WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Global portfolio diversification with cryptocurrencies


par Salma Ouali
Université de Neuchâtel  - Master of science in finance 2019
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

5.4. Portfolio weights analysis

As can be seen from the asset allocation weights graphs, portfolios of traditional assets under inverse volatility and maximum diversification strategies are more diversified. On the other hand, Conditional Value at Risk strategy sets extreme weight allocations to bonds indices followed by S&P 500 since they exhibit the least volatility. Therefore, the C-var optimizer omits weighting other indices, which performed really bad and were highly volatile during estimation periods. This results in the basis portfolio exhibiting the best performance under this strategy with a Sharpe of 1.07.

When cryptocurrencies are included, I notice that the weighting scheme of other asset classes fluctuates to compensate for the additional volatility. Equity indices weights change the most during the sample period. I observe a significant increase in S&P 500 proportion but also a small position taken in gold. In addition, through the whole investment period, optimal portfolios contain between 0 and 3% of cryptocurrencies with the higher allocation share during the years 2016-2017, the period of tremendous growth for cryptocurrencies. Indeed, cryptocurrencies are considered too risky for the parameters of the optimization problem.

It is also noticeable that Bitcoin dominates over alternative cryptocurrencies. In fact, none of the Altcoins is given more than 1% weight during the whole optimization process.

Regarding risk budgeting approaches, I observe that portfolio assets do not fluctuate that much when adding cryptocurrencies. Moreover, the weight allocated to cryptocurrencies is larger under those two strategies. Until 2017, there is an increasing allocation in cryptocurrencies. However, it decreases drastically after the Bitcoin boom.

20

Furthermore, the Maximum Diversification strategy, which boosted the performance of investments significantly, invests between 0 and 10% in cryptocurrencies. Thus, the higher cryptocurrency exposure had a huge impact on maximizing the portfolio performance.

5.5. Robustness check

To assess the robustness of the trading strategies results, tables 12, 13, 14 and 15 present performance results using weekly data and monthly rebalancing.

The results of the study are robust with regard to the asset allocations employed. I find that cryptocurrencies always add substantial value when included in the stocks-bonds-alternative investments portfolio. Sharpe ratio increases significantly under the different optimization frameworks. However, similar results regarding the downside risk of the basis portfolio are found when using weekly data. Alternative cryptocurrencies worsen of the maximum drawdown of the portfolio whereas Bitcoin increases slightly the maximum drawdown under Inverse volatility and minimum variance strategies.

Interestingly, Minimum conditional value at risk performs better than maximum diversification and yields the highest Sharpe Ratio when cryptocurrencies are added.

6. Conclusion

This study seeks to address the possible hedging and diversification benefits of cryptocurrencies as an alternative investment. From the perspective of a global investor, I investigate the market linkages between Cryptocurrencies and global asset indices as well as the benefits of their inclusion within these assets.

21

Using the dynamic conditional correlation model, I find that block-chain assets can act as effective diversifiers for the investment period analyzed. I also detect that the correlation of traditional assets against Bitcoin are closer to zero and more stable than against over crypto-tokens. Moreover, I find that Bitcoin, Dash and Litecoin do possess hedging properties against some assets' indices. However, none of the cryptocurrencies acts as hedge against European, American and emerging market equities.

The resulting diversification properties further endorse the cryptocurrencies use case in a diversified portfolio. These findings are useful for global investors seeking protection from markets downward movements. I examine the out of sample performance of portfolios with and without cryptocurrencies via risk-based investment strategies: minimum variance, minimum conditional value at risk, inverse volatility and maximum diversification.

The results are in line with previous research regarding the inclusion of Bitcoin in a global portfolio of equities, bonds and alternative assets. I find that the risk return efficiency is enhanced under all strategies. The small increase in volatility was compensated with proportionally greater returns.

Despite their extreme volatility, the addition of alternative cryptocurrencies to a global diversified portfolio, which already contains Bitcoin, enhances the risk return reward. However, these crypto-assets yield higher volatility and higher maximum drawdown under all strategies. Further, the performance of the portfolio is boosted significantly under inverse volatility and maximum diversification. In fact, these modern risk based strategies prompt higher risk return reward via greater cryptocurrency exposure and especially greater alternative cryptos exposure. On the other side, due to their volatility structure, Minimum variance and Minimum C-var strategies invested in cryptocurrencies and particularly in Bitcoin only in certain points of time.

