WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Influence du type de concentré sur l'ingestion et la croissance de chevrettes recevant des résidus de bananiers

( Télécharger le fichier original )
par Fouquet NAZAIRE
Université d'Etat d'Haïti - Licence d'ingénieur-Agronome 2017
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Annexe T. Pesée des chevrettes pour la quatrième période expérimentale

Date

18-07-16

1-08-16

 

Lot

Identification

Poids en Kg

Moyenne

Poids en Kg

Moyenne

Différence

1

Colier bleu 1

13.75

 

14.00

 
 

Colier noir 2

14.25

 

13.75

 
 

Colier rouge 3

14.75

 

15.00

 
 

Colier mauve 4

15.50

 

16.50

 
 

Moyenne

 

14.563

 

14.8125

0.25

2

Colier rouge 1

14.25

 

14.50

 
 

Colier bleu 2

15.00

 

15.25

 
 

Colier mauve 3

0.00

 

0.00

 
 

Colier noir 4

13.25

 

13.50

 
 

Moyenne

 

14.17

 

14.4166

0.25

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

Lot

 

Identification

Poids en Kg

Moyenne

Poids en Kg

Moyenne

Différence

3

Colier bleu 1

13.50

 

13.75

 
 

Colier mauve 2

13.25

 

13.50

 
 

Colier noir 3

0.00

 

0.00

 
 

Colier rouge 4

12.25

 

12.25

 
 

Moyenne

 

13.00

 

13.1666

0.16667

4

Colier rouge 1

0.00

 

0.00

 
 

Colier noir 2

13.75

 

0.00

 
 

Colier mauve 3

15.25

 

15.25

 
 

Colier bleu 4

15.75

 

15.00

 
 

Moyenne

 

15.50

 

15.125

-0.375

Annexe W. Consommation des chevrettes en g

Périodes

Résidus

Ingestion

Concentré

Ingestion

Résidus+concentre

Ingestion

1

LVB

170.39

LVB

35.68

LVB

206.70

2

LVB

215.27

LVB

45.07

LVB

260.34

3

LVB

233.60

LVB

49.27

LVB

282.86

4

LVB

252.29

LVB

49.83

LVB

302.12

1

LVD

181.31

LVD

124.90

LVD

308.21

2

LVD

152.45

LVD

101.38

LVD

253.83

3

LVD

189.59

LVD

123.23

LVD

312.82

4

LVD

218.26

LVD

143.31

LVD

361.57

1

RSB

214.99

RSB

45.02

RSB

260.01

2

RSB

239.63

RSB

40.23

RSB

279.86

3

RSB

141.77

RSB

29.90

RSB

171.67

4

RSB

114.54

RSB

23.89

RSB

138.43

1

RSD

258.79

RSD

172.10

RSD

430.00

2

RSD

179.41

RSD

118.53

RSD

297.94

3

RSD

114.40

RSD

67.68

RSD

182.08

4

RSD

113.83

RSD

74.74

RSD

188.56

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

Ingestion des résidus (calculs statistiques)

> Dataset <- read.table(" C:/Users/nazancy/Desktop/residuslot.txt",

+ header=TRUE, sep="\t", na.strings="N A", dec=".", strip.white=TRUE)

> fix(Dataset)

> Dataset$Lot <- factor(Dataset$Lot, labels=c('1','2','3','4'))

> Dataset$Periodes <- factor(Dataset$Periodes, labels=c('1','2','3','4'))

> fix(Dataset)

> LinearModel.1 <- lm(Ingestion ~ Residus + Periodes + Lot, data=Dataset)

> summary(LinearModel.1)

Call:

lm(formula = Ingestion ~ Residus + Periodes + Lot, data = Dataset)

Residuals:

Min 1Q Median 3Q Max

-26.91 -10.27 0.63 10.62 24.55

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 195.05 21.21 9.196 9.32e-05 ***

Residus[T.LVD] -32.48 18.97 -1.712 0.1377

Residus[T.RSB] -40.16 18.97 -2.117 0.0787 .

