WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Influence du type de concentré sur l'ingestion et la croissance de chevrettes recevant des résidus de bananiers

( Télécharger le fichier original )
par Fouquet NAZAIRE
Université d'Etat d'Haïti - Licence d'ingénieur-Agronome 2017
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Annexe T. Pesée des chevrettes pour la quatrième période expérimentale

Date

18-07-16

1-08-16

 

Lot

Identification

Poids en Kg

Moyenne

Poids en Kg

Moyenne

Différence

1

Colier bleu 1

13.75

 

14.00

 
 

Colier noir 2

14.25

 

13.75

 
 

Colier rouge 3

14.75

 

15.00

 
 

Colier mauve 4

15.50

 

16.50

 
 

Moyenne

 

14.563

 

14.8125

0.25

2

Colier rouge 1

14.25

 

14.50

 
 

Colier bleu 2

15.00

 

15.25

 
 

Colier mauve 3

0.00

 

0.00

 
 

Colier noir 4

13.25

 

13.50

 
 

Moyenne

 

14.17

 

14.4166

0.25

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

Lot

 

Identification

Poids en Kg

Moyenne

Poids en Kg

Moyenne

Différence

3

Colier bleu 1

13.50

 

13.75

 
 

Colier mauve 2

13.25

 

13.50

 
 

Colier noir 3

0.00

 

0.00

 
 

Colier rouge 4

12.25

 

12.25

 
 

Moyenne

 

13.00

 

13.1666

0.16667

4

Colier rouge 1

0.00

 

0.00

 
 

Colier noir 2

13.75

 

0.00

 
 

Colier mauve 3

15.25

 

15.25

 
 

Colier bleu 4

15.75

 

15.00

 
 

Moyenne

 

15.50

 

15.125

-0.375

Annexe W. Consommation des chevrettes en g

Périodes

Résidus

Ingestion

Concentré

Ingestion

Résidus+concentre

Ingestion

1

LVB

170.39

LVB

35.68

LVB

206.70

2

LVB

215.27

LVB

45.07

LVB

260.34

3

LVB

233.60

LVB

49.27

LVB

282.86

4

LVB

252.29

LVB

49.83

LVB

302.12

1

LVD

181.31

LVD

124.90

LVD

308.21

2

LVD

152.45

LVD

101.38

LVD

253.83

3

LVD

189.59

LVD

123.23

LVD

312.82

4

LVD

218.26

LVD

143.31

LVD

361.57

1

RSB

214.99

RSB

45.02

RSB

260.01

2

RSB

239.63

RSB

40.23

RSB

279.86

3

RSB

141.77

RSB

29.90

RSB

171.67

4

RSB

114.54

RSB

23.89

RSB

138.43

1

RSD

258.79

RSD

172.10

RSD

430.00

2

RSD

179.41

RSD

118.53

RSD

297.94

3

RSD

114.40

RSD

67.68

RSD

182.08

4

RSD

113.83

RSD

74.74

RSD

188.56

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

Ingestion des résidus (calculs statistiques)

> Dataset <- read.table(" C:/Users/nazancy/Desktop/residuslot.txt",

+ header=TRUE, sep="\t", na.strings="N A", dec=".", strip.white=TRUE)

> fix(Dataset)

> Dataset$Lot <- factor(Dataset$Lot, labels=c('1','2','3','4'))

> Dataset$Periodes <- factor(Dataset$Periodes, labels=c('1','2','3','4'))

> fix(Dataset)

> LinearModel.1 <- lm(Ingestion ~ Residus + Periodes + Lot, data=Dataset)

> summary(LinearModel.1)

Call:

lm(formula = Ingestion ~ Residus + Periodes + Lot, data = Dataset)

Residuals:

Min 1Q Median 3Q Max

-26.91 -10.27 0.63 10.62 24.55

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 195.05 21.21 9.196 9.32e-05 ***

Residus[T.LVD] -32.48 18.97 -1.712 0.1377

Residus[T.RSB] -40.16 18.97 -2.117 0.0787 .