22

Moreover, the hedging properties of Cryptocurrencies are analyzed via the portfolios maximum drawdown. When adding Bitcoin, I find that it slightly drops under minimum variance and inverse volatility strategy. However, when Dash, Ripple and Litecoin are further added, the maximum drawdown increases under the four optimization models.

As robustness checking, I apply the aforementioned allocation strategies using weekly data. Results persist robustly. Cryptocurrencies enhance the portfolio performance on risk-adjusted basis but do not really decrease the portfolio downside risk.

In a nutshell, the study evidence suggests that cryptocurrencies can act as outstanding diversifier tools on a global perspective but do not offer appealing hedging properties.

However, the results of this study should be interpreted with caution. This analysis employs only limited asset allocation strategies. The sample period is small due to the short history of cryptocurrencies and better alternative to the selected cryptocurrencies might exist.

23

Appendix:

Table 1: Descriptive statistics of traditional assets.

Summary statistics of daily log returns for traditional assets from 31 July 2014 to 30 April 2019. (N=1238 observations). Results are reported on a percentage basis apart from skewness, kurtosis, Sharpe ratio, the JB and LJBox tests. In addition, Sharpe ratio is annualized.

 

S&P 500 Eurostoxx 50

SSE A
shares

Nikkei 225

MSCI Markets EM

IBOXX LIG

S&P GSD

FTSE EPRA NAREIT

S&P GSCI GOLD

Mean

0.042

0.008

0.027

0.030

0.011

0.014

0.002

0.022

-0.002

Standard Deviation

0.833

1.117

1.507

1.136

0.897

0.295

0.354

0.792

0.815

Skewness

-0.448

-0.786

-1.190

-0.261

-0.311

-0.332

-0.002

-0.748

0.271

Kurtosis

7.068

12.335

10.063

7.079

4.721

3.926

5.312

9.167

6.036

Minimum

-4.184

-11.102

-8.869

-5.742

-5.101

-1.451

-1.922

-6.912

-3.418

1% percentile

-2.520

-3.037

-6.109

-3.460

-2.330

-0.741

-0.950

-2.271

-2.252

5% quantile

-1.427

-1.709

-2.221

-1.791

-1.501

-0.492

-0.580

-1.235

-1.353

25% quantile

-0.255

-0.574

-0.473

-0.486

-0.511

-0.157

-0.187

-0.373

-0.404

Median

0.029

0.039

0.032

0.063

0.060

0.015

0.000

0.052

0.000

75% percentile

0.445

0.577

0.606

0.614

0.540

0.198

0.197

0.464

0.411

99% percentile

2.103

2.925

4.183

3.003

2.172

0.685

0.939

1.977

2.176

Maximim

4.842

5.567

5.599

6.414

3.228

0.938

1.802

3.622

4.590

Sharpe Ratio

0.800

0.117

0.285

0.414

0.193

0.767

0.013

0.442

-0.044

Jarque Bera Test

894.984

4622.047

2865.479

872.227

172.802

66.976

275.770

2077.435

490.681

Ljung Box Test

18.779

40.143

69.939

105.296

69.638

39.657

24.314

43.257

20.791

Critical Value Jarque Bera Test

5.943

 
 
 
 
 
 
 

Critical Value Ljung Box Test

31.400

 
 
 
 
 
 
 

24

Table 2: Descriptive statistics of cryptocurrencies.

Summary statistics of daily log returns for cryptocurrencies from 31 July 2014 to 30 April 2019. (N=1238 observations).