Residus[T.RSD] -51.28 18.97 -2.703 0.0354 *

Periodes[T.2] -9.68 18.97 -0.510 0.6281

Periodes[T.3] -36.53 18.97 -1.926 0.1025

Periodes[T.4] -31.64 18.97 -1.668 0.1464

Lot[T.2] 11.77 18.97 0.620 0.5578

Lot[T.3] 66.95 18.97 3.529 0.0124 *

Lot[T.4] 90.47 18.97 4.769 0.0031 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 26.83 on 6 degrees of freedom Multiple R-squared: 0.8814, Adjusted R-squared: 0.7034 F-statistic: 4.953 on 9 and 6 DF, p-value: 0.0324

> anova(LinearModel.1)

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

Analysis of Variance Table

Response: Ingestion

Df Sum Sq Mean Sq F value Pr(>F)

Residus 3 5833.2

1944.4 2.7012

0.138738

 

Periodes 3 3656.3

1218.8 1.6932

0.266730

 

Lot 3 22596.4

7532.1 10.4639

0.008475

**

Residuals 6 4318.9 719.8

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> LSD.test(LinearModel.1,"Residus")

Study:

LSD t Test for Ingestion

Mean Square Error: 719.8212

Residus, means and individual ( 95 %) CI

Ingestion std.err replication

 

LCL UCL

LVB 217.8875 17.54347

4

174.96018

260.8148

LVD 185.4025 13.53934

4

152.27292

218.5321

RSB 177.7325 29.58887

4

105.33114

250.1339

RSD 166.6075 34.36641 alpha: 0.05 ; Df Error: 6

4

82.51591 250.6991

Critical Value of t: 2.446912

 
 
 

Least Significant Difference 46.42112

Means with the same letter are not significantly different.

Groups, Treatments and means

a LVB 217.8875

ab LVD 185.4025

ab RSB 177.7325

b RSD 166.6075

> LSD.test(LinearModel.1,"Periodes")

Study:

LSD t Test for Ingestion

Mean Square Error: 719.8212

Periodes, means and individual ( 95 %) CI

Ingestion std.err replication

LCL UCL

1 206.37

19.88451

4

157.71436 255.0256

2 196.69

19.24586

4

149.59709 243.7829

3 169.84

26.32635

4

105.42175 234.2583

4 174.73

35.63947

4

87.52336 261.9366

alpha: 0.05 ; Df Error: 6 Critical Value of t: 2.446912

Least Significant Difference 46.42112

Means with the same letter are not significantly different.

Groups, Treatments and means

a

1

206.37

a

2

196.69

a

4

174.73

a

3

169.84

> LSD.test(LinearModel.1,"Lot")

Study:

LSD t Test for Ingestion

Mean Square Error: 719.8212

Lot, means and individual ( 95 %) CI

Ingestion std.err replication

LCL UCL

1 144.610

11.83761

4

115.64441 173.5756

2 156.380

25.17016

4

94.79084 217.9692

3 211.565

11.46022

4

183.52286 239.6071

4 235.075

15.67480

4

196.72016 273.4298

alpha: 0.05 ; Df Error: 6 Critical Value of t: 2.446912

Least Significant Difference 46.42112

Means with the same letter are not significantly different.

Groups, Treatments and means

a

4

235.075

a

3

211.565

b

2

156.38

b

1

144.61

Ingestion des concentrés (calculs statistiques)

> Dataset <- read.table(" C:/Users/nazancy/Desktop/concentreslot.txt",

+ header=TRUE, sep="\t", na.strings="NA", dec=".", strip.white=TRUE)

> fix(Dataset)

> LinearModel.2 <- lm(Ingestion ~ Concentres + Periodes + Lot, data=Dataset) > summary(LinearModel.2)

Call:

lm(formula = Ingestion ~ Concentres + Periodes + Lot, data = Dataset)

Residuals:

Min 1Q Median 3Q Max

-17.892 -9.444 -2.739 8.229 28.660

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 44.22 17.39

2.542 0.04394 *

 

Concentres[T.LVD] 78.24

15.56

5.030

0.00238

**

Concentres[T.RSB]