Residus[T.RSD] -51.28 18.97 -2.703 0.0354 *

Periodes[T.2] -9.68 18.97 -0.510 0.6281

Periodes[T.3] -36.53 18.97 -1.926 0.1025

Periodes[T.4] -31.64 18.97 -1.668 0.1464

Lot[T.2] 11.77 18.97 0.620 0.5578

Lot[T.3] 66.95 18.97 3.529 0.0124 *

Lot[T.4] 90.47 18.97 4.769 0.0031 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 26.83 on 6 degrees of freedom Multiple R-squared: 0.8814, Adjusted R-squared: 0.7034 F-statistic: 4.953 on 9 and 6 DF, p-value: 0.0324

> anova(LinearModel.1)

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

Analysis of Variance Table

Response: Ingestion

Df Sum Sq Mean Sq F value Pr(>F)

Residus 3 5833.2

1944.4 2.7012

0.138738

 

Periodes 3 3656.3

1218.8 1.6932

0.266730

 

Lot 3 22596.4

7532.1 10.4639

0.008475

**

Residuals 6 4318.9 719.8

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> LSD.test(LinearModel.1,"Residus")

Study:

LSD t Test for Ingestion

Mean Square Error: 719.8212

Residus, means and individual ( 95 %) CI

Ingestion std.err replication

 

LCL UCL

LVB 217.8875 17.54347

4

174.96018

260.8148

LVD 185.4025 13.53934

4

152.27292

218.5321

RSB 177.7325 29.58887

4

105.33114

250.1339

RSD 166.6075 34.36641 alpha: 0.05 ; Df Error: 6

4

82.51591 250.6991

Critical Value of t: 2.446912

 
 
 

Least Significant Difference 46.42112

Means with the same letter are not significantly different.

Groups, Treatments and means

a LVB 217.8875

ab LVD 185.4025

ab RSB 177.7325

b RSD 166.6075

> LSD.test(LinearModel.1,"Periodes")

Study:

LSD t Test for Ingestion

Mean Square Error: 719.8212

Periodes, means and individual ( 95 %) CI

Ingestion std.err replication

LCL UCL

1 206.37

19.88451

4

157.71436 255.0256

2 196.69

19.24586

4

149.59709 243.7829

3 169.84

26.32635

4

105.42175 234.2583

4 174.73

35.63947

4

87.52336 261.9366

alpha: 0.05 ; Df Error: 6 Critical Value of t: 2.446912

Least Significant Difference 46.42112

Means with the same letter are not significantly different.

Groups, Treatments and means

a

1

206.37

a

2

196.69

a

4

174.73

a

3

169.84

> LSD.test(LinearModel.1,"Lot")

Study:

LSD t Test for Ingestion

Mean Square Error: 719.8212

Lot, means and individual ( 95 %) CI

Ingestion std.err replication

LCL UCL

1 144.610

11.83761

4

115.64441 173.5756

2 156.380

25.17016

4

94.79084 217.9692

3 211.565

11.46022

4

183.52286 239.6071

4 235.075

15.67480

4

196.72016 273.4298

alpha: 0.05 ; Df Error: 6 Critical Value of t: 2.446912

Least Significant Difference 46.42112

Means with the same letter are not significantly different.

Groups, Treatments and means

a

4

235.075

a

3

211.565

b

2

156.38

b

1

144.61

Ingestion des concentrés (calculs statistiques)

> Dataset <- read.table(" C:/Users/nazancy/Desktop/concentreslot.txt",

+ header=TRUE, sep="\t", na.strings="NA", dec=".", strip.white=TRUE)

> fix(Dataset)

> LinearModel.2 <- lm(Ingestion ~ Concentres + Periodes + Lot, data=Dataset) > summary(LinearModel.2)

Call:

lm(formula = Ingestion ~ Concentres + Periodes + Lot, data = Dataset)

Residuals:

Min 1Q Median 3Q Max

-17.892 -9.444 -2.739 8.229 28.660

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 44.22 17.39

2.542 0.04394 *

 