 

Bitcoin

Ripple

Dash

Litecoin

Mean

0.179

0.330

0.242

0.185

Standard Deviation

4.394

7.513

7.522

6.945

Skewness

-0.210

2.381

0.015

1.000

Kurtosis

8.206

20.257

27.050

15.789

Minimum

-23.874

-35.328

-86.020

-51.393

1% percentile

-13.533

-18.051

-19.343

-15.550

5% quantile

-7.056

-9.364

-9.759

-8.994

25% quantile

-1.423

-2.430

-2.845

-2.138

Median

0.222

-0.345

-0.276

0.000

75% percentile

1.890

2.089

2.990

1.822

99% percentile

13.828

27.293

23.589

26.831

Maximim

22.512

75.083

76.818

53.980

Sharpe Ratio

0.645

0.698

0.511

0.422

Jarque Bera Test

1406.84

16530.00

29834.76

8643.49

Ljung Box Test

31.76

91.30

26.56

36.60

Critical Value Jarque Bera Test

 

5.94

 
 

Critical Value Ljung Box Test

 

31.40

 
 

25

Table 3: Correlation matrix

This table shows unconditional pairwise correlation coefficients between cryptocurrencies and traditional assets from 31 July 2014 to 30 April 2019.

 

Bitcoin

Ripple

Dash

Litecoin

S&P500

Eurostoxx

50

SSE A
Shares

Nikkei

225

MSCI
EM

IBOXX
LIG

S&P
GSD

FTSE
EPRA

S&P
GSCI
GOLD

Bitcoin

1.000

0.330

0.485

0.592

0.039

0.036

0.012

-0.037

0.016

-0.023

0.010

-0.019

0.023

Ripple

 

1.000

0.254

0.332

0.053

0.030

-0.007

0.020

0.063

0.035

0.033

0.010

0.026

Dash

 
 

1.000

0.431

0.080

0.068

0.030

-0.013

0.049

-0.073

-0.037

-0.017

-0.006

Litecoin

 
 
 

1.000

0.026

0.004

-0.015

-0.026

0.007

-0.006

0.009

-0.015

-0.016

S&P500

 
 
 
 

1.000

0.493

0.162

0.065

0.441

-0.193

-0.214

0.515

-0.138

Eurostoxx 50

 
 
 
 
 

1.000

0.127

0.160

0.578

-0.125

-0.026

0.256

-0.099

SSE A Shares

 
 
 
 
 
 

1.000

0.211

0.413

0.013

-0.101

0.230

-0.058

Nikkei 225

 
 
 
 
 
 
 

1.000

0.416

0.203

0.124

0.181

0.102

MSCI EM

 
 
 
 
 
 
 
 

1.000

0.022

-0.032

0.435

0.018

IBOXX LIG

 
 
 
 
 
 
 
 
 

1.000

0.446

0.108

0.280

S&P GSD

 
 
 
 
 
 
 
 
 
 

1.000

-0.373

0.558

FTSE EPRA

 
 
 
 
 
 
 
 
 
 
 
 
 

NAREIT

 
 
 
 
 
 
 
 
 
 
 

1.000

-0.177

S&P GSCI

 
 
 
 
 
 
 
 
 
 
 
 
 

GOLD

 
 
 
 
 
 
 
 
 
 
 
 

1.000

26

Figure 1 : Density of Cryptocurrencies.

The following figure illustrates Gaussian kernel density estimators of cryptocurrencies against fitted normal distribution.

The subsequent tables summarize the dynamic conditional correlations between daily returns of the four cryptocurrencies and traditional asset class. Standard deviations are expressed in percentage.

Table 4: DCC statistics for traditional assets against Bitcoin

 

Mean

Std.deviation

Minimum

Median

Maximum

25%
quantile

75% quantile

S&P 500

0.0146

2.2501%

-0.1343

0.0147

0.2738

0.0099

0.0194

Eurostoxx 50

0.0648

0.0022%

0.0648

0.0648

0.0649

0.0648

0.0648

SSE_A shares

-0.0056

0.0038%

-0.0061

-0.0056

-0.0052

-0.0056

-0.0056

Nikkei 225

-0.0374

3.2494%

-0.0977

-0.0317

0.0194

-0.0693

-0.0102

MSCI EM

0.0196

0.0002%

0.0196

0.0196

0.0196

0.0196

0.0196

IBOXX LIG

-0.0149

0.0002%

-0.0150

-0.0149

-0.0149

-0.0149

-0.0149

S&P GSD

0.0112

0.2561%

-0.0252

0.0112

0.0243

0.0106

0.0118

FTSE EPRA

 
 
 
 
 
 
 