-10.20

15.56

-0.656

0.53623

 

Concentres[T.RSD]

63.30

15.56

4.069

0.00658

**

Periodes[T.2]

-18.12

15.56 -1.165 0.28823

Periodes[T.3]

-26.91

15.56 -1.730 0.13443

Periodes[T.4]

-21.48

15.56 -1.381 0.21651

Lot[T.2]

4.96

15.56 0.319 0.76064

Lot[T.3]

28.61

15.56 1.839 0.11553

Lot[T.4]

35.92

15.56 2.309 0.06033 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 22 on 6 degrees of freedom Multiple R-squared: 0.909, Adjusted R-squared: 0.7726 F-statistic: 6.662 on 9 and 6 DF, p-value: 0.01578

> anova(LinearModel.2) Analysis of Variance Table

Response: Ingestion

Df Sum Sq Mean Sq F value Pr(>F)

Concentres 3 23681.3 7893.8 16.3110 0.002731 ** Periodes 3 1631.6 543.9 1.1238 0.411142

Lot 3 3704.8 1234.9 2.5518 0.151650
Residuals 6 2903.7 484.0

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> LSD.test(LinearModel.2,"Concentres")

Study:

LSD t Test for Ingestion

Mean Square Error: 483.9525

Concentres, means and individual ( 95 %) CI

Ingestion std.err replication LCL UCL

LVB 44.9625 3.271384 4 36.95771 52.96729

LVD 123.2050 8.580090 4 102.21028 144.19972

RSB 34.7600 4.804208 4 23.00453 46.51547

RSD 108.2625 24.068211 4 49.36971 167.15529

alpha: 0.05 ; Df Error: 6

Critical Value of t: 2.446912

Least Significant Difference 38.06315

Means with the same letter are not significantly different.

Groups, Treatments and means

a LVD 123.205

a RSD 108.2625

b LVB 44.9625

b RSB 34.76

> LSD.test(LinearModel.2,"Periodes")

Study:

LSD t Test for Ingestion

Mean Square Error: 483.9525

Periodes, means and individual ( 95 %) CI

Ingestion std.err replication

LCL

UCL

1 94.4250

32.72863

4

14.34092

174.5091

2 76.3025

19.76684

4

27.93478

124.6702

3 67.5200

20.10795

4

18.31761

116.7224

4 72.9425

25.65013

4

10.17889

135.7061

alpha: 0.05 ; Df Error: 6

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

Critical Value of t: 2.446912

Least Significant Difference 38.06315

Means with the same letter are not significantly different.

Groups, Treatments and means

a

1

94.425

a

2

76.3025

a

4

72.9425

a

3

67.52

> LSD.test(LinearModel.2,"Lot")

Study:

LSD t Test for Ingestion

Mean Square Error: 483.9525

Lot, means and individual ( 95 %) CI

Ingestion std.err replication

LCL

UCL

1 60.4250

16.89754

4

19.07821

101.7718

2 65.3850

21.75974

4

12.14083

118.6292

3 89.0325

24.72230

4

28.53921

149.5258

4 96.3475

31.32380

4

19.70093

172.9941

alpha: 0.05 ; Df Error: 6 Critical Value of t: 2.446912

Least Significant Difference 38.06315

Means with the same letter are not significantly different.

Groups, Treatments and means

a

4

96.3475

a

3

89.0325

a

2

65.385

a

1

60.425

Ingestion des résidus +concentrés (calculs statistiques)

> Dataset <- read.table(" C:/Users/nazancy/Desktop/totallot.txt", header=TRUE, + sep="\t", na.strings="NA", dec=".", strip.white=TRUE)

> Dataset$Periodes <- factor(Dataset$Periodes, labels=c('1','2','3','4')) > fix(Dataset)

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

> LinearModel.3 <- lm(Ingestion ~ Total + Periodes + Lot, data=Dataset) > summary(LinearModel.3)

Call:

lm(formula = Ingestion ~ Total + Periodes + Lot, data = Dataset)

Residuals:

Min 1Q Median 3Q Max

-35.22 -21.14 -8.26 16.57 52.55

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 239.80 34.69 6.912 0.000453 ***

Total[T.LVD]

46.10

31.03 1.486 0.187895

Total[T.RSB]

-50.51

31.03 -1.628 0.154679

Total[T.RSD]

11.64

31.03 0.375 0.720474

Periodes[T.2]

-28.24

31.03 -0.910 0.397902

Periodes[T.3]

-63.87

31.03 -2.058 0.085244 .