Concentres[T.LVD] 78.24

15.56

5.030

0.00238

**

Concentres[T.RSB]

-10.20

15.56

-0.656

0.53623

 

Concentres[T.RSD]

63.30

15.56

4.069

0.00658

**

Periodes[T.2]

-18.12

15.56 -1.165 0.28823

Periodes[T.3]

-26.91

15.56 -1.730 0.13443

Periodes[T.4]

-21.48

15.56 -1.381 0.21651

Lot[T.2]

4.96

15.56 0.319 0.76064

Lot[T.3]

28.61

15.56 1.839 0.11553

Lot[T.4]

35.92

15.56 2.309 0.06033 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 22 on 6 degrees of freedom Multiple R-squared: 0.909, Adjusted R-squared: 0.7726 F-statistic: 6.662 on 9 and 6 DF, p-value: 0.01578

> anova(LinearModel.2) Analysis of Variance Table

Response: Ingestion

Df Sum Sq Mean Sq F value Pr(>F)

Concentres 3 23681.3 7893.8 16.3110 0.002731 ** Periodes 3 1631.6 543.9 1.1238 0.411142

Lot 3 3704.8 1234.9 2.5518 0.151650
Residuals 6 2903.7 484.0

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> LSD.test(LinearModel.2,"Concentres")

Study:

LSD t Test for Ingestion

Mean Square Error: 483.9525

Concentres, means and individual ( 95 %) CI

Ingestion std.err replication LCL UCL

LVB 44.9625 3.271384 4 36.95771 52.96729

LVD 123.2050 8.580090 4 102.21028 144.19972

RSB 34.7600 4.804208 4 23.00453 46.51547

RSD 108.2625 24.068211 4 49.36971 167.15529

alpha: 0.05 ; Df Error: 6

Critical Value of t: 2.446912

Least Significant Difference 38.06315

Means with the same letter are not significantly different.

Groups, Treatments and means

a LVD 123.205

a RSD 108.2625

b LVB 44.9625

b RSB 34.76

> LSD.test(LinearModel.2,"Periodes")

Study:

LSD t Test for Ingestion

Mean Square Error: 483.9525

Periodes, means and individual ( 95 %) CI

Ingestion std.err replication

LCL

UCL

1 94.4250

32.72863

4

14.34092

174.5091

2 76.3025

19.76684

4

27.93478

124.6702

3 67.5200

20.10795

4

18.31761

116.7224

4 72.9425

25.65013

4

10.17889

135.7061

alpha: 0.05 ; Df Error: 6

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

Critical Value of t: 2.446912

Least Significant Difference 38.06315

Means with the same letter are not significantly different.

Groups, Treatments and means

a

1

94.425

a

2

76.3025

a

4

72.9425

a

3

67.52

> LSD.test(LinearModel.2,"Lot")

Study:

LSD t Test for Ingestion

Mean Square Error: 483.9525

Lot, means and individual ( 95 %) CI

Ingestion std.err replication

LCL

UCL

1 60.4250

16.89754

4

19.07821

101.7718

2 65.3850

21.75974

4

12.14083

118.6292

3 89.0325

24.72230

4

28.53921

149.5258

4 96.3475

31.32380

4

19.70093

172.9941

alpha: 0.05 ; Df Error: 6 Critical Value of t: 2.446912

Least Significant Difference 38.06315

Means with the same letter are not significantly different.

Groups, Treatments and means

a

4

96.3475

a

3

89.0325

a

2

65.385

a

1

60.425

Ingestion des résidus +concentrés (calculs statistiques)

> Dataset <- read.table(" C:/Users/nazancy/Desktop/totallot.txt", header=TRUE, + sep="\t", na.strings="NA", dec=".", strip.white=TRUE)

> Dataset$Periodes <- factor(Dataset$Periodes, labels=c('1','2','3','4')) > fix(Dataset)

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

> LinearModel.3 <- lm(Ingestion ~ Total + Periodes + Lot, data=Dataset) > summary(LinearModel.3)

