Modélisation spatiale hiérarchique bayésienne de l'apparentement génétique et de l'héritabilité en milieu naturel à l'aide de marqueurs moléculaires( Télécharger le fichier original )par Ciré Elimane SALL Université Montpellier II - Doctorat 2009 |
BibliographieANDERSoN, A. D. et WEiR, B. S. (2007). A maximum-likelihood method for the estimation of pairwise relatedness in structured populations. Genetics, 176:421-440. ARNAuD, J.-F., MADEc, L., BELLiDo, A. et GuiLLER, A. (1999). Micro-spatial genetic structure in the land snail Helix aspersa (gastropoda : Helicidae). Heredity, 83:110-119. AzzALiNi, A. (1983). Maximum likelihood estimation of order m for stationary stochastic processes. Biometrika, (70):381-387. BAGNouD, N., ScHiMiTHUSEN, F. et SoRG, J.-P. (1995). Les parcs à karité et néré au Sud-Mali : analyse du bilan économique des arbres associés aux cultures. Bois et Forêts Des Tropiques, 244, 9Û23., (244):9-23. BAyES, T. (1763). An essay toward solving a problem in the doctrine of chances. Phil. Trans. Roy. Soc., 53:370-418. BESAG, J. E. (1974). Spatial interaction and the statistical analysis of lattice system (with discussion). Journal of the Royal Statistical Society, Series B, 36(2):192-236. BLouiN, M. S. (2003). DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends in Ecology and Evolution, 18(10):503-511. BoicHARD, D., LE Roy, P., LEvEziEL, H. et ELSAN, J.-M. (1998). Utilisation des marqueurs moléculaires en géntique animale. INRA Prod. Anim., 11(1):6780. BouvET, J.-M., KELLy, B.-A., SANou, H. et ALLAL, F. (2008). Comparison of marker- and pedigree-based methods for estimating heritability in an agroforestry population of vitellaria paradoxa c.f. gaertn. (shea tree). Genetic resources and crop evolution, 55:1291-1301. CArdi, C., VAiLLANt, A., SANou, H., KELLy, B. A. et BouvEt, J.-M. (2005). Characterisation of microsatellite markers in the shea tree (Vitellaria paradoxa c.f. gaertn) in mali. Molecular Ecology Notes, (5):524-526. ChEssEL, D., Dufour, A.-B. et ThiouLousE, J. (2004). The ade4 package-I- One-table methods. R News, 4:5-10. Chib, S. et GrEENbErg, E. (1995). Understanding the Metropolis-Hastings algorithm. The American Statistician, 49(4):327-335. Chib, S. et GrEENbErg, E. (1998). Analysis of multivariate probit models. Biometrika, 85(2):347-361. CLArk, P. J. et EvANs, F. C. (1954). Distance to nearest neighbour as a measure of spatial relationships in populations. Ecology, 35:445-453. CockErhAm, C. C. (1969). Variance of gene frequencies. Evolution, 23:72- 84. Cox, D. R. (1975). Partial likelihood. Biometrika, (62):269-276. Cox, D. R. et REid, N. (2004). A note on pseudolikelihood constructed from marginal densities. Biometrika, 91(3):729-737. DE ViENNE, D. (1998). Les marqueurs moléculaires et leurs applications. INRA. DEgEN, B. (2000). Sgs : Spatial genetic software. computer program and user's manual. http :// kourou.cirad.fr/genetique/software.html. DEgEN, B., PEtit, R. et KrEmEr, A. (2001). Sgs-spatial genetic software : a computer program for analysis of spatial genetic and phenotypic structures of individuals and populations. Journal of Heredity, 92:447-448. EfroN, B. (2005). Bayesians, frequentists, and scientists. Journal of the American Statistical Association, 100(469):1-5. FALcoNEr, D. S. (1974). Introduction à la génétique quantitative. Masson et Cie, Paris. FrANkEL, O. H. et SouLE, M. E. (1981). Conservation and Evolution. Cambridge University Press, Cambridge. GEmAN, S. et GEmAN, D. (1984). Stochastic relaxation, gibbs distributions and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):721-741. Gillois, M. (1964). La relation d'identité génétique. Thèse de Doctorat, Faculté des sciences, Paris. GoudEt, J. (2001). FSTAT, a program to estimate and test gene diversities and fixation indices (version