Periodes[T.4]

-53.56

31.03 -1.726 0.135087

Lot[T.2] 17.07

 

31.03 0.550 0.602001

Lot[T.3] 95.40

 

31.03 3.075 0.021813 *

Lot[T.4] 126.01

31.03 4.061 0.006644 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 43.88 on 6 degrees of freedom Multiple R-squared: 0.8636, Adjusted R-squared: 0.6591 F-statistic: 4.222 on 9 and 6 DF, p-value: 0.04679

> anova(LinearModel.3) Analysis of Variance Table

Response: Ingestion

Df Sum Sq Mean Sq F value Pr(>F)

Total 3 19197 6399.2 3.3230 0.09821 .
Periodes 3 9763 3254.4 1.6899 0.26734

Lot 3 44211 14737.1 7.6527 0.01788 *

Residuals 6 11554 1925.7

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> LSD.test(LinearModel.3,"Total") Study:

LSD t Test for Ingestion

Mean Square Error: 1925.732

Total, means and individual ( 95 %) CI

Ingestion std.err replication LCL UCL

LVB 263.0050 20.61868

4

212.5529

313.4571

LVD 309.1075 22.02745

4

255.2083

363.0067

RSB 212.4925 34.09304

4

129.0698

295.9152

RSD 274.6450 58.20706 alpha: 0.05 ; Df Error: 6

4

132.2175

417.0725

Critical Value of t: 2.446912

 
 
 

Least Significant Difference 75.92787

Means with the same letter are not significantly different.

Groups, Treatments and means

a LVD 309.1075

ab RSD 274.645

ab LVB 263.005

b RSB 212.4925

> LSD.test(LinearModel.3,"Periodes")

Study:

LSD t Test for Ingestion

Mean Square Error: 1925.732

Periodes, means and individual ( 95 %) CI

Ingestion std.err replication

LCL

UCL

1 301.2300

47.666762

4

184.5936

417.8664

2 272.9925

9.986772

4

248.5557

297.4293

3 237.3575

35.514687

4

150.4562

324.2588

4 247.6700

51.125159

4

122.5712

372.7688

alpha: 0.05 ; Df Error: 6 Critical Value of t: 2.446912

Least Significant Difference 75.92787

Means with the same letter are not significantly different.

Groups, Treatments and means

a 1 301.23

a 2 272.9925

a 4 247.67

a 3 237.3575

> LSD.test(LinearModel.3,"Lot")

Study:

LSD t Test for Ingestion

Mean Square Error: 1925.732

Lot, means and individual ( 95 %) CI

Ingestion std.err replication

LCL

UCL

1 205.190

17.72070

4

161.8290

248.5510

2 222.265

38.16564

4

128.8771

315.6529

3 300.595

21.76900

4

247.3282

353.8618

4 331.200

33.64113

4

248.8831

413.5169

alpha: 0.05 ; Df Error: 6 Critical Value of t: 2.446912

Least Significant Difference 75.92787

Means with the same letter are not significantly different.