Call:

lm(formula = Ingestion ~ Total + Periodes + Lot, data = Dataset)

Residuals:

Min 1Q Median 3Q Max

-35.22 -21.14 -8.26 16.57 52.55

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 239.80 34.69 6.912 0.000453 ***

Total[T.LVD]

46.10

31.03 1.486 0.187895

Total[T.RSB]

-50.51

31.03 -1.628 0.154679

Total[T.RSD]

11.64

31.03 0.375 0.720474

Periodes[T.2]

-28.24

31.03 -0.910 0.397902

Periodes[T.3]

-63.87

31.03 -2.058 0.085244 .

Periodes[T.4]

-53.56

31.03 -1.726 0.135087

Lot[T.2] 17.07

 

31.03 0.550 0.602001

Lot[T.3] 95.40

 

31.03 3.075 0.021813 *

Lot[T.4] 126.01

31.03 4.061 0.006644 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 43.88 on 6 degrees of freedom Multiple R-squared: 0.8636, Adjusted R-squared: 0.6591 F-statistic: 4.222 on 9 and 6 DF, p-value: 0.04679

> anova(LinearModel.3) Analysis of Variance Table

Response: Ingestion

Df Sum Sq Mean Sq F value Pr(>F)

Total 3 19197 6399.2 3.3230 0.09821 .
Periodes 3 9763 3254.4 1.6899 0.26734

Lot 3 44211 14737.1 7.6527 0.01788 *

Residuals 6 11554 1925.7

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> LSD.test(LinearModel.3,"Total") Study:

LSD t Test for Ingestion

Mean Square Error: 1925.732

Total, means and individual ( 95 %) CI

Ingestion std.err replication LCL UCL

LVB 263.0050 20.61868

4

212.5529

313.4571

LVD 309.1075 22.02745

4

255.2083

363.0067

RSB 212.4925 34.09304

4

129.0698

295.9152

RSD 274.6450 58.20706 alpha: 0.05 ; Df Error: 6

4

132.2175

417.0725

Critical Value of t: 2.446912

 
 
 

Least Significant Difference 75.92787

Means with the same letter are not significantly different.

Groups, Treatments and means

a LVD 309.1075

ab RSD 274.645

ab LVB 263.005

b RSB 212.4925

> LSD.test(LinearModel.3,"Periodes")

Study:

LSD t Test for Ingestion

Mean Square Error: 1925.732

Periodes, means and individual ( 95 %) CI

Ingestion std.err replication

LCL

UCL

1 301.2300

47.666762

4

184.5936

417.8664

2 272.9925

9.986772

4

248.5557

297.4293

3 237.3575

35.514687

4

150.4562

324.2588

4 247.6700

51.125159

4

122.5712

372.7688

alpha: 0.05 ; Df Error: 6 Critical Value of t: 2.446912

Least Significant Difference 75.92787

Means with the same letter are not significantly different.

Groups, Treatments and means

a 1 301.23

a 2 272.9925

a 4 247.67

a 3 237.3575

> LSD.test(LinearModel.3,"Lot")

Study:

LSD t Test for Ingestion

Mean Square Error: 1925.732

Lot, means and individual ( 95 %) CI

Ingestion std.err replication

LCL

UCL

1 205.190

17.72070

4

161.8290

248.5510

2 222.265

38.16564

4

128.8771

315.6529

3 300.595

21.76900

4

247.3282

353.8618

4 331.200

33.64113

4

248.8831

413.5169

alpha: 0.05 ; Df Error: 6 Critical Value of t: 2.446912

Least Significant Difference 75.92787

Means with the same letter are not significantly different.