NAREIT

-0.0320

0.2980%

-0.0541

-0.0321

-0.0029

-0.0331

-0.0310

S&P GSCI gold

0.0166

0.0002%

0.0165

0.0166

0.0166

0.0166

0.0166

27

Table 5: DCC statistics for traditional assets against Ripple

 

Mean

Std.deviation

Minimum

Median

Maximum

25% quantile

75% quantile

S&P 500

0.064

3.12%

-0.009

0.064

0.173

0.040

0.082

Eurostoxx 50

0.044

0.00%

0.044

0.044

0.044

0.044

0.044

SSE_A shares

0.004

7.65%

-0.255

-0.002

0.337

-0.040

0.048

Nikkei 225

0.013

2.13%

-0.049

0.011

0.094

0.000

0.025

MSCI EM

0.073

2.56%

-0.010

0.071

0.200

0.059

0.084

IBOXX LIG

0.018

0.13%

0.007

0.018

0.026

0.018

0.018

S&P GSD

0.034

0.00%

0.034

0.034

0.034

0.034

0.034

FTSE EPRA

 
 
 
 
 
 
 

NAREIT

0.020

4.48%

-0.312

0.019

0.338

0.002

0.037

S&P GSCI gold

0.026

0.00%

0.026

0.026

0.026

0.026

0.026

Table 6: DCC statistics for traditional assets against DASH.

 

Mean

Std.deviation

Minimum

Median

Maximum 25% quantile 75% quantile

S&P 500

0.11

1.4%

0.03

0.10

0.18

0.10

0.11

Eurostoxx 50

0.10

3.1%

-0.08

0.10

0.27

0.09

0.11

SSE_A shares

0.04

0.0%

0.04

0.04

0.04

0.04

0.04

Nikkei 225

0.02

0.7%

-0.03

0.02

0.11

0.02

0.03

MSCI EM

0.08

2.5%

0.00

0.08

0.18

0.07

0.10

IBOXX LIG

-0.07

0.0%

-0.07

-0.07

-0.07

-0.07

-0.07

S&P GSD

-0.04

0.0%

-0.04

-0.04

-0.04

-0.04

-0.04

FTSE EPRA

 
 
 
 
 
 
 

NAREIT

-0.01

8.2%

-0.45

-0.01

0.49

-0.05

0.03

S&P GSCI gold

-0.02

2.1%

-0.26

-0.02

0.10

-0.02

-0.01

28

Table 7: DCC statistics for traditional assets against Litecoin

 

Mean

Std.deviation Minimum

Median

Maximum

25% quantile 75% quantile

S&P 500

0.018

4.89%

-0.164

0.011

0.192

-0.010

0.040

Eurostoxx 50

0.035

1.88%

-0.036

0.035

0.120

0.027

0.043

SSE_A shares

-0.027

2.90%

-0.099

-0.029

0.042

-0.044

-0.014

Nikkei 225

-0.021

0.00%

-0.021

-0.021

-0.021

-0.021

-0.021

MSCI EM

0.020

2.47%

-0.086

0.020

0.110

0.006

0.033

IBOXX LIG

-0.010

4.31%

-0.129

-0.009

0.181

-0.031

0.012

S&P GSD

0.001

0.00%

0.001

0.001

0.001

0.001

0.001

FTSE EPRA

 
 
 
 
 
 
 

NAREIT

-0.016

0.00%

-0.017

-0.016

-0.016

-0.016

-0.016

S&P GSCI gold

-0.016

5.46%

-0.207

-0.009

0.154

-0.046

0.018

Figure 2 : Dynamic conditional correlation plot of S&P 500 against cryptocurrencies and gold.

29

The following tables present the performance of the three optimal portfolios: Portfolio I: a portfolio of traditional assets, which encompasses equities, bonds and alternative investments. Portfolio II: a portfolio of traditional assets and Bitcoin. Portfolio III: a portfolio of traditional assets, Bitcoin and alternative cryptocurrencies. Four different optimization frameworks are performed subsequently: Minimum variance, Minimum Conditional Value at Risk, Inverse Volatility and Maximum Diversification frameworks. I use a 200 days moving window and the out of sample period ranges from May-08-2015 to April-30-2019. Sharpe ratio, mean daily return and standard deviation are annualized.