Groups, Treatments and means

a

4

331.2

a

3

300.595

b

2

222.265

b

1

205.19

Gain de poids (calculs statistiques)

> Dataset <- read.table(" C:/Users/nazancy/Desktop/gaindepoidslot.txt",

+ header=TRUE, sep="\t", na.strings="NA", dec=".", strip.white=TRUE)

> fix(Dataset)

> LinearModel.10 <- lm(Gaindepoids ~ Aliment +Periode + Lot, data=Dataset) > summary(LinearModel.10)

Call:

lm(formula = Gaindepoids ~ Aliment + Periode + Lot, data = Dataset)

Residuals:

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

Min 1Q Median 3Q Max

-14.930 -7.726 -1.910 8.157 23.260

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.363 14.146 2.995 0.0242 *
Aliment[T.LVD] 9.025 12.652 0.713 0.5024 Aliment[T.RSB] -1.040 12.652 -0.082 0.9372 Aliment[T.RSD] 1.040 12.652 0.082 0.9372 Periode[T.2] -23.960 12.652 -1.894 0.1071 Periode[T.3] -20.832 12.652 -1.647 0.1508 Periode[T.4] -29.512 12.652 -2.333 0.0584 .

Lot[T.2] 5.210 12.652 0.412 0.6948

Lot[T.3] -21.183 12.652 -1.674 0.1451

Lot[T.4] -25.003 12.652 -1.976 0.0955 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 17.89 on 6 degrees of freedom Multiple R-squared: 0.7213, Adjusted R-squared: 0.3034 F-statistic: 1.726 on 9 and 6 DF, p-value: 0.2607

> anova(LinearModel.10) Analysis of Variance Table

Response: Gaindepoids

Df Sum Sq Mean Sq F value Pr(>F)

Aliment 3 253.0 84.33 0.2634 0.8496 Periode 3 1995.0 665.01 2.0771 0.2047

Lot 3 2724.9 908.31 2.8370 0.1282
Residuals 6 1921.0 320.17

> LSD.test(LinearModel.10,"Aliment")

Study:

LSD t Test for Gaindepoids

Mean Square Error: 320.1659

Aliment, means and individual ( 95 %) CI

Gaindepoids std.err replication

LCL UCL

LVB

13.5425

14.57186

4

-22.113559 49.19856

LVD

22.5675

10.94139

4

-4.205129 49.34013

RSB

12.5025

8.83962

4

-9.127272 34.13227

RSD

14.5825

11.96740

4

-14.700682 43.86568

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

alpha: 0.05 ; Df Error: 6 Critical Value of t: 2.446912

Least Significant Difference 30.95928

Means with the same letter are not significantly different.

Groups, Treatments and means

a LVD 22.5675

a RSD 14.5825

a LVB 13.5425

a RSB 12.5025

> LSD.test(LinearModel.10,"Periode")

Study:

LSD t Test for Gaindepoids

Mean Square Error: 320.1659

Periode, means and individual ( 95 %) CI

Gaindepoids std.err replication LCL UCL

1

34.3750

7.290238

4

16.53643 52.21357

2

10.4150

14.682599

4

-25.51203 46.34203

3

13.5425

6.222067

4

-1.68235 28.76735

4

4.8625

10.040063

4

-19.70465 29.42965

alpha: 0.05 ; Df Error: 6 Critical Value of t: 2.446912

Least Significant Difference 30.95928

Means with the same letter are not significantly different.

Groups, Treatments and means

a

1

34.375

a

3

13.5425

a

2

10.415

a

4

4.8625

> LSD.test(LinearModel.10,"Lot") Study:

LSD t Test for Gaindepoids

Mean Square Error: 320.1659

Lot, means and individual ( 95 %) CI

Gaindepoids std.err replication LCL UCL

1

26.0425

3.124168

4 18.39794

33.68706

2

31.2525

8.589197

4 10.23549

52.26951

3

4.8600

7.383091

4 -13.20577

22.92577

4

1.0400

14.469736

4 -34.36617

36.44617

alpha: 0.05 ; Df Error: 6 Critical Value of t: 2.446912

Least Significant Difference 30.95928

Means with the same letter are not significantly different.

Groups, Treatments and means

a

2

31.2525

a

1

26.0425

a

3

4.86

a

4

1.04

Fouquet NAZAIRE, FAMV/UEH, MFE agronomiques, Octobre 2017

précédent sommaire






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"I don't believe we shall ever have a good money again before we take the thing out of the hand of governments. We can't take it violently, out of the hands of governments, all we can do is by some sly roundabout way introduce something that they can't stop ..."   Friedrich Hayek (1899-1992) en 1984