Groups, Treatments and means

a

4

331.2

a

3

300.595

b

2

222.265

b

1

205.19

Gain de poids (calculs statistiques)

> Dataset <- read.table(" C:/Users/nazancy/Desktop/gaindepoidslot.txt",

+ header=TRUE, sep="\t", na.strings="NA", dec=".", strip.white=TRUE)

> fix(Dataset)

> LinearModel.10 <- lm(Gaindepoids ~ Aliment +Periode + Lot, data=Dataset) > summary(LinearModel.10)

Call:

lm(formula = Gaindepoids ~ Aliment + Periode + Lot, data = Dataset)

Residuals:

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

Min 1Q Median 3Q Max

-14.930 -7.726 -1.910 8.157 23.260

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.363 14.146 2.995 0.0242 *
Aliment[T.LVD] 9.025 12.652 0.713 0.5024 Aliment[T.RSB] -1.040 12.652 -0.082 0.9372 Aliment[T.RSD] 1.040 12.652 0.082 0.9372 Periode[T.2] -23.960 12.652 -1.894 0.1071 Periode[T.3] -20.832 12.652 -1.647 0.1508 Periode[T.4] -29.512 12.652 -2.333 0.0584 .

Lot[T.2] 5.210 12.652 0.412 0.6948

Lot[T.3] -21.183 12.652 -1.674 0.1451

Lot[T.4] -25.003 12.652 -1.976 0.0955 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 17.89 on 6 degrees of freedom Multiple R-squared: 0.7213, Adjusted R-squared: 0.3034 F-statistic: 1.726 on 9 and 6 DF, p-value: 0.2607

> anova(LinearModel.10) Analysis of Variance Table

Response: Gaindepoids

Df Sum Sq Mean Sq F value Pr(>F)

Aliment 3 253.0 84.33 0.2634 0.8496 Periode 3 1995.0 665.01 2.0771 0.2047

Lot 3 2724.9 908.31 2.8370 0.1282
Residuals 6 1921.0 320.17

> LSD.test(LinearModel.10,"Aliment")

Study:

LSD t Test for Gaindepoids

Mean Square Error: 320.1659

Aliment, means and individual ( 95 %) CI

Gaindepoids std.err replication

LCL UCL

LVB

13.5425

14.57186

4

-22.113559 49.19856

LVD

22.5675

10.94139

4

-4.205129 49.34013

RSB

12.5025

8.83962

4

-9.127272 34.13227

RSD

14.5825

11.96740

4

-14.700682 43.86568

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

alpha: 0.05 ; Df Error: 6 Critical Value of t: 2.446912

Least Significant Difference 30.95928

Means with the same letter are not significantly different.

Groups, Treatments and means

a LVD 22.5675

a RSD 14.5825

a LVB 13.5425

a RSB 12.5025

> LSD.test(LinearModel.10,"Periode")

Study:

LSD t Test for Gaindepoids

Mean Square Error: 320.1659

Periode, means and individual ( 95 %) CI

Gaindepoids std.err replication LCL UCL

1

34.3750

7.290238

4

16.53643 52.21357

2

10.4150

14.682599

4

-25.51203 46.34203

3

13.5425

6.222067

4

-1.68235 28.76735

4

4.8625

10.040063

4

-19.70465 29.42965

alpha: 0.05 ; Df Error: 6 Critical Value of t: 2.446912

Least Significant Difference 30.95928

Means with the same letter are not significantly different.

Groups, Treatments and means

a

1

34.375

a

3

13.5425

a

2

10.415

a

4

4.8625

> LSD.test(LinearModel.10,"Lot") Study:

LSD t Test for Gaindepoids

Mean Square Error: 320.1659

Lot, means and individual ( 95 %) CI

Gaindepoids std.err replication LCL UCL

1

26.0425

3.124168

4 18.39794

33.68706

2

31.2525

8.589197

4 10.23549

52.26951

3

4.8600

7.383091

4 -13.20577

22.92577

4

1.0400

14.469736

4 -34.36617

36.44617

alpha: 0.05 ; Df Error: 6 Critical Value of t: 2.446912

Least Significant Difference 30.95928

Means with the same letter are not significantly different.

Groups, Treatments and means

a

2

31.2525

a

1

26.0425

a

3

4.86

a

4

1.04

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

précédent sommaire






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Piètre disciple, qui ne surpasse pas son maitre !"   Léonard de Vinci