 

Table 8: Minimum Variance strategy

 
 

Portfolio I

Portfolio II

Portfolio III

Mean (%)

3.81%

4.14%

4.60%

Standard deviation (%)

3.62%

3.62%

3.64%

Skewness

-0.45

-0.44

-0.43

Kurtosis

5.30

5.24

5.06

Maximum drawdown (%)

5.43%

5.37%

5.45%

Cumulative wealth

1.16

1.17

1.19

Sharpe ratio

1.05

1.14

1.26

Table 9: Minimum conditional value at risk strategy

 

Portfolio I

Portfolio II

Portfolio III

Mean (%)

3.80%

4.51%

5.08%

Standard deviation (%)

3.64%

3.85%

3.94%

Skewness

-0.41

-0.36

-0.37

Kurtosis

5.25

5.13

5.09

Maximum drawdown (%)

5.50%

5.70%

6.93%

Cumulative wealth

1.16

1.19

1.21

Sharpe ratio

1.04

1.17

1.29

30

 

Table 10 : Inverse volatility strategy.

 
 

Portfolio I

Portfolio II

Portfolio III

Mean (%)

2.91%

4.42%

7.67%

Standard deviation (%)

5.17%

5.20%

5.88%

Skewness

-0.39

-0.46

-0.45

Kurtosis

5.35

5.53

5.57

Maximum drawdown (%)

11.85%

10.39%

11.70%

Cumulative wealth

1.12

1.18

1.32

Sharpe ratio

0.56

0.85

1.30

Table 11 : Maximum diversification strategy.

 

Portfolio I

Portfolio II

Portfolio III

Mean (%)

3.31%

5.94%

8.75%

Standard deviation (%)

4.50%

4.86%

5.65%

Skewness

-0.37

-0.31

0.07

Kurtosis

5.08

4.91

7.09

Maximum drawdown (%)

8.15%

9.40%

9.46%

Cumulative wealth

1.13

1.24

1.36

Sharpe ratio

0.73

1.22

1.54

FIGURES: Weight Allocation

The following graphs display the weight allocation for traditional assets and cryptocurrencies from 8 May 2015 until 30 April 2019 under the following strategies: minimum conditional value at risk, inverse volatility, and maximum diversification.

Minimum Conditional Value at Risk
Portfolio of traditional assets

08.05.2015 08.07.2015 08.09.2015 08.11.2015 08.01.2016 08.03.2016 08.05.2016 08.07.2016 08.09.2016 08.11.2016 08.01.2017 08.03.2017 08.05.2017 08.07.2017 08.09.2017 08.11.2017 08.01.2018 08.03.2018 08.05.2018 08.07.2018 08.09.2018 08.11.2018 08.01.2019 08.03.2019

1,00

0,90

0,80

0,70

Weights

0,60

0,50

0,40

0,30

0,20

0,10

0,00

Year

S&P 500 Eurostoxx 50 SSE A Shares Nikkei 225 MSCI EM

IBOXX LIG S&P GSD FTSE EPRA NAREIT S&P GSCI GOLD

Minimum Conditional Value at Risk Portfolio of tradtional assets and cryptocurrencies

08.05.2015 08.07.2015 08.09.2015 08.11.2015 08.01.2016 08.03.2016 08.05.2016 08.07.2016 08.09.2016 08.11.2016 08.01.2017 08.03.2017 08.05.2017 08.07.2017 08.09.2017 08.11.2017 08.01.2018 08.03.2018 08.05.2018 08.07.2018 08.09.2018 08.11.2018 08.01.2019 08.03.2019

1,00

0,90

0,80

0,70

Weights

0,60

0,50

0,40

0,30

0,20

0,10

0,00

31

Year

Bitcoin Ripple Dash Litecoin S&P500

Eurostoxx 50 SSE A Shares Nikkei 225 MSCI EM IBOXX LIG

S&P GSD FTSE EPRA NAREIT S&P GSCI GOLD

Inverse Volatility

Portfolio of traditional assets

08.05.2015 08.07.2015 08.09.2015 08.11.2015 08.01.2016 08.03.2016 08.05.2016 08.07.2016 08.09.2016 08.11.2016 08.01.2017 08.03.2017 08.05.2017 08.07.2017 08.09.2017 08.11.2017 08.01.2018 08.03.2018 08.05.2018 08.07.2018 08.09.2018 08.11.2018 08.01.2019 08.03.2019