2.9.3). HARdEsty, B., Dick, C., KREmER, A. et BERmiNghAm, E. (2005). Spatial genetic structure of Simarouba amara aubl. (simaroubaceae), a dioecious, animal-dispersed neotropical tree, on barro colorado island, panama. Heredity, 95:290-297. HARdy, O. et VEkEmANs, X. (1999). Isolation by distance in a continuous population : reconciliation between spatial autocorrelation analysis and population genetics models. Heredity, 83:145-154. HARdy, O. J. (2003). Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers. Molecular Ecology, 12:1577Û1588. HARdy, O. J. et VEkEmANs, X. (2002). Spagedi : a versatile computer program to analyse spatial gentic structure at the individual or population levels. Molecular Ecology Notes, 2:618-620. HARtl, D. L. et ClARk, A. G. (1997). Principles of population genetics. Sunderland,Massachusetts, third édition. HAstiNgs, W. (1970). Monte carlo sampling methods using markov chains and their applications. Biometrika, 57:97-109. HEplER, A. B. (2005). Improving forensic identification using Bayesian networks and relatedness estimation. Phd thesis, North Carolina State University, Raleigh, NC. Hocdé, H., LANçoN, J. et TRouchE, G. (2001). Pour une conception élargie de la sélection participative. In La sélection participative : impliquer les utilisateurs dans l'amélioration des plantes, pages 0817, Montpellier. CIRAD, MICAP. JAcQuARd, A. (1970). Structures génétiques des populations. Masson. KAliNowski, S., WAgNER, A. et TApER, M. (2006). Ml-relate: a computer program for maximum likelihood estimation of relatedness and relationship. Molecular Ecology Notes, 6(6):576-579. KELLY, B. A. (2004). Impact des pratiques humaines sur la dynamique des populations et sur la diversité génétique de Vitellaria Paradoxa (Karité) dans les systèmes agroforestiers au Sud du Mali. Thèse de Doctorat, Université de Bamako. KELLY, B. A., BOUVET, J.-M. et PiCARD, N. (2004a). Size class and spatail pattern of Vitellaria Paradoxa in relation to farmer's practices in mali. Agroforestry Systems, (60):3-11. KELLY, B. A., HARDY, O. et BOUVET, J.-M. (2004b). Temporal and spatial genetic structure in Vitellaria Paradoxa (shea tree) in an agroforestry system in southern mali. Molecular Ecology, 13(5):1231-1240. Li, C. C., WEEKS, D. E. et CHAKRAVATi, A. (1993). Similarity of DNA fingerprints due to chance and relatedness. Hum. Hered., (43):45-52. LiNDSAY, B. G. (1988). Composite likelihood methods. Contemporary mathematics, 80:221-239. LYNCH, M. et RiTLAND, K. (1999). Estimation of pairwise relatedness with molecular markers. Genetics, 152:1753-1766. LYNCH, M. et WALSH, B. (1998). Genetics and Analysis of Quantitative Traits. Sinauer Associates. MARiN, J.-M. et ROBERT, C. P. (2007). Bayesian Core : A Practical Approach to Computational Bayesian Statistics. Springer. MCCULLAGH, P. et NELDER, J. A. (1989). Generalized Linear Models. Chapman& Hall/CRC, second édition. METROPOLiS, N., ROSENBLUTH, A., ROSENBLUTH, M., TELLER, A. et TELLER, E. (1953). Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21(6):1087-1091. MiLLiGAN, M. G. (2003). Maximum-likelihood estimation of relatedness. Genetics, 163(3):1153-1167. MOORE, A. J. et KUKUK, P. F. (2002). Quantitative genetic analysis of natural populations. Nature Reviews Genetics, 3:971978. NEi, M. (1972). Genetic distances between populations. American Naturalist, 106:283-292. NEi, M. (1987). Molecular Evolutionary Genetics. Colombia University Press, New York. OkuLLo, J., HALL, J. et ObuA, J. (2004). Leafing, flowering and fruiting of Vitelleria paradoxa subsp. nilotica in savanna parklands in Uganda. Agroforestry Systems, 60:77-91. PArEnt, E. et BErniEr, J. (2007). Le raisonnement bayésien Modélisation et inférence. Statistique et probabilités appliquées. Springer-Verlag, Paris. PrEss, W., TEukoLsky, S., VEttErLing, W. et FLAnnEry, B. (1992). Numerical Recipes in C. Cambridge University Press, Cambridge, UK, 2nd édition. QuELLEr, D. et Goodnight, K. (1989). Estimating relatedness using molecular markers. Evolution, (43):258-275. R DEvELopMEnt CorE TEAM (2008). R A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. RicE, W. R. (1989). Analysing tables of statistical tests. Evolution, 43:223- 225. RipLEy, B. (1981). Spatial Statistics. Wiley Series in Probability and Mathematical Statistics Wiley, New York. RitLAnd, K. (1996a). Estimators for pairwise relatedness and individual inbreeding coefficients. Genet. Res., 67:175-186. RitLAnd, K. (1996b). A marker-based method for inferences about
quanti- RitLAnd, K. (2000). Adaptive genetic variation in the Wild, chapitre Detecting Inheritance with Inferred Relatedness in Nature, pages 187-199. Oxford University Press, New York. Roberts, G. et SMith, A. (1994). Simple conditions for the convergence of the gibbs sampler and the metropolis-hastings algorithms. Stochastic Processes and their Applications, 49(2):207-216. Rossi, J.-P. (1996). Statistical tool for soil biology. xi. autocorrelogram and mantel test. European Journal of Soil Biology, 32(4):195-203. SAnou, H., Lovett, P. N. et Bouvet, J.-M. (2005). Comparison of quantitative and molecular variation in agroforestry populations of the shea tree (Vitellaria paradoxa C.F. Gaertn) in Mali. Molecular Ecology, 14:2601- 2610. SAportA, G. (1990). Probabilités, analyse des données et statistique. Editions Technip, Paris. SAutter, G. (1968). Les structures agraires en Afrique tropicale. Centre de documentation universitaire, Paris. Selkoe, K. A. et Toonen, R. J. (2006). Microsatellites for ecologist : a practical guide to use and evaluating microsatellite markers. Ecology Letters, 9:615-629. Sorensen, D. et GiAnolA, D. (2007). Likelihood, Bayesian and MCMC Methods in Quantitative Genetics. Springer. TAssi, P. (1985). Méthodes statistiques. Economica. ThoMAs, S. C. (2005). The estimation of genetic relationships using molecular markers and their efficiency in estimating heritability in natural populations. Philos Trans R Soc Lond B Biol Sci, 360(1459):1457-1467. ThoMAs, S. C. et Hill, W. G. (2000). Estimating quantitative genetic parameters using sibships reconstructed from marker data. Genetics, 155(4):1961-1972. ThoMAs, S. C., PeMberton, J. M. et Hill, W. G. (2000). Estimating variance components in natural popualtions using inferred relationships. Heredity, 84:427-436. ThoMpson, E. A. (1975). The estimation of pairwise relationships. Ann. Hum. Genet., 39:173188. VERRIER, E., BRABAND, P. et GALLAIS, A. (1998). Faits et concepts de base en génétique quantitative. Institut National Agronomique Paris-Grignon. WANG, J. (2002). An estimator for pairwise relatedness using molecular markers. Genetics, 160:1203-1215. WEIR, B. S., ANDERSON, A. D. et HEPLER, A. B. (2006). Genetic relatedness analysis : modern data and new challenges. Nature reviews Genetics, 7:771- 780. WEIR, B. S. et COCKERHAM, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38(6):1358-1370. WIKLE, C. K. (2003). Hierarchical bayesian models for predicting the spread of ecological processes. Ecology, 84(6):1382-1394. YEH, F. et BOYLE, T. (1997). Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian Journal of Botany, pages 129-157. Résumé La connaissance de l'apparentement génétique entre individus permet d'estimer l'héritabilité des caractères d'intérêt. La possibilité d'estimer l'héritabilité en milieu naturel suscite un intérêt croissant pour l'amélioration génétique des populations. Mais en milieu naturel, le pedigree n'est pas connu. L'utilisation des marqueurs moléculaires permet d'estimer l'apparentement puis d'estimer l'héritabilité. Néanmoins, les approches classiques ne permettent pas d'introduire une information exogène comme l'information spatiale. Or, nous pouvons supposer que deux individus proches géographiquement sont proches génétiquement. L'objectif de ce travail est de développer des modèles statistiques pour l'estimation de l'apparentement et de l'héritabilité à l'aide des marqueurs moléculaires en prenant en compte l'information spatiale. Premièrement, nous construisons un modèle spatial hiérarchique bayésien de l'apparentement. Comme la vraisemblance des observations, modes d'identité par état entre génotypes, est complexe, le modèle statistique pour l'apparentement considéré est celui de la vraisemblance composite. Le lien entre le mode d'identité par descendance et la distance spatiale se fait par l'intermédiaire d'un GLM probit ordinal. Deuxièmement, nous proposons une modélisation simultanée de l'apparentement et de l'héritabilité. Dans la troisième partie, nous proposons différents algorithmes MCMC pour l'inférence des paramètres des modèles. Finalement, l'intérêt du modèle spatial pour l'apparentement est illustré par une application à des données sur le karité (Vitellaria paradoxa). Mots Clés Bayésien hiérarchique, MCMC, Vraisemblance Composite, Apparentement, Héritabilité, Spatial, Marqueurs Moléculaires, Karité Spatial hierarchical Bayesian Model for relatedness and
heritability based on Abstract The knowledge of genetic relatedness between individuals combined with phenotypic information enables us to estimate the heritability of character of interest. Estimating the heritability in natural populations remains a real challenge for the obvious reason that, in natural populations, the pedigree remains unknown. The use of molecular markers allows the assessment first of relatedness and then of heritability. However, classical approaches do not allow to introduce exogenous information such as geographical information. Nevertheless, we can assume that the closer two individuals are spatially, the more genetically close they are. The aim of this study is to develop statistical models allowing the simultaneous estimation of relatedness and heritability by using molecular markers as well as spatial information. In the first part, we develop a hierarchical spatial Bayesian model for relatedness taking into account spatial information. As the likelihood of the data given by the identity-by-state mode of pairs of genotypes, is not tractable, we propose the use of the composite likelihood approaches. The link between the identity-bydescent mode and the spatial distance is made using ordinal Probit models belonging to the generalized linear models. In the second part, we propose to model relatedness and heritability simultaneously. In the third part, we give different MCMC algorithms for model inference. Finally, the spatial model for relatedness is emphasized by an application on Shea tree (Vitellaria paradoxa) data. Keywords Hierarchical Bayesian, MCMC, Composite Likelihood, Relatedness, Heritability, Spatial, Molecular Markers, Shea Tree. Discipline : Biostatistiques CIRAD, UR 39 : Diversité génétique et amélioration des espèces forestières. TA A-39 / C. Campus international de Baillarguet. 34398 Montpellier Cedex 5 - France |
|