

0,049255083

1974

11,50350878

1,721387928

0,217519169

0,102368253

24,35314693

0,233479773

0,001454517

1975

0,8245832224

1,852366242

0,192629118

0,099706756

16,21848739

0,237269412

0,001215494

1976

6,445155141

1,797952016

0,177718021

0,098844697

24,20261911

0,017163499

0,002341242

1977

7,853107345

1,005653287

0,334828158

0,562945919

29,18918171

0,236614667

0,018388232

1978

7,710366684

1,229321071

0,355811021

0,335988791

28,477636131

0,261571286

0,015938852

1979

8,346848249

0,965598924

0,325413162

0,341889932

40,26930647

0,280344467

0,013222266

1980

7,698940701

1,2431891405

0,415789808

0,340283765

68,60742964

0,288266296

0,030263093

1981

5,239695454

1,3872298737

0,495469503

0,363701066

92,71713069

0,306467924

0,056539434

1982

6,232631997

1,559420509

0,534118849

0,34251111

90,84631993

0,293202829

0,071861721

1983

10,12705521

1,855157675

0,569135056

0,306785274

136,0547068

0,242478193

0,021936441

1984

10,89243299

2,0084159

0,518988745

0,258407009

192,7175736

0,188933618

-0,030362612

1985

11,68910649

1,373067646

0,570925116

0,415802614

225,1881747

0,253958341

0,041539873

1986

21,56164384

1,459147632

0,608825478

0,417247347

144,6548156

0,217823619

0,037414695

1987

8,181203517

1,451173184

0,470482081

0,324208087

229,5332696

0,200036239

0,030570119

1988

12,35416669

2,320311087

0,323778156

0,139540839

679,2286736

0,070260724

0,018859096

1989

5,340255898

1,879326033

0,423340845

0,225262055

38,09144106

0,051700625

0,030260109

1990

-17,98979054

1,65373272

0,41283634

0,249639095

-99,98129757

0,240471322

0,039233791

1991

-8,749924877

1,807634522

0,567078943

0,278523952

2,264331236

0,249478196

0,042921491

1992

-6,578947368

3,477213161

0,749347672

0,215502369

4,759157773

0,232947254

0,02063879

1993

-5,264084607

9,184284793

3,75476861

0,408814624

-85,44764134

0,377153328

0,029600717

1994

2,336362512

11,28318743

2,008103475

0,177965782

27,63116031

0,290413528

0,011811701

1995

3,769424339

11,00392338

1,51075105

0,137292036

23,53304509

0,278084891

0,000534647

1996

5,855

8,463243455

1,319420529

0,155900114

14,885

0,260357334

0,017495449

1997

4,263309576

10,71570157

1,748330842

0,163155985

9,662676823

0,267551528

0,028929245

1998

-3,099019097

11,03402843

1,884897873

0,170825903

8,79142687

0,224765671

0,034510405

1999

3,34541208

9,418445946

1,803442011

0,191479786

7,442539219

0,209174499

0,044365273

2000

-9,514545537

2,142555592

2,060542047

0,961721626

-32,08828523

0,229151634

0,274129407

2001

3,3

2,129840013

2,017095206

0,994015096

4,05

0,217984628

0,158862619

2002

5,5528615

2,145981776

2,060646776

0,960239458

4,084574724

0,206663095

0,207131051

2003

7,052607398

2,13776848

1,954625978

0,914338612

5,747922438

0,201453598

0,117187639

2004

7,038626609

2,143694947

1,858414217

0,866921032

4,103907444

0,216031286

0,00367029

précédent sommaire suivant










Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy



"Là où il n'y a pas d'espoir, nous devons l'inventer"   Albert Camus