1,00

0,90

0,80

0,70

Weights

0,60

0,50

0,40

0,30

0,20

0,10

0,00

Year

S&P 500 Eurostoxx 50 SSE A Shares Nikkei 225 MSCI EM

IBOXX LIG S&P GSD FTSE EPRA NAREIT S&P GSCI GOLD

Inverse Volatility

Portfolio of traditional assets and cryptocurrencies

08.05.2015 08.07.2015 08.09.2015 08.11.2015 08.01.2016 08.03.2016 08.05.2016 08.07.2016 08.09.2016 08.11.2016 08.01.2017 08.03.2017 08.05.2017 08.07.2017 08.09.2017 08.11.2017 08.01.2018 08.03.2018 08.05.2018 08.07.2018 08.09.2018 08.11.2018 08.01.2019 08.03.2019

1,00

0,90

0,80

0,70

Weights

0,60

0,50

0,40

0,30

0,20

0,10

0,00

32

Year

Bitcoin Ripple Dash Litecoin S&P500

Eurostoxx 50 SSE A Shares Nikkei 225 MSCI EM IBOXX LIG

S&P GSD FTSE EPRA NAREIT S&P GSCI GOLD

Maximum Diversification
Portfolio of traditional assets

08.05.2015 08.07.2015 08.09.2015 08.11.2015 08.01.2016 08.03.2016 08.05.2016 08.07.2016 08.09.2016 08.11.2016 08.01.2017 08.03.2017 08.05.2017 08.07.2017 08.09.2017 08.11.2017 08.01.2018 08.03.2018 08.05.2018 08.07.2018 08.09.2018 08.11.2018 08.01.2019 08.03.2019

1,00

0,90

0,80

0,70

Weights

0,60

0,50

0,40

0,30

0,20

0,10

0,00

Year

S&P 500 Eurostoxx 50 SSE A shares Nikkei 225 MSCI EM

IBOXX LIG S&P GSD FTSE EPRA NAREIT S&P GSCI GOLD

Maximum Diversification

Portfolio of traditional assets and crytocurrencies

08.05.2015 08.07.2015 08.09.2015 08.11.2015 08.01.2016 08.03.2016 08.05.2016 08.07.2016 08.09.2016 08.11.2016 08.01.2017 08.03.2017 08.05.2017 08.07.2017 08.09.2017 08.11.2017 08.01.2018 08.03.2018 08.05.2018 08.07.2018 08.09.2018 08.11.2018 08.01.2019 08.03.2019

1,00

0,90

0,80

0,70

Weights

0,60

0,50

0,40

0,30

0,20

0,10

0,00

33

Year

Bitcoin Ripple Dash Litecoin S&P500

Eurostoxx 50 SSE A Shares Nikkei 225 MSCI EM IBOXX LIG

S&P GSD FTSE EPRA NAREIT S&P GSCI GOLD

34

The subsequent tables present the results obtained from the robustness check. It reports the performance of the optimal portfolios when using weekly data. I use 40 weeks (Equivalent of 200 trading days) moving window and the out of sample period ranges from May-08-2015 to April-30-2019. Sharpe ratio, mean daily return and standard deviation are annualized.

Table 12: Minimum variance strategy

 
 

Portfolio I

Portfolio II

Portfolio III

Mean (%)

3.38%

4.08%

5.64%

Standard deviation (%)

4.29%

4.31%

4.53%

Skewness

-1.17

-1.26

-1.01

Kurtosis

10.07

10.31

8.93

Maximum drawdown (%)

6.97%

6.50%

7%

Cumulative wealth

1.13

1.16

1.22

Sharpe ratio

0.79

0.95

1.24

Table 13: Minimum conditional value at risk strategy

 

Portfolio I

Portfolio II

Portfolio III

Mean (%)

3.30%

4.36%

10.40%

Standard deviation (%)

4.45%

5.15%

6.07%

Skewness

-1.30

-2.54

-1.53

Kurtosis

14.30

21.90

14.09

Maximum drawdown (%)

7.00%

8.74%

9.00%

Cumulative wealth

1.14

1.17

1.39

Sharpe ratio

0.74

0.85

1.60

35

 

Table 14: Inverse volatility strategy

 
 

Portfolio I

Portfolio II

Portfolio III

Mean (%)

3.00%

4.59%

8.16%

Standard deviation (%)

6.15%

6.23%

6.85%

Skewness

-0.78

-0.83

-0.66

Kurtosis

5.75

5.81

4.73

Maximum drawdown (%)

10.83%

9.83%

11.0%

Cumulative wealth

1.11

1.18

1.32

Sharpe ratio

0.49

0.74

1.19

 

Table 15: Maximum diversification strategy

 
 

Portfolio I

Portfolio II

Portfolio III

Mean (%)

3.11%

6.55%

11.64%

Standard deviation (%)

5.76%

6.52%

8.83%

Skewness

-1.24

-1.20

0.36

Kurtosis

9.39

8.25

7.40

Maximum drawdown (%)

8.69%

10.02%

9.57%

Cumulative wealth

1.12

1.26

1.45

Sharpe ratio

0.54

1.00

1.31

36

Salma Ouali

References

Bouri, E., Molnár, P., Azzi, G., Roubaud, D., Hagfors, L.I., 2017. On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier? Finance Research Letters 20, 192-198.

Briere, M., Oosterlinck, K., Szafrz, A., 2015. Virtual currency, tangible return: Portfolio diversification with bitcoin. Journal of Asset Management, 16, 6, 365-373.

Brauneis, A., Mestel, R., 2019. Cryptocurrency-portfolios in a mean-variance framework. Finance Research Letters 28, 259-264.

Dyhrberg, A. H., 2016. Bitcoin, gold and the dollar- A GARCH volatility analysis. Finance Research Letters, 85-92.

Eisl, A., Gasser, S.M., Weinmayer, K., 2015. Caveat emptor: Does bitcoin improve portfolio diversification?

Engle, E., 2000. Dynamic conditional correlation - A simple class of multivariate GARCH models.

Guesmi, K. Samir Saadi, S., Abid, I., Ftiti, Z., 2018. Portfolio diversification with virtual currency: Evidence from bitcoin. International Review of Financial Analysis.

Henriques, I., Sadorsky, P., 2018. Can bitcoin replace gold in an investment portfolio? Journal of Risk and Financial Management 11, 48.

Hong, K., 2016. Bitcoin as an alternative investment vehicle. Springer Science+ Business Media

Kajtazi, A., Moro, A., 2017. Bitcoin, portfolio diversification and Chinese financial markets

Klein, T., Thu, H.P., Walthe, T., 2018. Bitcoin is not the new gold, a comparison of volatility, correlation, and portfolio performance. Working paper.

Lee, D.K.K., Li Guo, L., Yu Wang, Y., 2017. Cryptocurrency: A new investment opportunity? Liu, W., 2018. Portfolio diversification across cryptocurrencies. Finance Research Letters.

Lorenz, J., Strika, M., 2017. Bitcoin and cryptocurrencies - not for the faint-hearted. International Finance and Banking 4, 1.

Petukhina, A., Trimborn, S., Härdle, W.K., Elendner, H., 2018. Investing with cryptocurrencies - evaluating the potential of portfolio allocation.

Platanakis, E., Urquhart, A., 2018. Should investors include bitcoin in their portfolios? A portfolio theory approach.

Rockafellar, R.T., Uryasev, S., 1999. Optimization of conditional value at risk. Journal of Risk, 21-41.

37

Salma Ouali

Svärd, S., 2014. Dynamic portfolio strategy using multivariate garch model. Working Paper

Symitsi, E., Chalvatzis, K.J., 2019. The economic value of bitcoin: A portfolio analysis of currencies, gold, oil and stocks. Research in International Business and Finance 48, 97-110.

Urquhart, A., Zhang, H., 2016. Bitcoin a hedge or safe-haven for currencies? An intraday analysis.

précédent sommaire






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"I don't believe we shall ever have a good money again before we take the thing out of the hand of governments. We can't take it violently, out of the hands of governments, all we can do is by some sly roundabout way introduce something that they can't stop ..."   Friedrich Hayek (1899-1992) en 1984